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A Appendix. Dynamics of the Cascade

A.1 Symbolism

H = height of the ROS

R = radius of the discs inside the ROS (disregarding incisures)

DR = disc of radius R centered at the origin of R2

m = number of incisures

Vj = limiting jth incisures, assimilated to segments of length R− ro,j
rj = radial variable on Vj with origin at ro,j

θεo,j(rj) = geometry of the jth incisure with tip at ro,j

Deff = DR − ∪mj=1Vj effective domain of the activation cascade

k = number of distinct activated discs each by a single photon

D∗i,eff =ith activated disc

Ω = DR × (0, H) limiting cylinder enclosing the stack of discs DR

Ωeff = Deff × (0, H) limiting domain available for diffusion of cGMP and Ca2+

Bj = Vj × (0, H) limiting vertical rectangles cut on the limiting ROS

by the limiting incisures aligned in series

S = limiting outer shell (same as lateral boundary of Ω)

dS = surface measure on S

εo = width of each disc

νεo = width of each interdiscal space

σεo = width of the outer shell

1− µo = volume ratio of cytosol to the volume of the ROS

[cGMP] = [cGMP] in the interior of the limiting ROS

[cGMP]∗ = [cGMP] at the activated disc(s)

[cGMP]S = [cGMP] in the limiting outer shell

[cGMP]Bj
= [cGMP] on Bj

[Ca2+] = [Ca2+] in the interior of the limiting ROS

[Ca2+]∗ = [Ca2+] at the activated disc(s)

[Ca2+]S = [Ca2+] in the limiting outer shell

[Ca2+]Bj
= [Ca2+] on Bj

∇S = gradient along the cylindrical variables of S

∇Bj
= gradient along the (rj , z) variables of Bj

∇(x,y) = gradient along the horizontal variables (x, y)
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A.2 Weak Formulation of the Dynamics of cGMP

(1− µo)

{∫∫∫
Ωeff

[cGMP](t)ϕ(t)dxdydz −
∫∫∫

Ωeff

[cGMP]darkϕ(0)dxdydz

+

∫ t

0

∫∫∫
Ωeff

{
− [cGMP]ϕt + DcG∇(x,y)[cGMP] · ∇(x,y)ϕ

−
[
α([Ca2+])− βdark[cGMP]

]
ϕ
}
dxdydz dτ

}
interior

+νεo

{
k∑
i=1

∫∫
D∗

i,eff

{
[cGMP]∗(t)ϕ(t)− [cGMP]darkϕ(0)

}
dxdy

+

k∑
i=1

∫ t

0

∫∫
D∗

i,eff

{
− [cGMP]∗ϕt + DcG∇(x,y)[cGMP]∗ · ∇(x,y)ϕ

−
(
α([Ca2+]∗)− βdark[cGMP]∗ −

k∗σ;hyd

νεo
[E∗]σ[cGMP]∗

)
ϕ

}
dxdydτ

}
activated

discs

+σεo

{∫∫
S

{
[cGMP]S(t)ϕ(t)− [cGMP]darkϕ(0)

}
dS

+

∫ t

0

∫∫
S

{
− [cGMP]Sϕt + DcG∇S [cGMP]S · ∇Sϕ

}
dSdτ

}
outer shell

+2

{
m∑
j=1

∫∫
Bj

rjθj,εo(rj)
{

[cGMP]Bj
(t)ϕ(t)drjdz − [cGMP]darkϕ(0)

}
drjdz

+

m∑
j=1

∫ t

0

∫∫
Bj

rjθj,εo(rj)
{
− [cGMP]Bj

ϕt + DcG∇Bj
[cGMP]Bj

· ∇Bj
ϕ
}
drjdzdτ

}
incisures

= 0

for all t > 0 and all smooth, real valued functions ϕ in Ω̄× R+. Here

α([Ca2+]) = αmin + (αmax − αmin)
Kmcyc

cyc

Kmcyc
cyc + [Ca2+]

mcyc

α([Ca2+]∗) = αmin + (αmax − αmin)
Kmcyc

cyc

Kmcyc
cyc + [Ca2+]

mcyc

∗

where
αmax = kGC,max[GC]

αmin = kGC,min[GC].

Here kGC,min and kGC,max are the minimum and maximum catalytic rates of production of cGMP by guanylyl
cyclase GC occurring respectively as [Ca2+]→∞ and as [Ca2+]→ 0.
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A.3 Weak Formulation of the Dynamics of Ca2+

(1− µo)

{∫∫∫
Ωeff

{
[Ca2+](t)ϕ(t)− [Ca2+]darkϕ(0)

}
dxdydz

+

∫ t

0

∫∫∫
Ωeff

{
− [Ca2+]ϕt + DCa∇(x,y)[Ca2+] · ∇(x,y)ϕ

}
dxdydz dτ

}
interior

+νεo

{
k∑
i=1

∫∫
D∗

i,eff

{
[Ca2+]∗(t)ϕ(t)− [Ca2+]darkϕ(0)

}
dxdy

+

k∑
i=1

∫ t

0

∫∫
D∗

i,eff

{
− [Ca2+]∗ϕt + DCa∇(x,y)[Ca2+]∗ · ∇(x,y)ϕ

}
dxdy dτ

}
activated

discs

+σεo

{∫∫
S

{
[Ca2+]S(t)ϕ(t)− [Ca2+]darkϕ(0)

}
dS

+

∫ t

0

∫∫
S

{
− [Ca2+]Sϕt + DCa∇S [Ca2+]S · ∇Sϕ

}
dS dτ

+

∫ t

0

∫∫
S

1

σεoBCaF

{
jsat
ex

Σrod

[Ca2+]S
Kex + [Ca2+]S

− 1

2
fCa

jmax
cG

Σrod

[cGMP]
mcG

S

KmcG

cG + [cGMP]
mcG

S

}
ϕdS dτ

}
outer shell

+2

{
m∑
j=1

∫∫
Bj

rjθj,εo(rj)
{

[Ca2+]Bj
(t)ϕ(t)− [Ca2+]darkϕ(0)

}
drjdz

+

m∑
j=1

∫ t

0

∫∫
Bj

rjθj,εo(rj)
{
− [Ca2+]Bj

ϕt + DCa∇Bj
[Ca2+]Bj

· ∇Bj
ϕ
}
drjdz dτ

}
incisures

= 0

for all t > 0 and all smooth, real valued functions ϕ in Ω̄× R+.

A.4 Weak Formulation of the Dynamics of Transducer and Effector

∫∫
Deff

[T∗](t)ϕ(t)dxdy +

∫ t

0

∫∫
Deff

{
− [T∗]ϕt +DT∇[T∗] · ∇ϕ

}
dxdydτ

=

∫ t

0

k`ϕ
(
x(τ), y(τ)τ

)
dτ −

∫ t

0

∫∫
Deff

kT∗E[E][T∗]ϕdxdydτ

∫∫
Deff

[E∗](t)ϕ(t)dxdy +

∫ t

0

∫∫
Deff

{
− [E∗]ϕt +DE∇[E∗] · ∇ϕ

}
dxdydτ

=

∫ t

0

∫∫
Deff

{
kT∗E[E][T∗]ϕ− kE∗ [E∗]ϕ

}
dxdydτ

for all t > 0 and all smooth, real valued functions ϕ in D̄R × R+.

B Appendix. Parameters

B.1 Mouse Parameters
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Table S1: Parameters for the Mouse ROS

Symbol Units Definition Value References

αmax µM/s Maximum rate of cGMP synthesis
at low Ca2+ concentration

76.5 [3, 66]

αmax/αmin - Suppression ratio of α from high to
low Ca2+ concentration

13.9 [2, 3, 66]

Ainc µm2 Area of the incisure 0.0403
βdark s−1 Rate of cGMP hydrolysis by dark

activated PDE
2.9 [8, 66]

BcG - Buffering power of cytoplasm for
cGMP

1 [53, 54]

BCa - Buffering power of cytoplasm for
Ca2+

20 [46, 47, 48]

cTE - Coupling coefficient from T∗ to E∗ 1 [54, 34]
[cGMP]dark µM Concentration of cGMP in the dark 3.80 [2, 30, 48, 51, 52,

53, 54, 66]
[Ca2+]dark nM Concentration of Ca2+ in the dark 344 [41, 71, 37, 16]
DcG µm2/s Diffusion coefficient of cGMP 120 [7, 24, 49]
DCa µm2/s Diffusion coefficient of Ca2+ 15 [46]
DE∗ µm2/s Diffusion coefficient of E∗ 1.2 [53]
DT∗ µm2/s Diffusion coefficient of T∗ 2.2 [53]
DR∗ µm2/s Diffusion coefficient of R∗ 1.5 [53]
εo nm Disc thickness 14.5 [4, 19, 53]
η nm Volume-to-surface ratio 7.25
F Cmol−1 Faraday’s constant 96500
fCa - Fraction of cGMP -activated current

carried by Ca2+
0.06 [3, 39, 54, 57, 60]

H µm Height of ROS 23.6 [4, 36, 38, 15, 14,
31, 32]

jdark pA Dark current 10.9 [2, 3, 8, 9, 18, 27,
28, 44, 54, 68, 70,
72]

jmax
cG pA Maximum CNG channel current 3550

jsatex pA Saturated exchanger current 1.8 [59, 61, 62]
kcat/Km µM−1s−1 Hydrolytic efficiency of activated

PDE dimer
540 [53, 34, 55]

kσ;hyd µm3/s Surface hydrolysis rate of cGMP by
dark-activated PDE

2.8× 10−5

k∗σ;hyd µm3/s Surface hydrolysis rate of cGMP by
light-activated PDE

0.9

kE s−1 Rate constant for inactivation of
PDE

6.5 [8, 25, 29, 39]

kR s−1 Rate constant for inactivation of R∗ 8.5 [8, 29, 47]
kT∗E µm2/s Kinetic constant of T∗-E formation

and thus E∗ production
1 [56]

Kcyc nM Half-saturating [Ca2+] for GC activ-
ity

100 [3, 66, 40, 42]

KcG µM [cGMP] for half maximal CNG
channel opening

20 [54]

Kex µM [Ca2+] for half maximal exchanger
rate

1.6 [54, 61]

`b µm Width of the incisure 0.2593 [11]
`r µm Length of the incisure 0.3111 [11]
ν - Ratio between interdiscal space and

disc thickness
1 [4, 34, 53, 54]

νεo nm Interdiscal space 14.5 [4, 36, 38, 53, 20]

Continued on next page
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Table S1 – continued from previous page

Symbol Units Definition Value References

νRG s−1 Rate of transducin formation per
fully activated R∗

330 [22]

n - Number of discs 814
ninc - Number of incisures 1 [4, 11, 53]
NAv #mol−1 Avogadro number 6.02× 1023

mcyc - Hill coefficient for GC effect 2 [2, 3, 8, 39, 66]
mcG - Hill coefficient for CNG channels 3.5 [2, 8, 45, 53, 66]
PDE∗ #µm−2 Surface density of dark-activated

PDE
750 [19, 36, 53, 54, 65]

R µm Radius of disc 0.685 [4, 19, 33, 35, 36,
38, 53, 54]

σ - Ratio between outer shell thickness
and disc thickness

15/14.5

σε nm Distance between the disc rim and
the plasma membrane (outer shell
thickness)

15 [12, 13, 53, 20]

Σrod µm2 Lateral surface area of ROS 103.8
Vcyt µm3 Cytoplasmic volume 18.16

B.1.1 Mouse Deactivation Parameters in the Continuous Time Markov Chain (CTMC)

Determination of these parameters is in [5] and calibrated to ensure that the average lifetime τR,eff of R∗

is 1
2 tpeak. The value tpeak for DcG = 330µm2/s is essentially the same as for DcG = 120µm2/s, so that the

Table S2: Mouse CTMC Model Parameters
Symbol Units Definition Value References

λo s−1 Rhodopsin phosphorylation rate 10.5 [5]
µo s−1 Arrestin binding rate 60 [5]
kν - Decay constant of catalytic activ-

ity of R∗
0.5 [69]

τR,eff ms Average lifetime of active R∗ 75 [29]
N - Average number of steps of R∗

before shut-off
4.45 [5]

parameters in Table S2 based on τR,eff ≈ 1
2 tpeak ([5]) remain unchanged for these two values of DcG. In

particular λo and µo were chosen to ensure that the average lifetime of R∗ is 1
2 tpeak.

B.2 Salamander Parameters

Table S3: Parameters for the Salamander ROS

Symbol Units Definition Range Value References

αmax µM/s Maximum rate of cGMP synthesis
at low Ca2+ concentration

40-50 50 [54, 48]

αmax/αmin - Ratio of αmax to αmin 50 50 [54, 48]
Ainc µm2 Area of the incisure 0.82 0.8 [49]
βdark s−1 Rate of cGMP hydrolysis by dark

activated PDE
1 1 [54, 48, 7, 6]

BcG - Buffering power of cytoplasm for
cGMP

1-2 1 [48, 53, 54]

Continued on next page
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Table S3 – continued from previous page

Symbol Units Definition Range Value References

BCa - Buffering power of cytoplasm for
Ca2+

10-50 20 [54, 48, 47]

cTE - Coupling coefficient from T∗ to E∗ < 1 1 [54, 34]
[cGMP]dark µM Concentration of cGMP in the dark 2-4 3.0046 [48, 30]
[Ca2+]dark nM Concentration of Ca2+ in the dark 400-700 653.7 [48, 30]
DcG µm2/s Diffusion coefficient of cGMP 50-196 160 [7, 26, 49]
DCa µm2/s Diffusion coefficient of Ca2+ 15 15 [46]
DE∗ µm2/s Diffusion coefficient for activated

PDE
0.8 0.8 [53]

DT∗ µm2/s Diffusion coefficient for activated G
protein

1.5 1.5 [53]

DR∗ µm2/s Diffusion coefficient for R∗ 0.7 0.7 [53]
εo nm Disc thickness 10-14 14 [54, 30]
η nm Volume-to-surface ratio 7
F Cmol−1 Faraday’s constant 96500 96500 [54, 48]
fCa - Fraction of cGMP -activated current

carried by Ca2+
0.1-0.2 0.17 [54, 48]

H µm Height of ROS 19-26 22.4 [54, 23, 43, 10]
jdark pA Dark current 74 65.862 [54]
jmax
cG pA Maximum cGMP-gated channel

current
70-7000 7000 [48]

jsatex pA Saturated exchanger current 17-20 17 [54]
kcat/Km µM−1s−1 Hydrolytic efficiency of activated

PDE dimer
340-600 400 [53, 48, 34]

kσ;hyd µm3/s Surface hydrolysis rate of cGMP by
dark-activated PDE

7× 10−5 [7]

k∗σ;hyd µm3/s Surface hydrolysis rate of cGMP by
light-activated PDE

0.5 [1, 7]

kE s−1 Rate constant for inactivation of
PDE

0.58-0.76 0.58 [47]

kR s−1 Rate constant for inactivation of R∗ 1.69-3.48 2.5 [47]
kT∗E µm2/s Kinetic constant describing the for-

mation of T∗ − E complex and thus
the production of E∗

1 1 [56]

Kcyc nM Half-saturating [Ca2+] for GC activ-
ity

100-230 135 [48, 30]

KcG µM [cGMP] for half maximal CNG
channel opening

13-32 20 [54, 48, 30]

Kex µM [Ca2+] for half maximal exchanger
rate

1.5-1.6 1.5 [48, 30]

`b nm Width of the incisure 10-12 15 [49]
`r µm Length of the incisure 4.6377 [6]
ν - Ratio between interdiscal space and

disc thickness
1

νεo nm Interdiscal space 10-14 14 [54, 30]
νRG s−1 Rate of transducin formation per

fully activated R∗
120-220 185 [22, 34, 48, 54]

n − Number of discs 1000 800 [48, 30]
ninc − Number of incisures 15-30 23 [17, 67, 50, 35, 58,

49]
NAv #mol−1 Avogadro number 6.02× 1023

mcyc - Hill coefficient for GC effect 2 2 [34, 54, 26]
mcG - Hill coefficient for CNG channels 2-3 2.5 [54]
PDE∗ #µm−2 Surface density of dark-activated

PDE
100 100 [54]

R µm Radius of disc 4.7-7.6 5.5 [23, 43, 64, 10]

Continued on next page
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Table S3 – continued from previous page

Symbol Units Definition Range Value References

σ - Ratio between outer shell thickness
and disc thickness

15/14 [48, 30]

σε nm Distance between the disc rim and
the plasma membrane (outer shell
thickness)

15 15 [48, 30]

Σrod µm2 Lateral surface area of ROS 773.5 [30]
Vcyt µm3 Cytoplasmic volume 1000 1076 [54, 30]

B.2.1 Salamander Deactivation Parameters in the Continuous Time Markov Chain (CTMC)
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Figure S1: Simulation of the experimentally observed SPR of salamander kindly provided by F. Rieke as
reported in [7] (black trace) using the FSR model with the parameters from Table S3 (blue trace).

These parameters are determined as in [5]. In particular λo and µo were chosen to ensure, as for mouse,
that the average lifetime of R∗ is 1

2 tpeak. The parameters kν = 0.41 and νRG = 185/s were chosen to fit the
experimental SPR curve reported in [7] and kindly provided by F. Rieke.

Table S4: Salamander CTMC Model Parameters
Symbol Units Definition Value

λo s−1 Rhodopsin phosphorylation rate 2.0
µo s−1 Arrestin binding rate 10
kν - Rate of catalytic activity of R∗ 0.41
τR,eff s Average lifetime of R∗ 0.4
N - Average number of phosphoryla-

tion steps of R∗ before full quench
4.45

C Appendix. Calibrating the Mouse Activation Parameter νRG

for DcG = 330µm2/s

The model parameters for mouse, including the volumic diffusivity DcG = 120µm2/s were chosen and justified
in [63, 5], and reported here in Table S1. The diffusivity DcG = 330µm2/s proposed in [21], was imported here
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by keeping all the remaining parameters unchanged except the catalytic activity νRG, which was adjusted
from 330s−1 to 230s−1 to reproduce the experimental SPR of [3, 5] (Figure S2).

time (s)

0 0.2 0.4 0.6 0.8 1

cu
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e
n

t 
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p
p
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io
n

 (
%

)

-1

0

1

2

3

4

5

6

A numerical, D
cG

=120µm
2

/s, ν
RG

=330s
-1

numerical, D
cG

=330µm
2

/s, ν
RG

=237s
-1

experimental

Figure S2: FSR simulations of the experimentally observed mouse rod SPR (black trace), from [3], using
the parameters from Table S1 (red trace) and upon raising DcG to 330µm2/s with a concomitant lowering
of νRG to 230s−1 (blue trace).

D Appendix. Relating Volumic and Longitudinal Diffusivities

The longitudinal diffusivity D`
cG along the axis of the ROS, can be derived from the volumic DcG by the

formula D`
cG = (fA/fV )DcG, where fA and fV are two geometric parameters computed in [6] as

fA =
(Ainc + Agap)

πR2 + Agap
; fV =

πR2 + 2(Ainc + Agap)

2(πR2 + Agap)

where Ainc is the total cross-sectional area of the incisures, Agap is the cross-sectional area of the outer shell
and R is the cross-sectional radius of the ROS.
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