Supplement for: Dashing: Fast and Accurate Genomic
Distances with HyperLogLog

Daniel N Baker! and Ben Langmead’

'Department of Computer Science, Johns Hopkins University

October 31, 2019

Supplementary Notes

Note S1 Details on sketch accuracy experiment

The program used to perform the experiments described in this study is named:
e dsexp/dsexp.cpp

The R Markdown document used to generate figures and tables is named:
e dsexp/dsexp.Rmd

Both are located in the GitHub repository at:
e https://github.com/langmead-lab/dashing-experiments

Note that this experiment uses Dashing’s HLL implementation, as well as Dashing’s
own implementations of the MinHash sketch and the Bloom filter.

Note S2 Details on Bloom filter sketches

A Bloom filter [1] can be used to hold an approximate representation of a set. Further,
Bloom filters for different sets can be compared to arrive at cardinality estimates for set
unions and intersections. To this end, we implemented a Bloom-filter method for estimat-
ing Jaccard coefficient in Dashing v0.1.2, in addition to the HLL and MinHash methods
evaluated in the main text. We conducted two additional series of simulation experiments

1

https://github.com/langmead-lab/dashing-experiments

to test both a naive (collision-agnostic) and a collision-aware method [2] for estimating set
cardinalities from the Bloom filters.

While Bloom filters can use several hash functions to improve accuracy in some situ-
ations, we used one hash function in our experiments. This is a reasonable choice in the
absence of any foreknowledge of the set cardinality, as it yields the lowest false positive
rate for the case where the number of bits in the filter is not much larger than the set
cardinality.

Results are shown in Figures S2 and S3. Figure S2 shows results for unequal-sized
input sets. For the two Js tested (0.0465 and 0.111), HLL had lower absolute error than
MinHash as seen most clearly in the second row. The Bloom-filter-based methods, espe-
cially the collision aware method (Bloom+), achieved slightly lower error in some scenar-
ios. Bloom+ had lower error (by < 0.0025) for sketches of size 2!® bytes and higher for the
smallest sets. For larger sets, the point where Bloom+ began to have lower error than HLL
moved rightward. The naive Bloom method also sometimes outperformed HLL, though
only for the largest sketch size and smallest input sets. That the Bloom filters outper-
form at large sketch sizes is not surprising; as the number of filter bits increases far past
the set cardinality, collisions become rare and the method converges on error-free linear
counting.

Figure S3 shows results for input sets of equal size and for Jaccard coefficients of 0.33,
0.6 and 0.82. HLL again had lower absolute error in most scenarios, though the Bloom-
based approaches — similarly to the unequal-input-set case — had slightly lower absolute
error for sufficiently large sketches. MinHash also achieved lower error in a few scenarios.

Note S3 Details on accuracy for complete genomes experiment
The script used to select the 400 genome pairs used is named:
e accuracy/pairselector.py
The program used to perform the experiments is named:
e accuracy/pairwise_benchmark.cpp
The scripts used to generate figures and tables are named:

e accuracy/Ji_range.Rmd

e accuracy/Jji_range_postprocess.py
All of the above are located in the GitHub repository at:

e https://github.com/langmead-lab/dashing-experiments

https://github.com/langmead-lab/dashing-experiments

Note S3.1 Dashing

Rather than calling Dashing by command-line, instead the encoder and sketch structure
used in dashing were called directly in C++ as below:

enc.for_each([&] (ued v) {
kh_put (all, hash_, v, &khr);
v = sketch::hll::hll_t::HashType () (v);
for(auto &h: hll_) h.add(v);

by fP)

e The same hash and other parameters in Dashing were used.

e The only difference is that each key was only hashed once and then inserted into
multiple HLLs to reduce experimental cost.

Note S3.2 Mash

mash sketch -s %$zu -k %u -o %s %s

mash dist -d 0. -j %s %s\n

Where:

e —s %zuallows $zu integers in the final MinHash sketch

e -k %usets the k-mer length to $u

e -0 %s directs output to a file named %s

e —d 0. causes Mash to emit all values, rather than only those passing a filter

e —j %sisaspecial parameter supported by our fork of the Mash project (at https:
//github.com/dnbaker/Mash). It causes Mash to emit Jaccard coefficients rather
than Mash distances.

Note S3.3 BinDash

bindash sketch —--minhashtype=2 —--bbits=16
——sketchsize64=%zu ——-kmerlen=%u —-outfname=%s

o\
0

https://github.com/dnbaker/Mash
https://github.com/dnbaker/Mash

bindash dist ——mthres=1e300 %s %s

Where:

e ——minhashtype=2 uses the (default) method of b-bit MinHash with optimal den-
sification.

e ——bbits=16 sets the parameter b for b-bit MinHash to be 16.

e ——sketchsize64=%zu requests $zu 64-bit integers to be used in the sketch.
e ——outfname=%s directs output to $s.

e ——kmerlen=%u sets the k-mer length to be $u.

e ——mthres=1e300 sets the maximum distance to report to be 1e300, effectively re-
quiring that all distances be emitted.

Note S4 Details on computational efficiency experiment
The script used to perform the experiments described in this study is named:
e timing/all_pairwise.py
The R Markdown document used to generate figures and tables is named:
e timing/timing.Rmd
And both are located in the GitHub repository at:
e https://github.com/langmead-lab/dashing—-experiments

Note S4.1 Mash

The command we used to perform sketching experiments was:

nohup {time_path} -v mash sketch -p {threads}
-s {1l<<(sketchsz - 2 - (ksz > 16))}
-k {ksz} -o mash.{ksz}.{sketchsz}.msh
-1 {fname_paths} &> {mashlog}

https://github.com/langmead-lab/dashing-experiments

e Where {nohup} is a utility that ensures the command is not interrupted even if the
user subsequently logs out

e {time_path} is the path to a utility which is used for full timing information.
(GNU time 1.9) —v emits verbose information.

e {threads} is the number of simultaneous hardware threads to use
e {kzs} is the k-mer length
e {sketchsz} is the log, of the sketch size in bytes

e The expression {1<<(sketchsz - 2 - (ksz > 16)) } selects number of mini-
mizers to request from Mash to result in a sketch of a given power of 2 size in bytes.
The ksz > 16 clause accounts for Mash’s use of 32-bit minimizers when ksz <=
16.

e Parameter -k sets the k-mer size to be :param:.

e {fname_paths}, specified by parameter -1, provides the a list of paths, one per
line, of genomes to process.

The command we used to perform distance experiments was:

nohup {time_path} -v mash triangle -p {threads}
mash.{ksz}.{sketchsz}.msh
1> {mashout} 2>> {mashlog}

Where {nohup} is a utility that ensures the command is not interrupted even if the
user subsequently logs out.

{time_path} is the path to a utility which is used for full timing information.
(GNU time 1.9) —v emits verbose information.

{threads} is the number of simultaneous hardware threads to use.

{mashout} is the path to write results are written.

{mashlog} is the path to which logging information, including results from time_path,
are appended.

Note S4.2 Dashing

The command we used to perform sketching experiments was:

nohup {time_path} -v dashing sketch
{sketchstr} -k{ksz} -p{threads}
-S{sketchsz} -F{fname_paths} &> {logfile}

e Where {nohup} is a utility that ensures the command is not interrupted even if the
user subsequently logs out.

{time_path} is the path to a utility which is used for full timing information.
(GNU time 1.9) —-v emits verbose information.

{threads} is the number of simultaneous hardware threads to use.

{sketchstr} is the command-line flag corresponding to which mode to use. (-1

for Ertl Improved, —E for original Flajolet, —J for Ertl JIMLE, and an empty string for
Ertl MLE).

{kzs} is the k-mer length.

{sketchsz} is the log, of the sketch size in bytes.

{fname_paths}, specified by parameter -F, provides the a list of paths, one per
line, of genomes to process.

The command we used to perform distance calculations was:

nohup {time_path} -v dashing dist

{sketchstr} -Wfbk{ksz} -p{threads}
-S{sketchsz} —-o{outsizes}

-O{outdists} —-F{fname_paths} &> {logfile}.tmp

e Where {nohup} is a utility that ensures the command is not interrupted even if the
user subsequently logs out

e {time_path} is the path to a utility which is used for full timing information.
(GNU time 1.9) —v emits verbose information.

e {threads} is the number of simultaneous hardware threads to use

e {kzs} is the k-mer length

{sketchsz} is the log, of the sketch size in bytes

e {fname_paths}, specified by parameter -F, provides the a list of paths, one per
line, of genomes to process.

e Parameter -0 specifies the file to which to write the distance matrix.

e Parameter —o specifies the file to which to write a list of genomes which their esti-
mated cardinalities.

e Parameter -W specifies to use pre-sketched sketches (instead of sketching from the
genomes).

e Parameter - f specifies to emit single-precision floats.

e Parameter —b specifies to emit binary format.

The command we used to perform combined sketching and distance calculations was:

nohup {time_path} -v dashing dist {sketchstr}
—fbk{ksz} -p{threads} -S{sketchsz}
—o{outsizes} -O{outdists}

-F{fname_paths} &> {logfile}.tmp

e Where {nohup} is a utility that ensures the command is not interrupted even if the
user subsequently logs out.

e {time_path} is the path to a utility which is used for full timing information.
(GNU time 1.9) —v emits verbose information.

e {threads} is the number of simultaneous hardware threads to use
e {kzs} is the k-mer length
e {sketchsz} is the log, of the sketch size in bytes

e {fname_paths}, specified by parameter —F, provides the a list of paths, one per
line, of genomes to process.

e Parameter —O specifies the file to which to write the distance matrix.

e Parameter -o specifies the file to which to write a list of genomes which their esti-
mated cardinalities.

e Parameter £ specifies to emit single-precision floats.

e Parameter —b specifies to emit binary format.

Note: the lack of parameter - causes Dashing to perform both sketching and compar-
isons instead of using cached sketches.

Note S4.3 BinDash

The command we used to perform sketching experiments was:

nohup {time_path} -v bindash sketch --minhashtype=2
—-—nthreads={threads} —-bbits={BBITS}
——sketchsize64={ns64} ——-kmerlen={ksz}

——out fname=bindash. {ksz}.{sketchsz} .bdsh
——listfname={fname_paths} &> {bindashlog}

e Where {nohup} is a utility that ensures the command is not interrupted even if the
user subsequently logs out.

e {time_path} is the path to a utility which is used for full timing information.
(GNU time 1.9) —v emits verbose information.

e {threads} is the number of simultaneous hardware threads to use.
e {kzs} is the k-mer length

e {ns64} is the parameter designating the number of sets of 64 minimizers to use to
match the sketch size of dashing in bytes.

e {fname_paths}, specified by parameter —-1istfname=, provides the a list of
paths, one per line, of genomes to process.

e ——bbits={BBITS} sets the parameter b for b-bit MinHash. For all our experiments,
b was set to 16 to make sketch sizes equal to powers of two possible.

e {sketchsz} is the log, of the sketch size in bytes.

The command we used to perform distance calculations was:

nohup {time_path} -v bindash dist
—--nthreads={threads} bindash.{ksz}.{sketchsz}.bdsh
1> {bindashout} 2>> {bindashlog}

e Where {nohup} is a utility that ensures the command is not interrupted even if the
user subsequently logs out

e {time_path} is the path to a utility which is used for full timing information.
(GNU time 1.9) —v emits verbose information.

e {threads} is the number of simultaneous hardware threads to use
e {kzs} is the k-mer length

e {sketchsz} is the log, of the sketch size in bytes.

Note S5 SIMD instruction set comparison

We compiled a separate binary for each of four successive iterations of the Intel SIMD
instruction set. The first binary used only instructions up to and including the SSE2 in-
struction set, introduced in the 2000 Pentium 4 architecture and supporting vector words
of 128 bits. The second binary used instructions up to and including the AVX2 instruc-
tion set, introduced in the 2013 Haswell architecture and supporting 256-bit words. The
third used instructions up to and including the AVX512 instruction set, introduced in
the 2016 Knight’s Landing architecture and supporting 512-bit words (with a caveat de-
scribed below). The fourth used instructions up to the AVX512BW instruction set, which
was expanded to include instructions with 8- and 16-bit operands.

To experiment with all of these instruction sets on the same computer, we used a sin-
gle Skylake node from the Stampede 2 supercomputer at the Texas Advanced Compute
Center (TACC). The specific node had dual-socket Intel Xeon Platinum 8160 processors,
each with 24 cores and 2 hyperthreaded threads per core, for a total of 96 simultaneous
hardware threads. Each core was clocked at a 2.1 GHz nominal rate and the node had
192GB of DDR4 RAM.

The difference between AVX512 and AVX512BW is that AVX512 lacks instructions for
vectors of 8-bit operands; AVX512 instructions work on vectors or 32- or 64-bit operands
only. For Dashing this means we cannot use 512-bit instructions that map naturally onto
the 8-bit HyperLogLog registers and instead must use (AVX2) instructions operating on
256-bit-wide vectors of registers. We still use 512-bit instructions to load and store por-
tions of the HLL and thereby derive some benefit from the 512-bit vector words.

Table S1 shows CPU-time and wall-clock time results for the distance calculation step
only, and for the four instruction sets and for Ertl’s Maximum Likelihood Estimator (MLE)
and Joint MLE (MLE). The distance calculation was the same all-pairs calculation be-
tween 87,113 complete genome assemblies as was benchmarked in the “Computational
efficiency” Results section in the main text. The exact Dashing command used was the
as for the “Computational efficiency” experiment (see Note S4), but using 90 hardware
threads (-p90) instead of the 100 threads we used in other experiments, since the Skylake
node supports only up to 96 simultaneous threads. Here we measure the results for a
sketch size of 1KB and a k-mer length of 31 (-S10 -k31).

For JMLE, the wider vector words generally led to faster distance calculations, with
AVX512BW performing best overall and about 20% faster than SSE2. The AVX512 method,
which used 512-bit loads and stores but otherwise relied on AVX2 instructions, performed
worse than both our AVX512BW version and our pure AVX2 version. For MLE, wider vec-
tor words led to slower distance calculations, with SSE2 performing best overall. This is
likely due to the fact that Intel’s frequency scaling technology reduces the processor clock
frequency when wider vector words are used [3]. We hypothesize that the decrease in
clock speed leads to a net slowdown for MLE (versus a net speedup for JMLE) because
the MLE inner loop has a lower density of vector arithmetic compared to JMLE.

Given that the MLE estimation method is Dashing’s default, the released Dashing
binaries — and the default setting when a user compiles the Dashing binary from scratch
— use the SSE2 instruction set by default. Given the efficacy of AVX512BW for the JMLE
method, it will be important to investigate how to include both SSE2 and AVX512BW
modes in a single binary executable without impairing portability.

Note S6 Thread scaling

We compared speed and memory footprint of Dashing, Mash and BinDash in both sketch-
ing and distance estimation phases using 4, 8 and 16 simultaneous threads. For all runs,
input data and other parameters — apart from the number of threads — matched the
experiments used in the “Computational efficiency” section. For Dashing, we used the
Original, MLE and JMLE distance estimation methods. Results are shown in Figure S4.

Throughput is measured as 1/t where t is the wall clock running time. Dashing exhib-
ited the highest sketching throughput in all tests (Fig S4 panel a). BinDash exhibited the
greatest distance estimation throughput, while Mash and Dashing’s JMLE mode yielded
the lowest estimation throughput and Dashing’s other estimation modes had intermedi-
ate throughput (Fig S4 panel b). To isolate the thread scaling effect, Fig S4 panels c and
d show the throughput results but with each series standardized by dividing throughput
by the tool’s 4-thread throughput. All tools exhibited similar thread scaling with respect
to sketching throughput (panel c). All of Dashing’s three distance estimation methods
scaled better then BinDash or Mash'’s estimation methods (panel d).

Fig 54 panels e and f show peak memory footprint, measured as the maximum resi-
dent set size. Mash'’s sketchng method had the highest memory footprint, while BinDash’s
exhibited very low footprint (panel e). Dashing’s memory footprint was intermediate.
Further, while Mash and Dashing had increasing memory footprint for sketching, BinDash'’s
stayed near constant. BinDash’s distance estimation had the highest memory footprint,
while Dashing had the lowest. Both BinDash and Dashing had flat plots, indicating mem-
ory footprint was largely independent of thread count. Mash’s footprint was intermedi-
ate, but variable, reaching BinDash’s footprint at 16 threads.

10

Supplementary Tables

Instruction Vector CPU time Wall time

Method set width | (thread-seconds) (seconds)
JMLE SSE2 128 45,288 515
AVX2 256 37,420 431

AVX512 512 39,109 456
AVX512BW 512 35,818 410

MLE SSE2 128 8,151 105
AVX2 256 8,819 106

AVX512 512 9,725 123
AVX512BW 512 9,268 118

Table S1: Running time of Dashing all-pairs distance calculation between 87,113 complete
genome assemblies for various SIMD instruction sets.

11

Supplementary Figures

0.084 0.08 0.087
3, .
. 0.061 _ 0.064 i+ L 0067 %
o o B o N
= = =
() [} ()
o . o . el o
5] 15 I J & 0.044 4"
8 0047 4, 8 0047, 8o .
] [}]
- - bar)
[%2] %] 1%}
Q X Qo Qo
< 0.02 < 0.02 < 0.024
0.00 0.00 0.00
10 12 14 16 18 20 22 10 12 14 16 18 20 22 10 12 14 16 18 20 22
log2(sketch bytes) log2(sketch bytes) log2(sketch bytes)
0.020 & 0.020- 0.020-
0.0154 0.0154 0.0154
= = =
o o o
= = =
() () (] |
2 00101 T 0.0104 T 00107
[S] Q Q
(5] Q o
© © [
iarl bar] bar)
2 0.0054 2 0.0054 2 0.005+
< < <
0.0001 0.000 - 0.0001

T T T T T T T
10 12 14 16 18 20 22

log2(sketch bytes)

10 12 14 16 18 20 22
log2(sketch bytes)

T T T T T T T
10 12 14 16 18 20 22

log2(sketch bytes)

Abs Jaccard error
— HLL
-+ MinHash

Set sizes (logy)
— 14,14
— 17,17
— 20,20
— 23,23
— 26,26
— 29,29

Fig S1: Columns correspond to simulations where the true Jaccard coefficients were 0.33,
0.6 and 0.82 (respectively, left to right). The x axis shows the log, of the sketch size in bytes.
The y axis shows the absolute error of the method. All input-set pairs are equal-size, with
size labeled by color. The second row zooms further in with respect to the y-axis.

12

1.00- 1.00 1
0.75+

0.75

0.50 - 0.50 1

A abs error
A abs error

0.25+ 0.25 1

0.00

0.00

10 12 14 16 18 20 22
log2(sketch bytes)

10 12 14 16 18 20 22
log2(sketch bytes)

0.06 0.06 A

0.04 - 0.04 4

A abs error
A abs error

0.02+ 0.02 1

0.00 _— = 0.00

10 12 14 16 18 20 22
log2(sketch bytes)

0.001 : : : 0.001

0.000 - : — 0.000

-0.001 4

A abs error
A abs error

—0.002 -0.002 4

10 12 14 16 18 20 22
log2(sketch bytes)

Fig S2: Columns correspond to simulations where the true Jaccard coefficients were 0.111
(left) and 0.0465 (right). The x axis shows the log, of the sketch size in bytes. The y axis
shows the absolute error of the alternative method minus that of the HLL; points above
the y axis indicate HLL's error is lower than that of the alternative method. All pairs of
input sets differ in size by a factor of 23 = 8. The second and third rows zoom further
in with respect to the y-axis so as to highlight the relative performance of MinHash (2nd
row) and the Bloom+ filter (3rd row). HLL exhibits lower absolute error in most circum-
stances, especially for smaller sketches and larger sets. Bloom+ starts to outperform (A
absolute error drops below y = 0) when the number of bits in the filter is sufficiently large
compared to the cardinality. “Bloom+" refers to the collision-aware estimation method,

-0.001 4

10 12 14 16 18 20 22
log2(sketch bytes)

0 12 14 16 18 20 22
log2(sketch bytes)

whereas “Bloom” refers to the naive method.

1

3

Set sizes (log,)

14,17
— 17,20
— 20,23
— 23,26
26, 29

A abs error
— Bloom - HLL

-- Bloom+ - HLL
—-=-- MinHash - HLL

0.6 0.6 0.6
g g 8
5 044 5 041 504
2 2 8
© [©
< < <
0.2 0.24 0.2
0.0 0.0 0.0
10 12 14 16 18 20 22 10 12 14 16 18 20 22 10 12 14 16 18 20 22
log2(sketch bytes) log2(sketch bytes) log2(sketch bytes)
0.064 0.06 0.064
g g s
£ j £ 4 £
5 0.04 5 0045 5 0.04
2 2 ;]
© © (©
< 0,021 <0024 < 0.024
0.00 0.00 0.00
10 12 14 16 18 20 22 10 12 14 16 18 20 22 10 12 14 16 18 20 22
log2(sketch bytes) log2(sketch bytes)
R a :
a . H
il AR :
! RN ; :
0.0044 ! oooaf iy A 0.0041
RV \\‘—\r’\
s s T 5
= = VALY VA =
5 5 EO L S A 5
@ 0.000 @ 0.000 @ 0.000
Q Qo Q
© © ©
< < <
-0.004 -0.0044 -0.0041 |
/
/
/
/
!

14 16 18
log2(sketch bytes)

0 12

20

22

14 16 18 20 22

log2(sketch bytes)

0 12

14 16 18 20 22

log2(sketch bytes)

12

A abs error

— Bloom - HLL
-+ Bloom+ - HLL

==+ MinHash - HLL

Set sizes (logy)
— 14,14
— 17,17
— 20,20
— 23,23
— 26,26
— 29,29

Fig 53: Columns correspond to simulations where the true Jaccard coefficients were 0.33,
0.6 and 0.82 (respectively, left to right). The z axis shows the log, of the sketch size in
bytes. The y axis shows the absolute error of the alternative method minus that of the
HLL; points above the y axis indicate HLL’s error is lower than that of the alternative
method. All pairs of input sets are the same size, with size labeled by color. The second
and third rows zoom further in with respect to the y-axis. “Bloom+" refers to the collision-
aware estimation method, whereas “Bloom” refers to the naive method.

14

Sketch Distance

0.00075 - 0.00751
— +—
=} >
I g
<, 0.00050 A S, 0-0050 1
> >
e e
e e
 0.00025 A F 0.0025 A
0.00000 | 0.00004 =
4 8 12 16 4 8 12 16
Threads Threads
Sketch Distance
44 41
5 5
o o
Ny =
o 3 O 34
=} >
e o
= =
5 27 - 27
(] (0]
N N
T 4 ©
£l £’
2 2
0+ 0+
4 8 12 16 4 8 12 16
Threads Threads
Sketch Distance
> 6e+06 A > 4e+05 A
@] o
5 g
3e+05 -
E 4e+061 E
o o
S S 2e+05 -
0)
D 2e+06 - o
~ ~ 1e+05 A
© 1]
[0 (O]
o o
0e+00 1 0e+00 |
4 8 12 16 4 8 12 16
Threads Threads
Mash BinDash —— Dashing-Original Dashing-MLE —— Dashing—JMLE

Fig S4: Thread scaling results comparing Dashing, Mash and BinDash for 4, 8 and 16
threads. Throughput is measured as 1/t where t is the wall clock running time. For panels
c and d, throughput is standardized by dividing results by the tool’s 4-thread throughput.
Peak memory is measured as the maximum resident set size.

15

References

Burton H Bloom. “Space/time trade-offs in hash coding with allowable errors”. In:
Communications of the ACM 13.7 (1970), pp. 422-426.

S.J. Swamidass and P. Baldi. “Mathematical correction for fingerprint similarity mea-
sures to improve chemical retrieval”. In: | Chem Inf Model 47.3 (2007), pp. 952-964.

Mathias Gottschlag and Frank Bellosa. “Mechanism to Mitigate AVX-Induced Fre-
quency Reduction”. In: CoRR abs/1901.04982 (2018). arXiv:1702.01284. URL: https:
//arxiv.org/abs/1901.04982.

16

http://arxiv.org/abs/1702.01284
https://arxiv.org/abs/1901.04982
https://arxiv.org/abs/1901.04982

	Details on sketch accuracy experiment
	Details on Bloom filter sketches
	Details on accuracy for complete genomes experiment
	Dashing
	Mash
	BinDash

	Details on computational efficiency experiment
	Mash
	Dashing
	BinDash

	SIMD instruction set comparison
	Thread scaling

