APPENDICES to Local, Nonlinear Effects of cGMP and Ca²⁺ Reduce Single Photon Response Variability in Retinal Rods

Giovanni Caruso

CNR, Ist. Tecnologie Applicate ai Beni Culturali Via Salaria Km. 29,300- C.P. 10 Monterotondo St., Roma, Italy email: giovanni.caruso@itabc.cnr.it

Vsevolod V. Gurevich Department of Pharmacology, Vanderbilt Univ. Medical Center 2200 Pierce Avenue, Preston Res. Building, Rm 452 Nashville, TN 37232 email: Vsevolod.Gurevich@vanderbilt.edu

Colin Klaus The Mathematical Biosciences Institute, The Ohio State University 1735 Neil Avenue, Columbus, OH 43210 email: klaus.68@mbi.osu.edu

Heidi E. Hamm Department of Pharmacology, Vanderbilt Univ. Medical Center 2200 Pierce Avenue, Preston Res. Building, Rm 452 Nashville, TN 37232 email: heidi.hamm@vanderbilt.edu

> Clint L. Makino^{*} Boston University School of Medicine Department of Physiology and Biophysics Ctr. for Advanced Biomedical Research, W402 700 Albany Street, Boston, MA 02118-2526 email: cmakino@bu.edu

Emmanuele DiBenedetto[†] Department of Mathematics, Vanderbilt University 1326 Stevenson Center, Nashville, TN 37240 email: em.diben@vanderbilt.edu

^{*}Co-corresponding author

[†]Corresponding author

A Appendix. Dynamics of the Cascade

A.1 Symbolism

H = height of the ROS R = radius of the discs inside the ROS (disregarding incisures)

 $D_R = \text{disc of radius } R \text{ centered at the origin of } \mathbb{R}^2$

m = number of incisures

 $\mathcal{V}_j = \text{limiting j}^{\text{th}}$ incisures, assimilated to segments of length $R - r_{o,j}$

 r_j = radial variable on \mathcal{V}_j with origin at $r_{o,j}$

 $\theta_{\varepsilon_o,j}(r_j) = \text{geometry of the j}^{\text{th}}$ incisure with tip at $r_{o,j}$

 $D_{\text{eff}} = D_R - \bigcup_{j=1}^m \mathcal{V}_j$ effective domain of the activation cascade

$$k =$$
 number of distinct activated discs each by a single photon

 $D_{i,\text{eff}}^* = ith \text{ activated disc}$

 $\Omega = D_R \times (0, H)$ limiting cylinder enclosing the stack of discs D_R

 $\Omega_{\text{eff}} = D_{\text{eff}} \times (0, H)$ limiting domain available for diffusion of cGMP and Ca²⁺

 $\mathcal{B}_j = \mathcal{V}_j \times (0, H)$ limiting vertical rectangles cut on the limiting ROS by the limiting incisures aligned in series

S =limiting outer shell (same as lateral boundary of Ω)

dS = surface measure on S

 $\varepsilon_o =$ width of each disc

 $\nu \varepsilon_o =$ width of each interdiscal space

 $\sigma \varepsilon_o =$ width of the outer shell

 $1 - \mu_o$ = volume ratio of cytosol to the volume of the ROS

[cGMP] = [cGMP] in the interior of the limiting ROS

 $[cGMP]_* = [cGMP]$ at the activated disc(s)

 $[cGMP]_S = [cGMP]$ in the limiting outer shell

 $[cGMP]_{\mathcal{B}_i} = [cGMP] \text{ on } \mathcal{B}_j$

 $[Ca^{2+}] = [Ca^{2+}]$ in the interior of the limiting ROS

 $[Ca^{2+}]_* = [Ca^{2+}]$ at the activated disc(s)

 $[Ca^{2+}]_S = [Ca^{2+}]$ in the limiting outer shell

 $[\mathrm{Ca}^{2+}]_{\mathcal{B}_i} = [\mathrm{Ca}^{2+}] \text{ on } \mathcal{B}_j$

 ∇_S = gradient along the cylindrical variables of S

 $\nabla_{\mathcal{B}_i}$ = gradient along the (r_j, z) variables of \mathcal{B}_j

 $\nabla_{(x,y)}$ = gradient along the horizontal variables (x,y)

A.2 Weak Formulation of the Dynamics of cGMP

$$\begin{split} (1-\mu_{o}) & \left\{ \iiint_{\Omega_{eff}} [\mathrm{cGMP}](t)\varphi(t)dxdydz - \iiint_{\Omega_{eff}} [\mathrm{cGMP}]_{\mathrm{dark}}\varphi(0)dxdydz \\ &+ \int_{0}^{t} \iiint_{\Omega_{eff}} \left\{ -[\mathrm{cGMP}]\varphi_{t} + \mathrm{D_{cG}}\nabla_{(x,y)}[\mathrm{cGMP}] \cdot \nabla_{(x,y)}\varphi \\ &- [\alpha([\mathrm{Ca}^{2+}]) - \beta_{\mathrm{dark}}[\mathrm{cGMP}]]\varphi \right\}dxdydz d\tau \right\}_{\mathrm{interior}} \\ &+ \nu \varepsilon_{o} \left\{ \sum_{i=1}^{k} \iint_{D_{i,eff}} \left\{ [\mathrm{cGMP}]_{*}(t)\varphi(t) - [\mathrm{cGMP}]_{\mathrm{dark}}\varphi(0) \right\}dxdy \\ &+ \sum_{i=1}^{k} \int_{0}^{t} \iint_{D_{i,eff}} \left\{ -[\mathrm{cGMP}]_{*}\varphi_{t} + \mathrm{D_{cG}}\nabla_{(x,y)}[\mathrm{cGMP}]_{*} \cdot \nabla_{(x,y)}\varphi \\ &- \left(\alpha([\mathrm{Ca}^{2+}]_{*}) - \beta_{\mathrm{dark}}[\mathrm{cGMP}]_{*} - \frac{\mathbf{k}_{\sigma;\mathrm{hyd}}^{*}}{\nu \varepsilon_{o}} [\mathrm{E}^{*}]_{\sigma}[\mathrm{cGMP}]_{*} \right) \varphi \right\}dxdyd\tau \right\}_{\mathrm{activated}} \\ &+ \sigma \varepsilon_{o} \left\{ \iint_{S} \left\{ [\mathrm{cGMP}]_{S}(t)\varphi(t) - [\mathrm{cGMP}]_{\mathrm{dark}}\varphi(0) \right\}dS \\ &+ \int_{0}^{t} \iint_{S} \left\{ -[\mathrm{cGMP}]_{S}\varphi_{t} + \mathrm{D_{cG}}\nabla_{S}[\mathrm{cGMP}]_{S} \cdot \nabla_{S}\varphi \right\}dSd\tau \right\}_{\mathrm{outer shell}} \\ &+ 2 \left\{ \sum_{j=1}^{m} \iint_{B_{j}} r_{j}\theta_{j,\varepsilon_{o}}(r_{j}) \left\{ [\mathrm{cGMP}]_{B_{j}}(t)\varphi(t)dr_{j}dz - [\mathrm{cGMP}]_{\mathrm{dark}}\varphi(0) \right\}dr_{j}dz \\ &+ \sum_{j=1}^{m} \int_{0}^{t} \iint_{B_{j}} r_{j}\theta_{j,\varepsilon_{o}}(r_{j}) \left\{ [\mathrm{cGMP}]_{B_{j}}\varphi_{t} + \mathrm{D_{cG}}\nabla_{B_{j}}[\mathrm{cGMP}]_{B_{j}} \cdot \nabla_{B_{j}}\varphi \right\}dr_{j}dzd\tau \right\}_{\mathrm{incisures}} = 0 \end{split}$$

for all t > 0 and all smooth, real valued functions φ in $\bar{\Omega} \times \mathbb{R}^+$. Here

Here $k_{GC,min}$ and $k_{GC,max}$ are the minimum and maximum catalytic rates of production of cGMP by guanylyl cyclase GC occurring respectively as $[Ca^{2+}] \rightarrow \infty$ and as $[Ca^{2+}] \rightarrow 0$.

A.3 Weak Formulation of the Dynamics of Ca^{2+}

$$\begin{split} (1-\mu_o) & \left\{ \iiint_{\Omega_{\rm eff}} \left\{ [\operatorname{Ca}^{2+}](t)\varphi(t) - [\operatorname{Ca}^{2+}]_{\mathrm{dark}}\varphi(0) \right\} dxdydz \\ & + \int_0^t \iiint_{\Omega_{\rm eff}} \left\{ - [\operatorname{Ca}^{2+}]\varphi_t + \operatorname{D}_{\operatorname{Ca}}\nabla_{(x,y)}[\operatorname{Ca}^{2+}] \cdot \nabla_{(x,y)}\varphi \right\} dxdydz \, d\tau \right\}_{\mathrm{interior}} \\ & + \nu\varepsilon_o \left\{ \sum_{i=1}^k \iint_{D_{i,\mathrm{eff}}^*} \left\{ [\operatorname{Ca}^{2+}]_*(t)\varphi(t) - [\operatorname{Ca}^{2+}]_{\mathrm{dark}}\varphi(0) \right\} dxdy \\ & + \sum_{i=1}^k \int_0^t \iint_{D_{i,\mathrm{eff}}^*} \left\{ - [\operatorname{Ca}^{2+}]_*\varphi_t + \operatorname{D}_{\operatorname{Ca}}\nabla_{(x,y)}[\operatorname{Ca}^{2+}]_* \cdot \nabla_{(x,y)}\varphi \right\} dxdy \, d\tau \right\}_{\mathrm{activated}} \\ & + \sigma\varepsilon_o \left\{ \iint_S \left\{ [\operatorname{Ca}^{2+}]_S(t)\varphi(t) - [\operatorname{Ca}^{2+}]_{\mathrm{dark}}\varphi(0) \right\} dS \\ & + \int_0^t \iint_S \left\{ - [\operatorname{Ca}^{2+}]_S\varphi_t + \operatorname{D}_{\operatorname{Ca}}\nabla_S[\operatorname{Ca}^{2+}]_S \cdot \nabla_S\varphi \right\} dS \, d\tau \\ & + \int_0^t \iint_S \frac{1}{\sigma\varepsilon_o \operatorname{BCa}\mathcal{F}} \left\{ \sum_{\mathrm{Yrod}} \frac{[\operatorname{Ca}^{2+}]_S}{\operatorname{Kex} + [\operatorname{Ca}^{2+}]_S} \\ & - \frac{1}{2} \operatorname{fca} \frac{\sum_{\mathrm{Yrod}} \operatorname{Kex} + [\operatorname{Ca}^{2+}]_S}{\operatorname{Kex}^{\mathrm{CG}} + [\operatorname{cGMP}]_S^{\mathrm{mec}}} \right\} \varphi dS \, d\tau \\ & + 2 \left\{ \sum_{j=1}^m \iint_{\mathcal{B}_j} r_j \theta_{j,\varepsilon_o}(r_j) \{ [\operatorname{Ca}^{2+}]_{\mathcal{B}_j}(t)\varphi(t) - [\operatorname{Ca}^{2+}]_{\mathrm{dark}}\varphi(0) \} dr_j dz \\ & + \sum_{j=1}^m \int_0^t \iint_{\mathcal{B}_j} r_j \theta_{j,\varepsilon_o}(r_j) \{ - [\operatorname{Ca}^{2+}]_{\mathcal{B}_j}\varphi_t + \operatorname{D}_{\mathrm{Ca}}\nabla_{\mathcal{B}_j}[\operatorname{Ca}^{2+}]_{\mathcal{B}_j} \cdot \nabla_{\mathcal{B}_j}\varphi \} dr_j dz \, d\tau \right\}_{\mathrm{incisures}} = 0 \end{split}$$

for all t > 0 and all smooth, real valued functions φ in $\overline{\Omega} \times \mathbb{R}^+$.

A.4 Weak Formulation of the Dynamics of Transducer and Effector

$$\begin{split} \iint_{D_{\text{eff}}} [\mathbf{T}^*](t)\varphi(t)dxdy &+ \int_0^t \iint_{D_{\text{eff}}} \left\{ - [\mathbf{T}^*]\varphi_t + D_T \nabla[\mathbf{T}^*] \cdot \nabla \varphi \right\} dxdyd\tau \\ &= \int_0^t k_\ell \varphi\big(x(\tau), y(\tau)\tau\big) d\tau - \int_0^t \iint_{D_{\text{eff}}} \mathbf{k}_{\mathbf{T}^*\mathbf{E}}[\mathbf{E}][\mathbf{T}^*]\varphi dxdyd\tau \\ &\iint_{D_{\text{eff}}} [\mathbf{E}^*](t)\varphi(t)dxdy + \int_0^t \iint_{D_{\text{eff}}} \left\{ - [\mathbf{E}^*]\varphi_t + D_E \nabla[\mathbf{E}^*] \cdot \nabla \varphi \right\} dxdyd\tau \end{split}$$

$$= \int_0^t \iint_{D_{\text{eff}}} \left\{ \mathbf{k}_{\mathrm{T}^*\mathrm{E}}[\mathrm{E}][\mathrm{T}^*]\varphi - k_{\mathrm{E}^*}[\mathrm{E}^*]\varphi \right\} dxdyd\tau$$

for all t > 0 and all smooth, real valued functions φ in $\bar{D}_R \times \mathbb{R}^+$.

B Appendix. Parameters

B.1 Mouse Parameters

Symbol	\mathbf{Units}	Definition	Value	References
$\alpha_{\rm max}$	$\mu M/s$	Maximum rate of cGMP synthesis	76.5	[3, 66]
	. ,	at low Ca^{2+} concentration		
$\alpha_{\rm max}/\alpha_{\rm min}$	-	Suppression ratio of α from high to	13.9	[2, 3, 66]
indity initia		low Ca^{2+} concentration		[, ,]
Ainc	μm^2	Area of the incisure	0.0403	
Bdork	s ⁻¹	Bate of cGMP hydrolysis by dark	2.9	[8 66]
Puark	5	activated PDE	2.0	[0, 00]
Big	_	Buffering power of cytoplasm for	1	[53 54]
DcG		cGMP	T	[00, 01]
Ba	_	Buffering power of cytoplasm for	20	[46 47 48]
DCa		Ca^{2+}	20	[10, 11, 10]
CTUR	_	Coupling coefficient from T^* to E^*	1	[54 34]
[cGMP]	иM	Concentration of cGMP in the dark	3.80	[2 30 48 51
[CGIMI] _{dark}	μ M	Concentration of contra in the dark	5.00	[2, 50, 40, 51, 53, 54, 66]
$[C_{2}^{2+1}]$	тM	Concentration of Ca^{2+} in the dark	911	$[41 \ 71 \ 97 \ 16]$
D =	m^2/a	Diffusion appficient of aCMP	044 190	[41, 71, 57, 10]
D _c G	μ m ² /s	Diffusion coefficient of C_{2}^{2+}	120	[1, 24, 49] [46]
D _{Ca}	μ m ² /s	Diffusion coefficient of E*	10	[40] [59]
DE*	μ m/s	Diffusion coefficient of E	1.2	[၁၁] [၄၁]
D _T *	$\mu m^{-}/s$	Diffusion coefficient of T	2.2	[53]
D_{R^*}	$\mu m^2/s$	Diffusion coefficient of R [*]	1.5	[53]
ε_o	$n\mathrm{m}$	Disc thickness	14.5	[4, 19, 53]
η	nm	Volume-to-surface ratio	7.25	
${\mathcal F}$	$\mathcal{C}\mathrm{mol}^{-1}$	Faraday's constant	96500	_
f_{Ca}	-	Fraction of $cGMP$ -activated current	0.06	[3, 39, 54, 57,
		carried by Ca ²⁺		
Η	$\mu { m m}$	Height of ROS	23.6	[4, 36, 38, 15,
				31, 32]
j_{dark}	pА	Dark current	10.9	[2, 3, 8, 9, 18,
				28, 44, 54, 68,
				72]
j_{cG}^{max}	\mathbf{pA}	Maximum CNG channel current	3550	
j_{ex}^{sat}	pA	Saturated exchanger current	1.8	[59, 61, 62]
k_{cat}/K_m	$\mu M^{-1} s^{-1}$	Hydrolytic efficiency of activated	540	[53, 34, 55]
,		PDE dimer		. , , 1
$k_{\sigma;hvd}$	$\mu m^3/s$	Surface hydrolysis rate of cGMP by	2.8×10^{-5}	
	. /	dark-activated PDE		
k [*] _{σ·hvd}	$\mu m^3/s$	Surface hydrolysis rate of cGMP by	0.9	
5,11 9 G	· /~	light-activated PDE		
$k_{\rm E}$	s^{-1}	Rate constant for inactivation of	6.5	[8, 25, 29, 39]
-		PDE		[, , -, -0]
k _B	s^{-1}	Rate constant for inactivation of R [*]	8.5	[8, 29, 47]
kT*E	$\mu m^2/s$	Kinetic constant of T [*] -E formation	1	[56]
	, , , , , , , , , , , , , , , , , , ,	and thus E^* production	-	[00]
Keve	$n\mathrm{M}$	Half-saturating [Ca ²⁺] for GC activ-	100	[3, 66, 40, 42]
-*cyc		ity	100	[0, 50, 10, 12]
K _{-C}	иM	[cGMP] for half maximal CNC	20	[54]
TrCG	μ_{1V1}	channel opening	20	[04]
K	<i>и</i> М	$[C_2^{2+}]$ for helf maximal archer	1.6	[54 61]
1 _{vex}	μ WI	to han maximal exchanger	1.0	[04, 01]
0		rate	0.9509	[11]
КЪ	$\mu { m m}$	width of the incisure	0.2593	[11]
ℓ_r	$\mu { m m}$	Length of the incisure	0.3111	[11]
ν	-	Ratio between interdiscal space and	1	[4, 34, 53, 54]
		disc thickness		
NE-	nm	Interdiscal space	14.5	4. 36. 38. 53.

Table S1:	Parameters	for th	ne Mouse	ROS

Continued on next page

Table S1 – continued from previous page					
Symbol	Units	Definition	Value	References	
$ u_{ m RG} $	s^{-1}	Rate of transducin formation per	330	[22]	
		fully activated R [*]			
n	-	Number of discs	814		
n_{inc}	-	Number of incisures	1	[4, 11, 53]	
N_{Av}	$\# \text{mol}^{-1}$	Avogadro number	6.02×10^{23}		
m _{cyc}	-	Hill coefficient for GC effect	2	[2, 3, 8, 39, 66]	
m_{cG}	-	Hill coefficient for CNG channels	3.5	[2, 8, 45, 53, 66]	
PDE^*	$\#\mu m^{-2}$	Surface density of dark-activated	750	[19, 36, 53, 54, 65]	
		PDE			
R	$\mu \mathrm{m}$	Radius of disc	0.685	[4, 19, 33, 35, 36,	
				[38, 53, 54]	
σ	-	Ratio between outer shell thickness	15/14.5		
		and disc thickness			
$\sigma \varepsilon$	$n\mathrm{m}$	Distance between the disc rim and	15	[12, 13, 53, 20]	
		the plasma membrane (outer shell			
		thickness)			
$\Sigma_{\rm rod}$	$\mu \mathrm{m}^2$	Lateral surface area of ROS	103.8		
$V_{\rm cyt}$	$\mu { m m}^3$	Cytoplasmic volume	18.16		

B.1.1 Mouse Deactivation Parameters in the Continuous Time Markov Chain (CTMC)

Determination of these parameters is in [5] and calibrated to ensure that the average lifetime $\tau_{R,eff}$ of R^* is $\frac{1}{2}t_{peak}$. The value t_{peak} for $D_{cG} = 330\mu m^2/s$ is essentially the same as for $D_{cG} = 120\mu m^2/s$, so that the

Symbol	\mathbf{Units}	Definition	Value	References
λ_o	s^{-1}	Rhodopsin phosphorylation rate	10.5	[5]
μ_o	s^{-1}	Arrestin binding rate	60	[5]
k_{ν}	-	Decay constant of catalytic activ-	0.5	[69]
		ity of \mathbf{R}^*		
$\tau_{ m R,eff}$	\mathbf{ms}	Average lifetime of active \mathbf{R}^*	75	[29]
Ν	-	Average number of steps of \mathbf{R}^*	4.45	[5]
		before shut-off		

parameters in Table S2 based on $\tau_{\rm R,eff} \approx \frac{1}{2} t_{\rm peak}$ ([5]) remain unchanged for these two values of D_{cG}. In particular λ_o and μ_o were chosen to ensure that the average lifetime of R^{*} is $\frac{1}{2} t_{\rm peak}$.

B.2 Salamander Parameters

Symbol	Units	Definition	Range	Value	References
α_{\max}	$\mu M/s$	Maximum rate of cGMP synthesis at low Ca^{2+} concentration	40-50	50	[54, 48]
$\alpha_{\rm max}/\alpha_{\rm min}$	-	Ratio of α_{\max} to α_{\min}	50	50	[54, 48]
Ainc	μm^2	Area of the incisure	0.82	0.8	[49]
$\beta_{ m dark}$	s^{-1}	Rate of $cGMP$ hydrolysis by dark activated PDE	1	1	[54, 48, 7, 6]
B_{cG}	-	Buffering power of cytoplasm for cGMP	1-2	1	[48, 53, 54]

Table S3: Parameters for the **Salamander** ROS

Continued on next page

Symbol	Units	Definition	Range	Value	References
B _{Ca}	-	Buffering power of cytoplasm for Ca^{2+}	10-50	20	[54, 48, 47]
$c_{\rm TE}$	-	Coupling coefficient from T^* to E^*	< 1	1	[54, 34]
[cGMP],	μM	Concentration of cGMP in the dark	2-4	3.0046	[48, 30]
$[Ca^{2+}]$	nM	Concentration of Ca^{2+} in the dark	400-700	653 7	[48, 30]
D_{α}	$\mu m^2/s$	Diffusion coefficient of $cGMP$	50 106	160	[7, 26, 40]
D _c G	$\mu m^2/s$	Diffusion coefficient of Ce^{2+}	15	100	[1, 20, 49]
D _{Ca}	$\mu m_{2}/s$	Diffusion coefficient of Ca	15	10	[40]
D_{E^*}	$\mu m^2/s$	Diffusion coefficient for activated PDE	0.8	0.8	[53]
D_{T^*}	$\mu m^2/s$	Diffusion coefficient for activated G protein	1.5	1.5	[53]
D _{P*}	$\mu m^2/s$	Diffusion coefficient for R [*]	0.7	0.7	[53]
с п.	nm	Disc thickness	10.14	14	[54] 30]
20	76111	Valence to much a matic	10-14	14	[04, 00]
η	n m	Volume-to-surface ratio		([m]
J	$\mathcal{C}\mathrm{mol}^{-1}$	Faraday's constant	96500	96500	[54, 48]
f_{Ca}	-	Fraction of $cGMP$ -activated current carried by Ca^{2+}	0.1-0.2	0.17	[54, 48]
Η	$\mu \mathrm{m}$	Height of ROS	19-26	22.4	[54, 23, 43, 10]
ldark	pA	Dark current	74	65.862	[54]
imax	рА	Maximum cGMP-gated channel	70-7000	7000	[48]
JcG	pii	current	10 1000		
Jex	рА	Saturated exchanger current	17-20	17	[54]
$k_{\rm cat}/K_{\rm m}$	$\mu M^{-1} s^{-1}$	Hydrolytic efficiency of activated PDE dimer	340-600	400	[53, 48, 34]
$k_{\sigma;hyd}$	$\mu { m m}^3/{ m s}$	Surface hydrolysis rate of <i>cGMP</i> by dark-activated PDE		7×10^{-5}	[7]
$k^*_{\sigma;hyd}$	$\mu m^3/s$	Surface hydrolysis rate of $cGMP$ by light-activated PDE		0.5	[1,7]
$k_{\rm E}$	s^{-1}	Rate constant for inactivation of	0.58 - 0.76	0.58	[47]
ka	$^{-1}$	Bate constant for inactivation of R*	1 60 3 48	25	[47]
KR 1-	5	Kingting and the describing the for	1.09-0.40	2.0	[47]
KT*E	μm /s	Kinetic constant describing the for- mation of $T^* - E$ complex and thus the production of F^*	1	1	[00]
T.2		the production of E	100 000	105	[40, 90]
K _{cyc}	nM	Half-saturating [Ca ⁻⁺] for GC activ-	100-230	135	[48, 30]
T.Z			10.00	20	
κ_{cG}	μ M	[CGMP] for half maximal CNG	13-32	20	[54, 48, 30]
		cnannel opening			F
K _{ex}	μM	[Ca ⁺⁺] for half maximal exchanger rate	1.5-1.6	1.5	[48, 30]
ℓ_b	$n\mathrm{m}$	Width of the incisure	10-12	15	[49]
ĺ	μm	Length of the incisure		4.6377	[6]
····	-	Batio between interdiscal space and		1	[~]
ν	-	diag thickman		Ŧ	
		disc thickness	10.1.		[#4.00]
$\nu \varepsilon_o$	n m	Interdiscal space	10-14	14	[54, 30]
$ u_{ m RG}$	s	Rate of transducin formation per fully activated R [*]	120-220	185	[22, 34, 48, 54]
n	_	Number of discs	1000	800	[48, 30]
$n_{ m inc}$	-	Number of incisures	15-30	23	[17, 67, 50, 35, 5]
N A.	#mol ⁻¹	Avogadro number		6.02×10^{23}	-01
- · AV	π -mor	Hill coefficient for CC effect	ე	0.02×10	[24 54 96]
¹¹¹ cyc	-		4	4 0 5	[J4, J4, 20] [M4]
m _{cG}	-	Hill coefficient for CNG channels	2-3	2.5	[54]
PDE*	$\#\mu m^{-2}$	Surface density of dark-activated PDE	100	100	[54]
					[00 40 64 10]

Table S3 – continued from previous page

Continued on next page

Symbol	Units	Definition	Range	Value	References
σ	-	Ratio between outer shell thickness and disc thickness		15/14	[48, 30]
$\sigma \varepsilon$	$n\mathrm{m}$	Distance between the disc rim and the plasma membrane (outer shell thickness)	15	15	[48, 30]
$\Sigma_{\rm rod}$	$\mu { m m}^2$	Lateral surface area of ROS		773.5	[30]
$V_{\rm cyt}$	μm^3	Cytoplasmic volume	1000	1076	[54, 30]

Table S3 – continued from previous page

B.2.1 Salamander Deactivation Parameters in the Continuous Time Markov Chain (CTMC)

Figure S1: Simulation of the experimentally observed SPR of salamander kindly provided by F. Rieke as reported in [7] (black trace) using the FSR model with the parameters from Table S3 (blue trace).

These parameters are determined as in [5]. In particular λ_o and μ_o were chosen to ensure, as for mouse, that the average lifetime of R^{*} is $\frac{1}{2}t_{\text{peak}}$. The parameters $k_{\nu} = 0.41$ and $\nu_{\text{RG}} = 185/\text{s}$ were chosen to fit the experimental SPR curve reported in [7] and kindly provided by F. Rieke.

Table S4: Salamander CTMC Model Parameters					
Symbol	Units	Definition	Value		
λ_o	s^{-1}	Rhodopsin phosphorylation rate	2.0		
μ_o	s^{-1}	Arrestin binding rate	10		
$k_{ u}$	-	Rate of catalytic activity of \mathbb{R}^*	0.41		
$ au_{ m R,eff}$	s	Average lifetime of R [*]	0.4		
Ν	-	Average number of phosphoryla-	4.45		
		tion steps of \mathbb{R}^* before full quench			

C Appendix. Calibrating the Mouse Activation Parameter $\nu_{\rm RG}$ for $D_{cG}=330\mu m^2/s$

The model parameters for mouse, including the volumic diffusivity $D_{cG} = 120 \mu m^2/s$ were chosen and justified in [63, 5], and reported here in Table S1. The diffusivity $D_{cG} = 330 \mu m^2/s$ proposed in [21], was imported here

by keeping all the remaining parameters unchanged except the catalytic activity $\nu_{\rm RG}$, which was adjusted from $330s^{-1}$ to $230s^{-1}$ to reproduce the experimental SPR of [3, 5] (Figure S2).

Figure S2: FSR simulations of the experimentally observed mouse rod SPR (black trace), from [3], using the parameters from Table S1 (red trace) and upon raising D_{cG} to $330\mu m^2/s$ with a concomitant lowering of ν_{RG} to $230s^{-1}$ (blue trace).

D Appendix. Relating Volumic and Longitudinal Diffusivities

The longitudinal diffusivity D_{cG}^{ℓ} along the axis of the ROS, can be derived from the volumic D_{cG} by the formula $D_{cG}^{\ell} = (f_A/f_V)D_{cG}$, where f_A and f_V are two geometric parameters computed in [6] as

$$f_A = \frac{(A_{inc} + A_{gap})}{\pi R^2 + A_{gap}}; \qquad f_V = \frac{\pi R^2 + 2(A_{inc} + A_{gap})}{2(\pi R^2 + A_{gap})}$$

where A_{inc} is the total cross-sectional area of the incisures, A_{gap} is the cross-sectional area of the outer shell and R is the cross-sectional radius of the ROS.

References

- D. Andreucci, P. Bisegna, G. Caruso, H. E. Hamm, and E. DiBenedetto. Mathematical model of the spatio-temporal dynamics of second messengers in visual transduction. *Biophys. J.*, 85:1358–1376, 2003.
- [2] M. E. Burns, A. Mendez, J. Chen, and D. A. Baylor. Dynamics of cyclic GMP synthesis in retinal rods. *Neuron*, 36:81–91, 2002.
- [3] P. D. Calvert, V. I. Govardovskii, N. Krasnoperova, R. E. Anderson, J. Lem, and C. L. Makino. Membrane protein diffusion sets the speed of rod phototransduction. *Nature*, 411:90–94, 2001.
- [4] L. D. Carter-Dawson and M. M. LaVail. Rods and cones in the mouse retina i. structural analysis using light and electron microscopy. J. Comp. Neurol., 188:245–262, 1979.
- [5] G. Caruso, P. Bisegna, L. Lenoci, D. Andreucci, V. V. Gurevich, H. E. Hamm, and E. DiBenedetto. Kinetics of rhodopsin deactivation and its role in regulating recovery and reproducibility of rod photoresponse. *PLoS Comput. Biol.*, 6(12):1–15, 2010. doi:10.1371/journal.pcbi.1001031.
- [6] G. Caruso, P. Bisegna, L. Shen, D. Andreucci, H. E. Hamm, and E. DiBenedetto. Modeling the role of incisures in vertebrate phototransduction. *Biophys. J.*, 91:1192–1212, 2006.

- [7] G. Caruso, H. Khanal, V. Alexiades, F. Rieke, H. E. Hamm, and E. DiBenedetto. Mathematical and computational modelling of spatio-temporal signalling in rod phototransduction. *I.E.E. Proc. Syst. Biol.*, 152:119–137, 2005.
- [8] C. K. Chen, M. E. Burns, W. He, T. G. Wensel, D. A. Baylor, and M. I. Simon. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1. *Nature*, 403:557–560, 2000.
- [9] C. K. Chen, M. E. Burns, M. Spencer, G. A. Niemi, J. Chen, J. B. Hurley, D. A. Baylor, and M. I. Simon. Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. *Proc. Natl. Acad. Sci. U.S.A.*, 96:3718–3722, 1999.
- [10] Y. Chen, S. Znoiko, W. J. DeGrip, R. K. Crouch, and J.-X. Ma. Salamander blue-sensitive cones lost during metamorphosis. *Photochem. Photobiol.*, 84:855–862, 2008.
- [11] A. I. Cohen. The ultrastructure of the rods of the mouse retina. Am. J. Anat., 107:23–48, 1960.
- [12] J. M. Corless, R. D. Fetter, and M. J. Costello. Structural features of the terminal loop region of frog retinal rod outer segment disk membranes: I. Organization of lipid components. J. Comp. Neurol., 257(1):1–8, 1987.
- [13] J. M. Corless, R. D. Fetter, O. B. Zampighi, M. J. Costello, and D. L. Wall-Buford. Structural features of the terminal loop region of frog retinal rod outer segment disk membranes: II. Organization of the terminal loop complex. J. Comp. Neurol., 257(1):9–23, 1987.
- [14] G. H. Daly, J. M. Dileonardo, N. R. Balkema, and G. W. Balkema. The relationship between ambient lighting conditions, absolute dark-adapted thresholds, and rhodopsin in black and hyppopigmented mice. Vis. Neurosci., 21:925–934, 2004.
- [15] L. L. Daniele, C. Insinna, R. Chance, J. Wang, S. S. Nikonov, and E. N. Pugh Jr. A mouse M-opsin monochromat: retinal cone photoreceptors have increased M-opsin expression when S-opsin is knocked out. Vision Res., 51:447–458, 2011.
- [16] A. M. Dizhoor, M. L. Woodruff, E. V. Olshevskaya, M. C. Cilluffo, M. C. Cornwall, P. A. Sieving, and G. L. Fain. Night blindness and the mechanism of constitutive signaling of mutant G90D rhodopsin. J. Neurosci., 28:11662–11672, 2008.
- [17] M. S. Eckmiller. Microtubules in a rod-specific cytoskeleton associated with outer segment incisures. Vis. Neurosci., 17:711–722, 2000.
- [18] J. Fan, M. L. Woodruff, M. C. Cilluffo, R. K. Crouch, and G. L. Fain. Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice. J. Physiol., 568:83–95, 2005.
- [19] D. Fotiadis, Y. Liang, S. Filipek, D. A. Saperstein, A. Engel, and K. Palczewski. Atomic force microscopy: rhodopsin dimers in native disc membranes. *Nature*, 421:127–128, 2003.
- [20] J. C. Gilliam, J. T. Chang, I. M. Sandoval, Y. Zhang, T. Li, S. J. Pittler, W. Chiu, and T. G. Wensel. Three-dimensional architecture of the rod sensory cilium and its disruption in retinal neurodegeneration. *Cell*, 151(5):1029–1041, Nov 2012.
- [21] O. P. Gross, E. N. Pugh Jr., and M. E. Burns. Spatiotemporal cGMP dynamics in living mouse rods. Biophys. J., 102(8):1775–1784, 2012.
- [22] R. D. Hamer, S. C. Nicholas, D. Tranchina, P. A. Liebman, and T. D. Lamb. Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod singlephoton responses. J. Gen. Physiol., 122:419–444, 2003.
- [23] F. I. Harosi. Absorption spectra and linear dichroism of some amphibian photoreceptors. J. Gen. Physiol., 66:357–382, 1975.

- [24] D. Holcman and J. I. Korenbrot. Longitudinal diffusion in retinal rod and cone outer segment cytoplasm: the consequence of cell structure. *Biophys. J.*, 86:2566–2582, 2004.
- [25] M. J. Kennedy, M. E. Sowa, T. G. Wensel, and J. B. Hurley. Acceleration of key reactions as a strategy to elucidate the rate-limiting chemistry underlying phototransduction inactivation. *Invest. Ophthalmol. Vis. Sci.*, 44:1016–1022, 2003.
- [26] Y. Koutalos, K. Nakatani, and K. W. Yau. Cyclic GMP diffusion coefficient in rod photoreceptor outer segments. *Biophys. J.*, 68:373–382, 1995.
- [27] C. M. Krispel, C. K. Chen, M. I. Simon, and M. E. Burns. Novel form of adaptation in mouse retinal rods speeds recovery of phototransduction. J. Gen. Physiol., 122:703–712, 2003.
- [28] C. M. Krispel, C. K. Chen, M. I. Simon, and M. E. Burns. Prolonged photoresponses and defective adaptation in rods of Gbeta5-/- mice. J. Neurosci., 23:6965-6971, 2003.
- [29] C. M. Krispel, D. Chen, N. Melling, Y. J. Chen, K. A. Martemyanov, N. Quillinan, V. Y. Arshavsky, T. G. Wensel, C. K. Chen, and M. E. Burns. RGS expression rate-limits recovery of rod photoresponses. *Neuron*, 51:409–416, 2006.
- [30] T. D. Lamb and E. N. Pugh Jr. A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J. Physiol., 449:719–758, 1992.
- [31] M. M. LaVail. Kinetics of rod outer segment renewal in the developing mouse retina. J. Cell. Biol., 58:650–661, 1973.
- [32] M. M. LaVail, M. P. White, G. M. Gorrin, D. Yasumura, K. V. Porrello, and R. J. Mullen. Retinal degeneration in the nervous mutant mouse. I. Light microscopic cytopathology and changes in the interphotoreceptor matrix. J. Comp. Neurol., 333:168–181, 1993.
- [33] J. Lem, N. V. Krasnoperova, P. D. Calvert, B. Kosaras, D. A. Cameron, M. Nicolo, C. L. Makino, and R. L. Sidman. Morphological, physiological, and biochemical changes in rhodopsin knockout mice. *Proc. Natl. Acad. Sci. U. S. A.*, 96:736–741, 1999.
- [34] I. B. Leskov, V. A. Klenchin, J. W. Handy, G. G. Whitlock, V. I. Govardovskii, M. D. Bownds, T. D. Lamb, E. N. Pugh Jr., and V. Y. Arshavsky. The gain of rod phototransduction: reconciliation of biochemical and electrophysiological measurements. *Neuron*, 27:525–537, 2000.
- [35] Y. Liang, D. Fotiadis, S. Filipek, D. A. Saperstein, K. Palczewski, and A. Engel. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J. Biol. Chem., 278:21655–21662, 2003.
- [36] Y. Liang, D. Fotiadis, T. Maeda, A. Maeda, A. Modzelewska, S. Filipek, D. A. Saperstein, A. Engel, and K. Palczewski. Rhodopsin signaling and organization in heterozygote rhodopsin knockout mice. J. Biol. Chem., 279:48189–48196, 2004.
- [37] X. Liu, O. V. Bulgakov, X. H. Wen, M. L. Woodruff, B. Pawlyk, J. Yang, G. L. Fain, M. A. Sandberg, C. L. Makino, and T. Li. AIPL1, the protein that is defective in Leber congenital amaurosis, is essential for the biosynthesis of retinal rod cGMP phosphodiesterase. *Proc. Natl. Acad. Sci. U.S.A.*, 101(38):13903–13908, 2004.
- [38] A. L. Lyubarsky, L. L. Daniele, and E. N. Pugh Jr. From candelas to photoisomerizations in the mouse eye by rhodopsin bleaching in situ and the light-rearing dependence of the major components of the mouse ERG. Vision Res., 44:3235–3251, 2004.
- [39] C. L. Makino, R. L. Dodd, J. Chen, M. E. Burns, A. Roca, M. I. Simon, and D. A. Baylor. Recoverin regulates light-dependent phosphodiesterase activity in retinal rods. J. Gen. Physiol., 123:729–741, 2004.

- [40] C. L. Makino, I. V. Peshenko, X.-H. Wen, E. V. Olshevskaya, and R. Barrett. A role for GCAP2 in regulating the photoresponse. guanylyl cyclase activation ad rod electrophysiology in GUCA 1B knock-out mice. J. Biol. Chem., 283(43):29135–29143, 2008.
- [41] C. L. Makino, X.-H. Wen, N. Michaud, I. V. Peshenko, B. Pawlyk, R. S. Brush, M. Soloviev, X. Liu, M. L. Woodruff, P. D. Calvert, A. B. Savchenko, R. E. Anderson, G. L. Fain, T. Li, M. A. Sandberg, and A. M. Dizhoor. Effects of low AIPL1 expression on phototransduction in rods. *Invest. Ophthalmol. Vis. Sci.*, 47(5):2185–2194, 2006.
- [42] C. L. Makino, X. H. Wen, E. V. Olshevskaya, I. V. Peshenko, A. B. Savchenko, and A. M. Dizhoor. Enzymatic relay mechanism stimulates cyclic GMP synthesis in rod photoresponse: biochemical and physiological study in guanylyl cyclase activating protein 1 knockout mice. *PLoS ONE*, 7(10):e47637, 2012.
- [43] A. P. Mariani. Photoreceptors of the larval tiger salamander. Proc. Roy. Soc. Lond., B 227:483–492, 1986.
- [44] A. Mendez, M. E. Burns, A. Roca, J. Lem, L. W. Wu, M. I. Simon, D. A. Baylor, and J. Chen. Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites. *Neuron*, 28:153–164, 2000.
- [45] A. Mendez and J. Chen. Mouse models to study GCAP functions in intact photoreceptors. Adv. Exp. Med. Biol., 514:361–388, 2002.
- [46] K. Nakatani, C. Chen, and Y. Koutalos. Calcium diffusion coefficient in rod photoreceptor outer segments. *Biophys. J.*, 82(2):728–739, 2002.
- [47] S. Nikonov, N. Engheta, and E. N. Pugh Jr. Kinetics of recovery of the dark-adapted salamander rod photoresponse. J. Gen. Physiol., 111:7–37, 1998.
- [48] S. Nikonov, T. D. Lamb, and E. N. Pugh Jr. The role of steady phosphodiesterase activity in the kinetics and sensitivity of the light-adapted salamander rod photoresponse. J. Gen. Physiol., 116:795–824, 2000.
- [49] A. Olson and E. N. Pugh Jr. Diffusion coefficient of cyclic GMP in salamander rod outer segments estimated with two fluorescent probes. *Biophys. J.*, 65:1335–1352, 1993.
- [50] D. S. Papermaster, P. Reilly, and B. G. Schneider. Cone lamellae and red and green rod outer segment disks contain a large intrinsic membrane protein on their margins: an ultrastructural immunocytochemical study of frog retinas. *Vision Res.*, 22:1417–1428, 1982.
- [51] E. N. Pugh Jr., T. Duda, A. Sitaramayya, and R. K. Sharma. Photoreceptor guanylate cyclases: a review. *Biosci. Rep.*, 17:429–473, 1997.
- [52] E. N. Pugh Jr. and T. D. Lamb. Cyclic GMP and calcium: the internal messengers of excitation and adaptation in vertebrate photoreceptors. *Vision Res.*, 30:1923–1948, 1990.
- [53] E. N. Pugh Jr. and T. D. Lamb. Amplification and kinetics of the activation steps in phototransduction. Biochim. Biophys. Acta, 1141:111–149, 1993.
- [54] E. N. Pugh Jr. and T. D. Lamb. Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation, volume 3 of Handbook of Biological Physics, chapter 5, pages 183–255. Elsevier Science, 2000.
- [55] N. Qin and W. Baehr. Expression and mutagenesis of mouse rod photoreceptor cGMP phosphodiesterase. J. Biol. Chem., 269:3265–3271, 1994.
- [56] S. Ramanathan, P. B. Detwiler, A. M. Sengupta, and B. I. Shraiman. G-protein-coupled enzyme cascades have intrinsic properties that improve signal localization and fidelity. *Biophys. J.*, 88:3063–3071, 2005.

- [57] H. Reilander, A. Achilles, U. Friedel, G. Maul, F. Lottspeich, and N. J. Cook. Primary structure and functional expression of the Na/Ca,K-exchanger from bovine rod photoreceptors. *EMBO J.*, 11:1689– 1695, 1992.
- [58] D. Roof, M. Adamian, D. Jacobs, and A. Hayes. Cytoskeletal specializations at the rod photoreceptor distal tip. J. Comp. Neurol., 305:289–303, 1991.
- [59] P. P. Schnetkamp. Na-Ca or Na-Ca-K exchange in rod photoreceptors. Prog. Biophys. Mol. Biol., 54:1–29, 1989.
- [60] P. P. Schnetkamp. Cation selectivity of and cation binding to the cGMP-dependent channel in bovine rod outer segment membranes. J. Gen. Physiol., 96:517–534, 1990.
- [61] P. P. Schnetkamp. Optical measurements of Na-Ca-K exchange currents in intact outer segments isolated from bovine retinal rods. J. Gen. Physiol., 98:555–573, 1991.
- [62] P. P. Schnetkamp, R. T. Szerencsei, and D. K. Basu. Unidirectional Na⁺, Ca²⁺, and K⁺ fluxes through the bovine rod outer segment Na-Ca-K exchanger. J. Biol. Chem., 266:198–206, 1991.
- [63] L. Shen, G. Caruso, P. Bisegna, D. Andreucci, V. V. Gurevich, H. E. Hamm, and E. DiBenedetto. Dynamics of mouse rod phototransduction and its sensitivity to variation of key parameters. *IET Syst. Biol.*, 4:12–32, 2010.
- [64] D. M. Sherry, D. D. Bui, and W. J. DeGrip. Identification and distribution of photoreceptor subtypes in neotenic salamander retina. *Vis. Neurosci.*, 15:1175–1187, 1998.
- [65] A. Sitaramayya, J. Harkness, J. H. Parkes, C. Gonzalez-Oliva, and P. A. Liebman. Kinetic studies suggest that light-activated cyclic GMP phosphodiesterase is a complex with G-protein subunits. *Biochemistry*, 25:651–656, 1986.
- [66] S. H. Tsang, M. E. Burns, P. D. Calvert, P. Gouras, D. A. Baylor, S. P. Goff, and V. Y. Arshavsky. Role for the target enzyme in deactivation of photoreceptor G protein in vivo. *Science*, 282:117–121, 1998.
- [67] Y. Tsukamoto. The number, depth and elongation of disc incisures in the retinal rod of Rana catesbeiana. Exp. Eye Res., 45:105–116, 1987.
- [68] Z. Wang, X. H. Wen, Z. Ablonczy, R. K. Crouch, C. L. Makino, and J. Lem. Enhanced shutoff of phototransduction in transgenic mice expressing palmitoylation-deficient rhodopsin. J. Biol. Chem., 280:24293–24300, 2005.
- [69] U. Wilden. Duration and amplitude of the light-induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding. *Biochemistry*, 34:1446– 1454, 1995.
- [70] M. L. Woodruff, J. Lem, and G. L. Fain. Early receptor current of wild-type and transducin knockout mice: photosensitivity and light-induced Ca²⁺ release. J. Physiol., 557:821–828, 2004.
- [71] M. L. Woodruff, A. P. Sampath, H. R. Matthews, N. V. Krasnoperova, J. Lem, and G. L. Fain. Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice. J. Physiol., 542:843–854, 2002.
- [72] J. Xu, R. L. Dodd, C. L. Makino, M. I. Simon, D. A. Baylor, and J. Chen. Prolonged photoresponses in transgenic mouse rods lacking arrestin. *Nature*, 389:505–509, 1997.