Table of Contents

Appendix Figure S1	2
Appendix Figure S2	3
Appendix Figure S3	4
Appendix Figure S4	5
Appendix Figure S5	6
Appendix Figure S6	7

Appendix Figure S1.

Valinomycin also caused redistribution of MITOL from mitochondria to peroxisomes in a Parkin-dependent manner.

(A) Peroxisomal localization of MITOL after CCCP treatment was unaffected by a C-terminal 3Flag-tag. HeLa cells stably expressing HA-Parkin were transfected with MITOL-3Flag, treated with 15 µM CCCP for 3 hours, and then subjected to immunocytochemistry with anti-Flag and anti-catalase antibodies. Higher magnification images of the boxed regions are shown in the small panel. Scale bars, 10 µm.

(B, C) Valinomycin treatment also triggered co-localization of MITOL and catalase. HeLa cells transiently expressing Flag-Parkin (B) or wild-type Hela cells (C) were transfected with MITOL-HA, treated with 15 µM valinomycin for 3 hours, and then subjected to immunocytochemistry with anti-HA and anti-catalase antibodies. Higher magnification images of the boxed regions are shown in the small panel. Scale bars, 10 µm.

Α	3Flag-MITOL	Pex14	Merge	3 3Flag-MITOL	Sec61β	Merge	C 3Flag-MITOL	Tom20	Merge
						39			
10000				CCCP 3 h			(CCCP 3 h		
	1000 OUC	[a	- -	CCCP 6 h		_	d cccP6h		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
				s CCCP 12 h			ij CCCP 12 h		ана 1997 -
	uuce 24 n.			CCCP 24 h			CCCP 24 h _i l		

Appendix Figure S2.

Following extended CCCP treatment, MITOL co-localizes with Pex14 but not with Sec61 β or Tom20.

(A - C) HeLa cells stably expressing HA-Parkin and 3Flag-MITOL were treated with 15 μM CCCP for the indicated times and then subjected to immunocytochemistry using anti-Flag, anti-Pex14, anti-Sec61β, and anti-Tom20 antibodies. Scale bars, 10 μm.

Appendix Figure S3.

Endogenous levels of Parkin are able to cause the transition of MITOL from damaged mitochondria to peroxisomes. SH-SY5Y cells with endogenous Parkin and transiently expressing 3Flag-MITOL were treated with 10 μ M valinomycin + 10 μ M ZVAD-FMK for 3 or 6 hours, then analyzed by immunofluorescence using anti-Flag, anti-Pex14, and anti-Hsp60 antibodies. Arrowheads indicate co-localization of 3Flag-MITOL and Pex14. Scale bars, 10 μ m.

B PEX19 -/- HCT116 clone #3 cells stably expressing HA-Parkin and 3Flag-MITOL

Appendix Figure S4.

Mitochondrial retention of MITOL in multiple PEX19 -/- clonal cell lines after mitophagy stimulation.

(A) *PEX19 ^{-/-}* single clones were screened by genomic DNA-based PCR to verify neomycin-resistant and hygromycin-resistant gene insertion.

(B) MITOL was retained on mitochondria in different *PEX19* $^{-/-}$ HCT116 clonal cells. *PEX19* $^{-/-}$ cells (clone #3) stably expressing HA-Parkin and 3Flag-MITOL were treated with 10 μ M valinomycin for 3 hours, and subjected to immunocytochemistry with anti-Flag, anti-catalase and anti-Hsp60 antibodies. Higher magnification images of the boxed regions are shown in the small panel. Scale bars, 10 μ m.

Appendix Figure S5.

The ubiquitylation state of MITOL in $USP30^{+/+}$ cells following CCCP treatment is identical to that in USP30 knockout cells. Wild-type or USP30 knockout HeLa cells stably expressing HA-Parkin and 3Flag-MITOL were treated with 15 μ M CCCP and 10 μ M NMS-873 for the indicated times. After immunoprecipitation with anti-Flag magnetic beads, the samples were immunoblotted using anti-Flag and anti-ubiquitin antibodies. Red bars indicate the ubiquitylation signal.

Appendix Figure S6

Appendix Figure S6.

USP30 is dispensable for the redistribution of MITOL to peroxisomes.

Wild-type or USP30 knockout HeLa cells stably expressing HA-Parkin and 3Flag-MITOL were treated with 15 μ M CCCP for the indicated times. Cells were immunostained using anti-Flag, anti-Pex14, and anti-Hsp60 antibodies. Scale bars, 10 μ m.