Supplementary Information

Development of Novel Silyl Cyanocinnamic Acid Derivatives as Metabolic Plasticity Inhibitors for Cancer Treatment

Grady L. Nelson^a, Conor T. Ronayne^a, Lucas N. Solano^a, Sravan K. Jonnalagadda^a, Shirisha Jonnalagadda^a, Jon Rumbley^{a,d}, Jon Holy^{a,c}, Teresa Rose-Hellekant^{a,c}, Lester R. Drewes^{a,c}, Venkatram R. Mereddy^{a,b,d*}

^aIntegrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812 ^bDepartment of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812 ^cDepartment of Biomedical Sciences, Medical School Duluth, University of Minnesota, MN 55812 ^dDepartment of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812

Supplemental Figure 1: Synthetic scheme of silvlated CHC analogs (A) 2a and (B) 2b and nonsilvlated analogs (C) 2c and (D) 2d.

Synthesis of directly attached TBDPS-CHC 2a was accomplished by reacting commercially available CHC 1 with TBDPS-Cl in the presence of DIPEA. Upon completion, the reaction mixture was poured over 3N HCl and the resulting precipitate was filtered and washed with hexanes to obtain pure 2a (Fig 1A). Synthesis of Ex-TBDPS-CHC 2b was achieved first by reacting *p*-hydroxybenzaldehyde **3** with chloroethanol under basic and heated conditions to obtain the intermediate *p*-hydroxyethylbenzaldehyde **4**, which was subsequently reacted with TBDPS-Cl in the presence of imidazole. The resulting TBDPS substituted aldehyde 5 was condensed with cyanoacetic acid in the presence of piperidine and refluxed in acetonitrile for 10 hours. Upon completion of the reaction, the solution was poured over ice and 3N HCl. The resulting precipitate was then filtered and washed with diethyl ether to obtain pure 2b (Fig 1B). To demonstrate the importance of the silvl group in providing biological activity, compound 2c and 2d were synthesized. Specifically, compound 2d was synthesized as a homolog of 2b to demonstrate that hydrophobicity offered by TBDPS template is necessary for biological activity. Similarly, the products of hydroxyethyl-CHC 2c and bromoethyl-CHC 2d were obtained via a standard Knovenagel condensation of the corresponding aldehydes (4 and 6, respectively) with cyanoacetic acid in the presence of piperidine (Fig 1C & 1D).

Supplemental Figure 2: Full-length blots of cropped images depicted in manuscript Figure 7A. Lanes labeled 1-5 indicate whole-cell lysates of WiDr cells with the following treatments: (1) DMSO, (2) cyanohydroxycinnamic acid (CHC, 100 μ M), (3) **2a** (25 μ M), (4) **2a** (50 μ M), (5) **2a** (50 μ M). (**A**) WiDr whole-cell lysates resolved on an 8% SDS-PAGE gel and probed for PARP-1. (**B**) WiDr whole-cell lysates resolved on a 12% SDS-PAGE gel and probed for p53. (**C**) Protein from WiDr whole-cell lysates resolved on a 12% SDS-PAGE gel and probed for γ H2AX. (**D**) WiDr whole-cell lysates resolved on an 8% SDS-PAGE gel and probed for γ H2AX. (**D**) WiDr whole-cell lysates resolved on an 8% SDS-PAGE gel and probed for β -actin and p53 (note arrow indicating β -actin band used in Figure 7A). Due to saturation of p53 band, an independent exposure was performed, as illustrated in panel B, above. Please refer to methods section for details.

Supplemental Figure 3: Full-length blots of cropped images depicted in manuscript Figure 7A. Lanes labeled 1-5 indicate whole-cell lysates of MDA-MB-231 cells with the following treatments: (1) DMSO, (2) cyanohydroxycinnamic acid (CHC, 100µM), (3) **2a** (25µM), (4) **2a** (50µM), (5) **2a** (50µM). (A) MDA-MB-231 whole-cell lysates resolved on an 8% SDS-PAGE gel and probed for PARP-1. Note samples 6-10 indicate the same treatment as 1-5 above, but from independent replicates. PARP-1 from samples 6-10 were used in Figure 7A, as noted. (**B**) MDA-MB-231 whole-cell lysates resolved on a 8% SDS-PAGE gel and probed for p53. (**C**) Protein from MDA-MB-231 whole-cell lysates resolved on a 12% SDS-PAGE gel and probed for γH2AX. (**D**) MDA-MB-231 whole-cell lysates resolved on an 8% SDS-PAGE gel and probed for β-actin. Please refer to methods section for details.

Supplemental Figure 4: Full-length blots of cropped images depicted in manuscript Figure 7B. Lanes labeled 1-4 indicate whole-cell lysates of WiDr cells with the following treatments: (1) DMSO + N-Acetyl cysteine (NAC), (2) DMSO, (3) **2a** (100 μ M) + NAC, (4) **2a** (100 μ M). (A) Protein from WiDr whole-cell lysates resolved on an 8% SDS-PAGE gel and probed for PARP-1. (B) Protein from WiDr whole-cell lysates resolved on an 8% SDS-PAGE gel and probed for GAPDH. (C) Protein from WiDr whole-cell lysates resolved on a 12% SDS-PAGE gel and probed for γ H2AX. Please refer to methods section for details.

Spectral Characterization

(E)-3-(4-((tert-butyldiphenylsilyl)oxy)phenyl)-2-cyanoacrylic acid (2a)

¹H NMR (500 MHz, CDCl₃):

δ ppm 8.15 (s, 1H), 7.84 (d, *J* = 9 Hz, 2H), 7.67 - 7.72 (m, 4H), 7.43 - 7.50 (m, 2H), 7.37 - 7.43 (m, 4H), 6.86 (d, *J* = 9 Hz, 2H), 1.12 (s, 9H)

¹³C NMR (126 MHz, CDCl₃):

δ ppm 168.0, 161.1, 156.1, 135.3, 133.9, 131.7, 130.4, 128.0, 124.4, 120.8, 115.6, 98.2, 26.4, 19.5

HRMS (ESI) m/z:

calculated for $C_{17}H_{22}N_2O_3 [M+Na]^+: 428.168$

found 428.146

Elemental Analysis C, H, N

Anal. Calcd for C₂₆H₂₅NO₃Si (427.16): C 73.04, H 5.89, N 3.28.

Found: C 72.34, H 5.96, N 3.20

(E)-3-(4-(2-((tert-butyldiphenylsilyl)oxy)ethoxy)phenyl)-2-cyanoacrylic acid (2b):

¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.24 (br. s., 1H), 8.01 (d, *J* = 8 Hz, 2H), 7.67 - 7.74 (m, 4H), 7.36 - 7.48 (m, 6H), 6.94 (d, *J* = 8 Hz, 2H), 4.16 (t, *J* = 5 Hz, 2H), 4.02 (t, *J* = 5 Hz, 2H), 1.07 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ ppm 168.8, 163.8, 156.1, 135.6, 134.2, 133.3, 129.9, 127.8, 124.1, 115.4, 98.4, 69.4, 62.3, 26.8, 19.2

Elemental Analysis C, H, N

Anal. Calculated for C₂₈H₂₉NO₄Si Na⁺ (494.18): C 67.99, H 5.91, N 2.83.

Found: C 69.06, H 5.98, N 2.90.

E)-2-cyano-3-(4-(2-hydroxyethoxy)phenyl)acrylic acid (2c):

¹**H NMR** (500 MHz, MeOH-d₆):

δ 8.09 (s, 1H), 7.98 (d, *J* = 9 Hz, 2H), 7.12 (d, 2H), 4.20 (t, 2H), 3.97 (t, *J* = 5 Hz, 2H)

¹³C NMR (126MHz, MeOH-d₆):

δ 167.5, 161.8, 149.7, 131.8, 125.4, 118.4, 114.6, 107.0, 69.4, 60.1.

(E)-3-(4-(2-bromoethoxy)phenyl)-2-cyanoacrylic acid (2d)

¹**H NMR** (500 MHz, CDCl₃) d 9.87 (s, 1H), 7.82 (d, J = 8.79 Hz, 2H), 6.99 (d, J = 8.79 Hz, 2H), 4.35 (t, J = 6.10 Hz, 2H), 3.56 - 3.76 (m, 2H)

¹³C NMR (126 MHz, CDCl₃) d 164.7, 161.9, 153.8, 133.4, 125.1, 116.4, 115.2, 100.8, 67.9, 28.5

