

Figure S1. Immunoblot analysis of BCR-ABL1 signaling and cellular proliferation IC₅₀ summary following asciminib treatment in human Ph⁺ and non-Ph⁺ leukemia cell lines, related to Figure 1. (A) Effects of asciminib and imatinib on BCR-ABL1 signaling in human Ph⁺ leukemia cell lines by immunoblot. K562 and LAMA84 cells were treated with the indicated concentrations of asciminib or imatinib for 6 h, lysed and subjected to SDS-PAGE, and probed with antibodies for phospho-ABL1, total ABL1, and β -tubulin. (B) IC₅₀ values for asciminib and imatinib in human leukemia cell lines. Two Ph⁺ (K562, LAMA84) and two non-Ph⁺ (HL-60, U937) cell lines were distributed into 384-well plates in graded concentrations of each inhibitor (asciminib: 0-1000 nM; imatinib: 0-4000 nM), cultured for 72 h, and analyzed by microplate reader using a standard MTS-based colorimetric assay. Response curves were analyzed by non-linear regression and IC₅₀ values computed using Graphpad Prism software. Values represent the mean of three independent experiments performed in quadruplicate.

Figure S2. Immunoblot analysis of BCR-ABL1 signaling following asciminib treatment in expanded panel of BCR-ABL1 single and compound mutants, related to Figure 2. Ba/F3 cells expressing the indicated single or compound mutant pSR α BCR-ABL1 constructs were treated with the indicated concentrations of asciminib or imatinib for 6 h, lysed and subjected to SDS-PAGE, and probed with antibodies for phospho-ABL1, total ABL1, or β -tubulin.

Table S1. Cellular proliferation IC₅₀ values for asciminib for all Ba/F3 BCR-ABL1 single mutant cell lines, related to Figures 2 and 3.

Cell line	Vector	Asciminib IC ₅₀ , nM ± SEM
Ba/F3 Parental		>10000
Ba/F3 native BCR-ABL1	MIG	3.8 ± 0.5
Ba/F3 BCR-ABL1 G250E	MIG	22.0 ± 1.9
Ba/F3 BCR-ABL1 Y253H	MIG	19.5 ± 10.2
Ba/F3 BCR-ABL1 E255V	MIG	13.3 ± 0.5
Ba/F3 BCR-ABL1 F311I	MIG	142.1 ± 24.1
Ba/F3 BCR-ABL1 T315I	MIG	28.7 ± 4.5
Ba/F3 BCR-ABL1 F317L	MIG	364.6 ± 156.4
Ba/F3 BCR-ABL1 A337V	MIG	>2500
Ba/F3 BCR-ABL1 F359C	MIG	>2500
Ba/F3 BCR-ABL1 F359I	MIG	>2500
Ba/F3 BCR-ABL1 F359V	MIG	>2500
Ba/F3 BCR-ABL1 H396R	MIG	16.0 ± 0.5
Ba/F3 BCR-ABL1 P465S	MIG	>2500
Ba/F3 BCR-ABL1 V468F	MIG	>2500
Ba/F3 native BCR-ABL1	pSRα	4.5 ± 1.6
Ba/F3 BCR-ABL1 G250E	pSRα	5.4 ± 3.7
Ba/F3 BCR-ABL1 Q252H	pSRα	14.9 ± 2.9
Ba/F3 BCR-ABL1 Y253F	pSRα	3.4 ± 3.3
Ba/F3 BCR-ABL1 Y253H	pSRα	11.4 ± 6.1
Ba/F3 BCR-ABL1 E255K	pSRα	9.5 ± 2.5
Ba/F3 BCR-ABL1 E255V	pSRα	3.4 ± 0.8
Ba/F3 BCR-ABL1 T315A	pSRα	4.6 ± 5.9
Ba/F3 BCR-ABL1 T315I	pSRα	137.3 ± 32.2
Ba/F3 BCR-ABL1 F317L	pSRα	17.4 ± 3.9
Ba/F3 BCR-ABL1 F317V	pSRα	113.5 ± 5.4
Ba/F3 BCR-ABL1 A344P	pSRα	2666 ± 3.5
Ba/F3 BCR-ABL1 M351T	pSRα	28.1 ± 20.8
Ba/F3 BCR-ABL1 F359V	, pSRα	40.2 ± 1.2
Ba/F3 BCR-ABL1 P465S	pSRα	1448 ± 13.6

Figure S3. Network of protein residues of the asciminib-binding site, related to Figure 3. Select residues which comprise the myristoyl-binding pocket (stylized by purple line) are indicated according to relative 3D-structural proximity to one another and to the chemical structure of asciminib bound to ABL1 kinase.

Table S2. Summary of cell-based resistance screen for single-agent asciminib starting from Ba/F3

Treatment condition	Total wells surveyed, n	Wells with outgrowth, n (%)	Clones sequenced, n	Mutant(s) recovered	n	Frequency among all clones (%)	Frequency among mutated clones (%)
Asciminib 25 nM	96	91	36	Native BCR-ABL1	36	100	
Asciminib 50 nM	96	49	27	Native BCR-ABL1	27	100	
Asciminib 100 nM	96	38	24	Native BCR-ABL1	24	100	
Asciminib 200 nM	96	21	21	Native BCR-ABL1	21	100	
	96	25		Native BCR-ABL1	22	88	
Acciminib 400 pM			25	L1057M	1	4	33.3
ASCIMINID 400 MM				Y1064F	1	4	33.3
				R1099G	1	4	33.3
		21	31	Native BCR-ABL1	27	87.1	
Asciminih 800 nM	96			Y342C	2	6.5	50
	30	51		A344P	1	3.2	25
				F1066L	1	3.2	25
				Native BCR-ABL1	17	70.8	
Asciminib 1600 nM				A344P	2	8.3	28.6
	96	24	24	Y353C	1	4.2	14.2
				P465S	2	8.3	28.6
				G671R	2	8.3	28.6

pSRa BCR-ABL1 cells, related to Figure 3.

Table S3. Summary of cell-based resistance screens of asciminib alone or in combination with ponatinib starting from Ba/F3 MIG BCR-ABL1 cells, related to Figure 3.

Treatment condition	Total wells surveyed, n	Wells with outgrowth, n (%)	Clones sequenced, n	Mutant(s) recovered	n	Frequency among all clones (%)	Frequency among mutated clones (%)
Asciminib 200 nM	960	87	87	Native BCR-ABL1 V225G Y226N V228E V228S L284F T315I F317C V338A V338E L340Q L340R Y342C Y342D Y342D Y342D Y342D Y342D Y342N A344P L354M L354M L354M L354M L354M L354M L354M L387S G463D C464G C464W V468D L471F F497L E499D I502F I502N S503* V506A L510Q	43 1 2 2 2 1 1 1 1 1 1 6 1 3 1 1 2 3 1 2 1 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 1 2 2 1 2 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 1 2 2 1 1 2 2 1 2 1 2 1 2 2 1 1 2 2 1 2 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 1 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 1 1 1 1 2 2 1 1 2 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 1 1 1 2 2 1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 1 2 2 1 2 2 2 2 2 1 2	$\begin{array}{r} 49.4\\ 1.1\\ 1.1\\ 2.3\\ 1.1\\ 2.3\\ 2.3\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1$	$\begin{array}{c}\\ 2.3\\ 2.3\\ 4.5\\ 2.3\\ 4.5\\ 2.3\\ 2.3\\ 2.3\\ 2.3\\ 2.3\\ 2.3\\ 2.3\\ 2.3$
Asciminib 10000 nM	96	9	9	Native BCR-ABL1 K294E Y342C A344P A433D F497L S503*	1 1 3 1 1	11.1 11.1 33.3 11.1 11.1 11.1 11.1	 12.5 12.5 37.5 12.5 12.5 12.5
10 nM + Asciminib 10 nM	96	96	24	Native BCR-ABL1 D276N/E281K	20 4	83.3 16.7	 100.0
Ponatinib 20 nM + Asciminib 20 nM	96	45	45	Native BCR-ABL1 M244I/A288T/D325N D276N / E281K D276N/E281K/E470K T315I T315I / G372E T315I / A424T	28 4 1 1 8 1 2	62.2 8.9 2.2 2.2 17.8 2.2 4.4	 23.5 5.9 5.9 47.1 5.9 11.8
Ponatinib 40 nM + Asciminib 40 nM	192	36	36	Native BCR-ABL1 K263E	35 1	97.2 2.8	 100
Ponatinib	192	33	33	Native BCR-ABL1	27	81.8	

80 nM + Asciminib 80 nM				K263E M351I G442E	2 1 3	6.1 3.0 9.1	33.3 16.7 50.0
Ponatinib 160 nM + Asciminib 160 nM	192	22	22	Native BCR-ABL1 M318I	21 1	95.5 4.5	 100

Table S4. Summary of cell-based resistance screen for combinations of asciminib and nilotinib or

Treatment condition	Total wells surveyed, n	Wells with outgrowth, n (%)	Clones sequenced, n	Mutant(s) recovered	n	Frequency among all clones (%)	Frequency among mutated clones (%)
Nilotinib 50 nM + Asciminib 10 nM	96	15	13	Native BCR-ABL1 Q252H E255K T315I L818F	7 2 1 3 1	53.8 15.4 7.7 23.1 7.7	 33.3 16.7 42.9 16.7
Nilotinib 50 nM + Asciminib 25 nM	96	4	4	Native BCR-ABL1 T315I	2 2	50 50	 100
Nilotinib 50 nM + Asciminib 50 nM	96	6	6	Native BCR-ABL1 T315I	1	16.7 83.3	100
Nilotinib 50 nM + Asciminib 100 nM	96	3	3	Native BCR-ABL1 E359I	2	66.7 33.3	
Nilotinib 100 nM + Asciminib 10 nM	96	4	4	Native BCR-ABL1	3	75	
Nilotinib 100 nM + Asciminib 25 nM	96	7	7	Native BCR-ABL1	2	28.6 71.4	
Nilotinib 100 nM + Asciminib 50 nM	96	2	2	Native BCR-ABL1 T315I	1	50 50	 100
Nilotinib 100 nM + Asciminib 100 nM	96	2	2	Native BCR-ABL1	2	100	
Nilotinib 200 nM + Asciminib 10 nM	96	6	5	Native BCR-ABL1 Y253H T315I F359C	1 1 2 1	20 20 40 20	 25 50 25
Nilotinib 200 nM + Asciminib 25 nM	96	3	3	T315I	3	100	100
Nilotinib 200 nM + Asciminib 50 nM	96	1	1	Native BCR-ABL1	1	100	
Nilotinib 200 nM + Asciminib 100 nM	96	1	1	Native BCR-ABL1	1	100	
Ponatinib 2.5 nM + Asciminib 10 nM	96	4	4	Native BCR-ABL1	4	100	
Ponatinib 2.5 nM + Asciminib 25 nM	96	1	1	Native BCR-ABL1	1	100	
Ponatinib 2.5 nM + Asciminib 50 nM	96	2	2	Native BCR-ABL1	2	100	
Ponatinib 2.5 nM + Asciminib 100 nM	96	1	1	Native BCR-ABL1	1	100	
Ponatinib 5 nM + Asciminib 10 nM	96	2	2	Native BCR-ABL1	2	100	
Ponatinib 5 nM + Asciminib 25 nM	96	1	1	Native BCR-ABL1	1	100	
Ponatinib 5 nM + Asciminib 50 nM	96	3	3	Native BCR-ABL1	3	100	
Ponatinib 5 nM + Asciminib 100 nM	96	0	0				
Ponatinib 10 nM + Asciminib 10 nM	96	4	4	Native BCR-ABL1	4	100	
Ponatinib 10 nM + Asciminib 25 nM	96	1	1	Native BCR-ABL1	1	100	
Ponatinib 10 nM + Asciminib 50 nM	96	1	1	Native BCR-ABL1	1	100	

ponatinib starting from Ba/F3 pSRa BCR-ABL1 cells, related to Figure 3.

Ponatinib 10 nM + Asciminib 100 nM	96	1	1	Native BCR-ABL1	1	100	
---------------------------------------	----	---	---	-----------------	---	-----	--

Table S5. Summary of baseline characteristics of asciminib-treated patients surveyed by BCR-ABL1

Patient	Previous TKI(s) failed	Disease phase	Baseline BCR- ABL1 sequencing	Baseline BCR- ABL1 transcripts (% I.S.)	Last follow-up BCR-ABL1 sequencing (Day, VAF %)	Last follow-up BCR-ABL1 transcripts (Day, % I.S.)
1	Nilotinib, Dasatinib	CML-CP	F359V (79.1%) T315I (20.6%)	22.6%	Day 673: F359V (98.0%)	Day 673: 24.7%
2	Radotinib, Imatinib, Dasatinib	CML-CP	T315I (29.3%)	81.0%	Day 589: F359I (45.8%) T315I (39.7%) A433D (11.3%) P112S (2.7%)	Day 589: 89.1%
3	Imatinib, Bosutinib	CML-CP	T315I (76.5%) A337T (3.3%) G250E (2.2%) G463D (2.2%)	42.0%	Day 469: F359I (99.0%)	Day 469: 26.0%
4	Imatinib, Nilotinib, Dasatinib, Radotinib	CML-CP	F317L (100%)	87.7%	Day 505: F317L (99.0%)	Day 505: 0.1%
5	Imatinib, Dasatinib, Nilotinib, Ponatinib	CML-CP	E355G (99.6%) T315I (99.4%) E238D (2.1%)	6.3%	Day 224: E355G (99.6%) T315I (99.5%)	Day 224: 31.0%
6	Imatinib, Dasatinib, Nilotinib, Bosutinib	CMP-AP	E279K (42.2%) E238D (2.2%) N297T (2.2%) D233A (2.0%)	82.0%	Day 294: E279K (97.8%) Y353C (3.5%)	Day 294: 73.0%

deep sequencing, related to Figure 4.

Patient 5

Figure S4. Summary of clinical response and *BCR-ABL1* deep sequencing in two additional patients treated with asciminib, related to Figure 4. Among the six asciminib-treated patients profiled in this study, two (Patients 5 and 6) showed evidence of *BCR-ABL1* mutations that expanded or persisted at high levels at the time of relapse or a suboptimal response. Molecular labs for *BCR-ABL1* transcripts (upper panels) along with matching *BCR-ABL1* mutations identified by NGS-based sequencing (lower panels) are shown at multiple timepoints over the course of treatment.

Figure S5. Immunoblot analysis of primary CML patient cells harboring the BCR-ABL1^{F359I} **mutant following** *ex vivo* **treatment with asciminib alone and in combination with ponatinib, related to Figure** 4. Primary mononuclear cells from a patient with CML-CP harboring the BCR-ABL1^{F359I} mutant were treated *ex vivo* with ponatinib, asciminib, or the combination at the indicated concentrations overnight, then lysed and analyzed by Western blot for effects on CRKL phosphorylation, as a biomarker for BCR-ABL1 kinase activity.

Table S6. Cellular proliferation IC₅₀ values for asciminib for all Ba/F3 BCR-ABL1 compound mutant

Cell line	Vector	Asciminib IC ₅₀ , nM
Ba/F3 BCR-ABL1 G250E/T315I	MIG	>2500
Ba/F3 BCR-ABL1 Y253H/T315I	MIG	>2500
Ba/F3 BCR-ABL1 E255V/V299L	MIG	>2500
Ba/F3 BCR-ABL1 E255V/T315I	MIG	>2500
Ba/F3 BCR-ABL1 V299L/F317L	MIG	>2500
Ba/F3 BCR-ABL1 T315I/M351T	MIG	>2500
Ba/F3 BCR-ABL1 T315I/H396R	MIG	>2500
Ba/F3 BCR-ABL1 T315I/E453K	MIG	>2500
Ba/F3 BCR-ABL1 T315L	MIG	>2500
Ba/F3 BCR-ABL1 T315M	MIG	>2500
Ba/F3 BCR-ABL1 F317L/F359V	MIG	>2500
Ba/F3 BCR-ABL1 G250E/T315I	pSRα	>10000
Ba/F3 BCR-ABL1 E255K/T315I	pSRα	>10000
Ba/F3 BCR-ABL1 E255V/T315I	pSRα	>10000

cell lines, related to Figure 6.

Figure S6. Asciminib plus ponatinib is non-toxic to parental Ba/F3 cells and asciminib plus dasatinib is ineffective against T315I-inclusive BCR-ABL1 compound mutants, related to Figure 6. (A) Ba/F3 parental cells were cultured in complete medium supplemented with WEHI-3B-conditioned medium as a source of IL-3 and distributed into 384-well plates in the presence of the indicated matrix of concentrations of asciminib and ponatinib alone and in combination. After a 72 hr incubation, plates were analyzed by standard MTS-based colorimetric assay. Absorbance was averaged across a replicates, and viability was normalized to untreated wells. (B) Ba/F3 cells expressing the indicated MIG BCR-ABL1 compound mutants were distributed into 96-well plates in the presence of graded concentrations of asciminib alone (0-2500 nM), dasatinib alone (0-768 nM), or graded dasatinib combined with 50 nM asciminib. Cells were cultured for 72 h and analyzed by MTS-based colorimetric assay. IC₅₀ values were calculated based on nonlinear regression using Prism software and displayed as a sensitivity heatmap, wherein a color scale from white to dark blue indicates increased resistance. Data was summarized from at least three independent experiments performed in quadruplicate.

Table S7. Summary of cell-based resistance screen for combinations of asciminib and ponatinib starting from Ba/F3 pSRα BCR-ABL1^{T315I} cells, related to Figure 6.

Treatment condition	Total wells surveyed, n	Wells with outgrowth, n (%)	Clones sequenced, n	Mutant(s) recovered	n	Frequency among all clones (%)	Frequency among compound mutant clones (%)
Ponatinib 20 nM + Asciminib 200 nM	96	0	0				
Ponatinib 20 nM + Asciminib 400 nM	96	3	1	Y253H/T315I	1	100	100
Ponatinib 20 nM + Asciminib 800 nM	96	1	0				
Ponatinib 20 nM + Asciminib 1600 nM	96	4	4	T315I only Q252H/T315I	2 2	50 50	 100
Ponatinib 40 nM + Asciminib 200 nM	96	0	0				
Ponatinib 40 nM + Asciminib 400 nM	96	1	1	T315I only	1	100	
Ponatinib 40 nM + Asciminib 800 nM	96	0	0				
Ponatinib 40 nM + Asciminib 1600 nM	96	1	1	E255V/T315I	1	100	100
Ponatinib 80 nM + Asciminib 200 nM	96	0	0				
Ponatinib 80 nM + Asciminib 400 nM	96	0	0				
Ponatinib 80 nM + Asciminib 800 nM	96	0	0				
Ponatinib 80 nM + Asciminib 1600 nM	96	0	0				
Ponatinib 160 nM + Asciminib 200 nM	96	0	0				
Ponatinib 160 nM + Asciminib 400 nM	96	0	0				
Ponatinib 160 nM + Asciminib 800 nM	96	0	0				
Ponatinib 160 nM + Asciminib 1600 nM	96	0	0				

Table S8. Summary of cell-based resistance screen for combinations of asciminib and ponatinib starting from Ba/F3 MIG BCR-ABL1^{T3151} cells, related to Figure 6.

Treatment condition	Total wells surveyed, n	Wells with outgrowth, n (%)	Clones sequenced, n	Mutant(s) recovered	n	Frequency among all clones (%)	Frequency among compound mutant clones (%)
Ponatinib 40 nM + Asciminib 40 nM	192	127	127	T315I only Q252H/Y253F/T315I Q252H / T315I Y253H / T315I E255K / T315I E255V / T315I E279K/T315I/E462K K285N / T315I E292V / T315I F311I / T315I F311V / T315I F311V / T315I T315I / F359C T315I / F359C T315I / F359I T315I/L387F M388L T315I / H396P T315I/E459K/E462K T315I / P465S T315I / F486S	13 1 17 27 3 5 1 3 1 20 6 1 4 4 5 1 4 1 9 1	$10.2 \\ 0.8 \\ 13.4 \\ 21.3 \\ 2.4 \\ 3.9 \\ 0.8 \\ 2.4 \\ 0.8 \\ 15.7 \\ 4.7 \\ 0.8 \\ 3.1 \\ 3.1 \\ 3.9 \\ 0.8 \\ 3.1 \\ 0.8 \\ 7.1 \\ 0.8 \\ $	$\begin{array}{c} & & & \\ & 0.9 \\ & 14.9 \\ & 23.7 \\ & 2.6 \\ & 4.4 \\ & 0.9 \\ & 2.6 \\ & 0.9 \\ & 17.5 \\ & 5.3 \\ & 0.9 \\ & 17.5 \\ & 5.3 \\ & 0.9 \\ & 3.5 \\ & 3.5 \\ & 4.4 \\ & 0.9 \\ & 3.5 \\ & 0.9 \\ & 3.5 \\ & 0.9 \\ & 7.9 \\ & 0.9 \end{array}$
Ponatinib 80 nM + Asciminib 80 nM	192	54	54	T315I only Q252H/E255K/T315I Y253H / T315I E255V / T315I T315I / E462K	50 1 1 1 1	92.6 1.9 1.9 1.9 1.9 1.9	 25.0 25.0 25.0 25.0
Ponatinib 160 nM + Asciminib 160 nM	192	33	33	T315I only	33	100	

Figure S7. Body weight summary following in vivo combination treatment with asciminib and ponatinib in a T315I-inclusive BCR-ABL1 compound mutant-driven mouse model, related to Figure 7. Female Nod-SCID mice were injected by tail vein with Ba/F3 pMIG-BCR-ABL1^{T315I/H396R} cells and after 3 days commenced oral drug treatment with vehicle, asciminib (30 mg/kg), ponatinib (25 mg/kg), or the combination once daily (n=10 mice/group). Body weight for all animals was measured over the course of 25 days, and the graph shows the mean weight \pm SEM. Dosing was held if mice lost >10% of body weight and maintained this loss on two consecutive days or if a mouse lost 4 grams in 24 hours. Mice were re-enrolled if they gained two grams or more.