
# Sodium valproate rescues expression of *TRANK1* in iPSC-derived neural cells that carry a genetic variant associated with serious mental illness

Jiang et al.

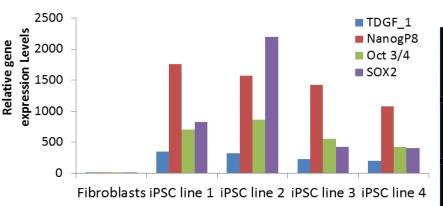
Supplementary figures: S1 to S10, tables: S1-S8



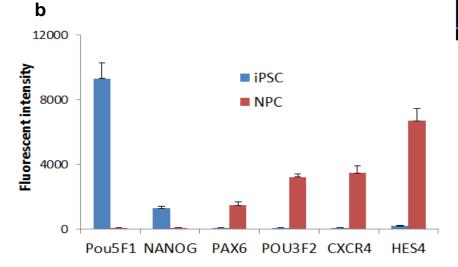


### С

| Analyzed Files    |           |               |         |                 |                  |  |  |
|-------------------|-----------|---------------|---------|-----------------|------------------|--|--|
| File Name         | Pluri Raw | Pluri Logit P | Novelty | Novelty Logit P | PluriTest Result |  |  |
| X5491179002_B_Grn | 30.158    | 1             | 1.452   | 0.016           | Pass             |  |  |
| X5491179002_I_Grn | 32.439    | 1             | 1.136   | 0.001           | Pass             |  |  |
| X5491179002_J_Grn | 34.704    | 1             | 1.207   | 0.001           | Pass             |  |  |
| X5491179078_B_Grn | 30.437    | 1             | 1.426   | 0.012           | Pass             |  |  |
| X5491179078_I_Grn | 33.069    | 1             | 1.196   | 0.001           | Pass             |  |  |
| X5491179078_J_Grn | 35.941    | 1             | 1.198   | 0.001           | Pass             |  |  |
| X5491179078_L_Grn | 29.33     | 1             | 1.478   | 0.02            | Pass             |  |  |

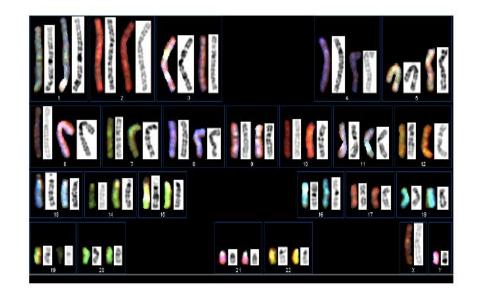

**Figure S1**. Multidimensional data model for assessing iPSCs and their neuronal derivatives. a, Principal component analysis of fibroblasts (3 samples in red), iPSC( 7 samples in gray) and their neural derivatives NPCs (4 samples in blue) and neurons ( 8 samples in purple). **b**, **c**, Model-Based Multi Class Pluripotency Score (PluriTest). **b**, The lines in the plot indicated empirically determined thresholds for defining normal pluripotent lines. Score above blue lines indicate those scores that we have observed in approximately 95 percent of the pluripotent cells. All 7 iPSC lines in this chip were all above blue line. **c**, Pluripotency analyses data showed all 7 iPSC lines in this chip passed PluriTest with P<0.05

Global gene expression profiles demonstrated that fibroblasts, iPSCs, iPSC-derived neural progenitor cells (NPC), and neurons formed distinct clusters, as expected (Figure S2A). All studied iPSC lines exhibited gene expression profiles typical of pluripotent stem cells (Figure S2B, Figure S2C).


#### Key

| Samples      | Sample ID      |
|--------------|----------------|
| 5491179002_A | GM23476        |
| 5491179002_B | GM23240        |
| 5491179002_C | CN4            |
| 5491179002_D | CN5            |
| 5491179002_E | GM05990_6weeks |
| 5491179002_F | NL1_6weeks     |
| 5491179002_G | GM05990_3weeks |
| 5491179002_H | NL1_3weeks     |
| 5491179002_I | CN1            |
| 5491179002_J | CN2            |
| 5491179002_K | GM05990_3weeks |
| 5491179002_L | NL1_3weeks     |
| 5491179078_A | 10593          |
| 5491179078_B | GM05990        |
| 5491179078_C | GM23476        |
| 5491179078_D | GM23240        |
| 5491179078_E | GM23476_6weeks |
| 5491179078_F | GM23240_6weeks |
| 5491179078_G | GM23476_3weeks |
| 5491179078_H | GM23240_3weeks |
| 5491179078_I | CN4            |
| 5491179078_J | CN5            |
| 5491179078_K | GM05990        |
| 5491179078_L | Cell stage     |

b




а





С



**Figure S2. a**, qRT-PCR analysis of gene expression on selected pluripotency markers (TDGF-1, OCT4, Nanog and Sox2) in fibroblasts and iPSC lines. **b**, Comparison analysis of gene expression of the selected pluripotency and NPC markers in iPSC and NPC lines from gene expression microarray. **c**, Chromosomespecific fluorescence in-situ hybridization showed that iPSC lines maintained the normal human karyotype. Real-time polymerase chain reaction (RT-PCR) assays in all iPSC lines demonstrated 100- to 2000-fold increased expression of pluripotency markers relative to the original

fibroblasts (Figure S3A). All iPSC lines maintained a normal human karyotype (Figure S3B).

To confirm a neural lineage of NPC lines, quantitative real time-PCR (qRT–PCR) analysis was carried out for several established NPC marker genes. As expected, the pluripotency-associated genes *NANOG* and *POU5F1* (encoding OCT4) were down-regulated in NPCs, while *PAX6* and *POU3F2*, *CXCR4*, *HES4* were markedly upregulated (Figure S2C).

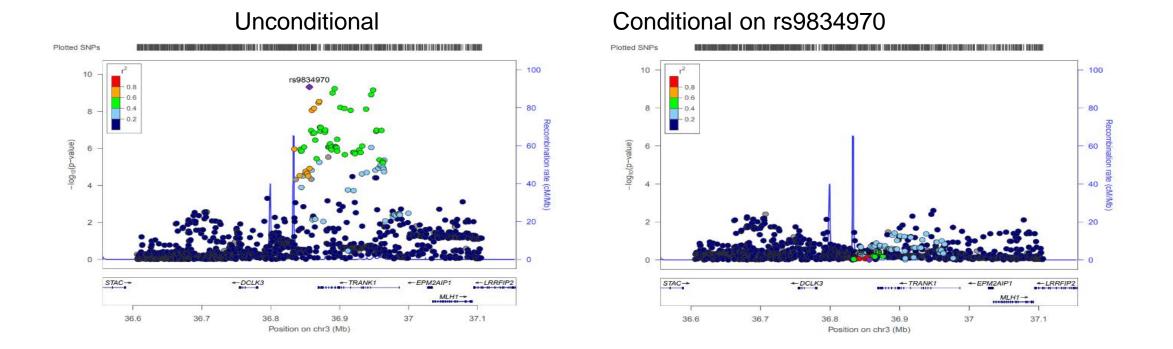
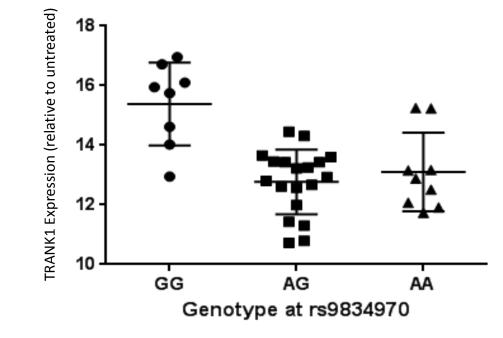
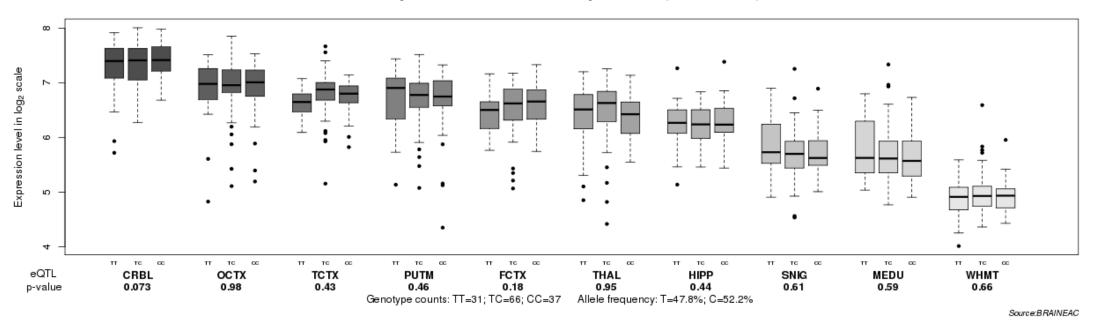




Figure S3. Conditional analysis of genetic association signals in the TRANK1 locus. Unconditional analysis performed in a large case-control sample (Hou et al 2017) supports genome-wide significant association with bipolar disorder.


As expected, rs9834970 yielded the most significant result (p=4.83E-10, n=25,877). Analysis was then repeated using the approximate conditional analysis method implemented in GCTA. https://www.ncbi.nlm.nih.gov/pubmed/22426310.

The results show no significant association between bipolar disorder and any remaining SNPs in the region. This demonstrates that rs9834970, or SNPs in very strong linkage disequilibrium with it, fully accounts for the

association signal at this locus. Graphical representations were generated using LocusZoom (LocusZoom: regional visualization of genome-wide association scan results R.J. Pruim, R.P. Welch, et al., Bioinformatics (2010)



**Figure S4.** Genotypic effects of rs9834970 on *TRANK1* gene expression at baseline in iPSC, the results were seen in iPSCs, where homozygous risk-allele carriers (GG genotype) showed significantly lower baseline *TRANK1* expression than AA homozygotes (p<0.0001).



Affymetrix ID t2669052 stratified by rs9834970 (chr3:36856030)

**Figure S5**. TRANK1 expression (Winsorized mean over probe sets) in 10 postmortem human brain regions, stratified by genotype at rs9834970. Source: <u>www.braineac.org</u>. These results suggest that rs9834970 either does not affect expression of *TRANK1* in mature brain tissue or exerts cell-type specific effects that cannot be easily detected in heterogeneous brain tissues.

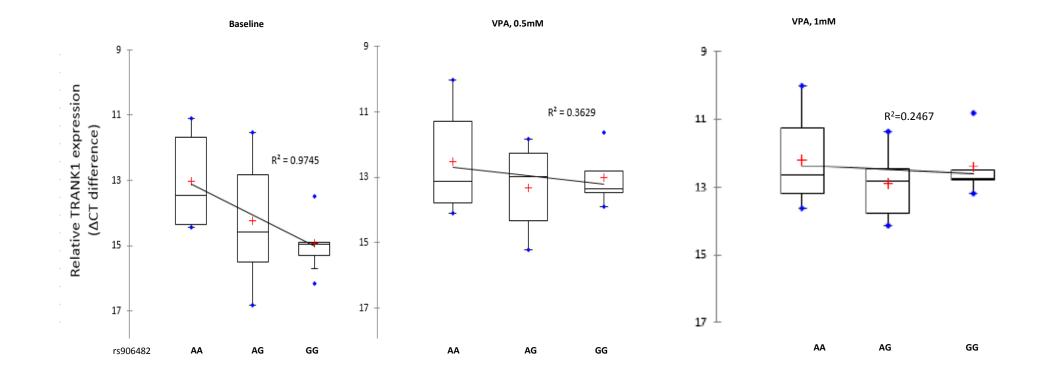
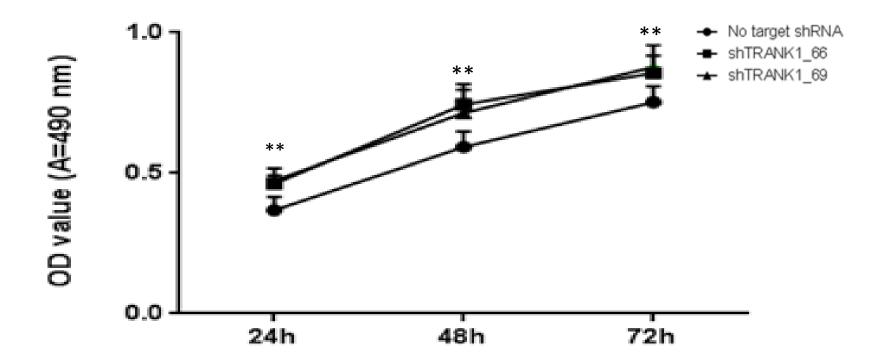
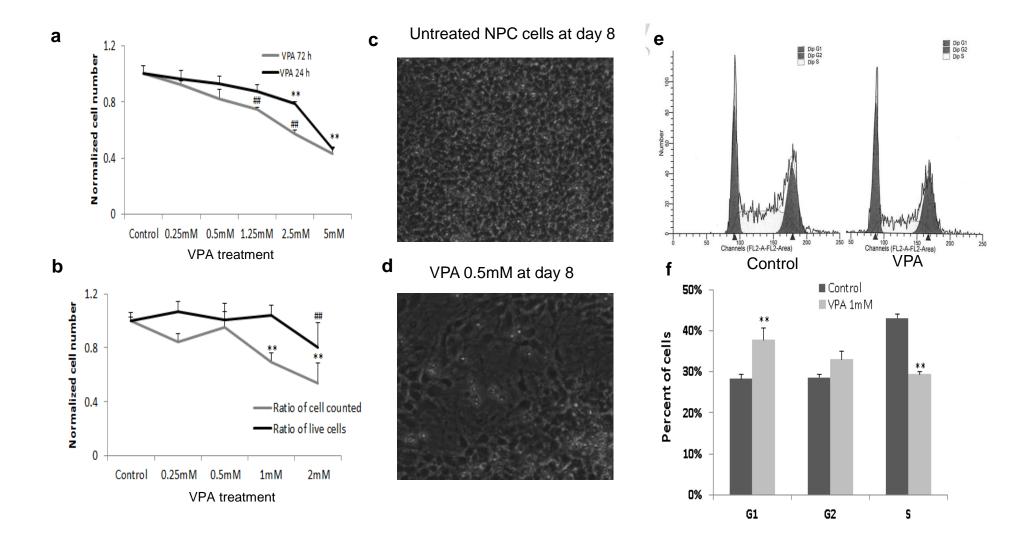
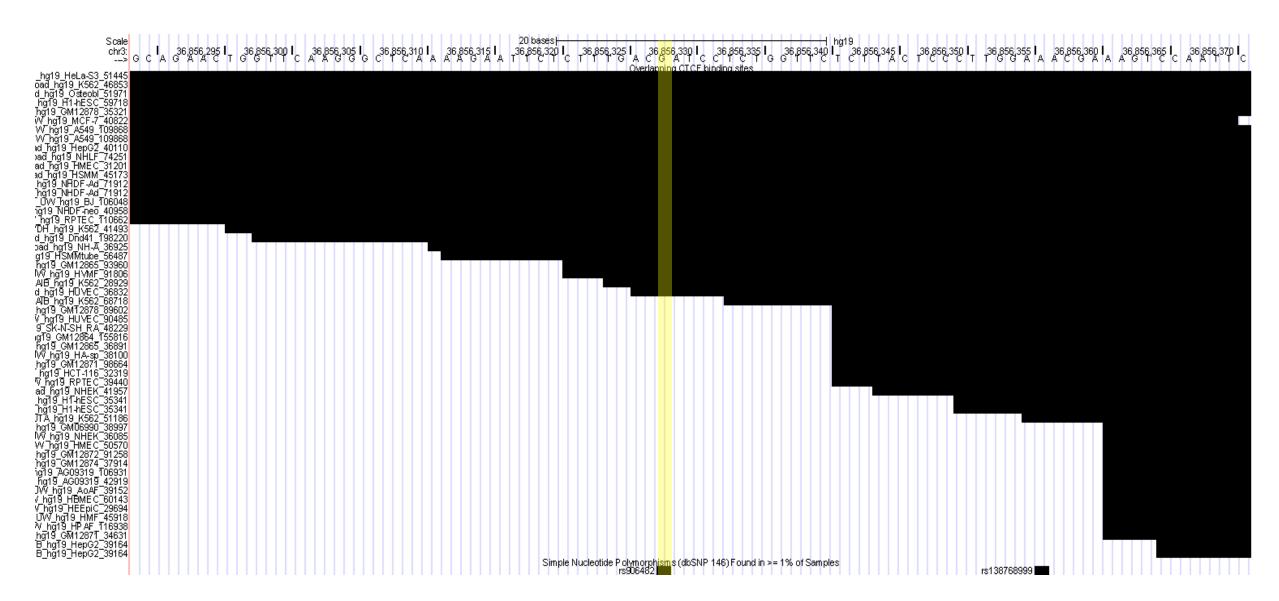





Figure S6. Genotypic effects of rs906482 on *TRANK1* gene expression in NPCs at baseline and after 72 h of VPA treatment. Cell lines carring the risk allele (AG or GG genotype at rs906482) showed significantly lower baseline TRANK1 expression than AA. VPA also rescued *TRANK1* expression in carriers of the G-allele at rs906842. Values are expressed as mean relative  $\Delta$ CT difference ± S.E.M. Comparisons: baseline, GG vs AA, p<0.0001; baseline, GG vs AG, p<0.05; baseline, GG vs VPA 0.5 mM, GG, p<0.05; baseline, GG, p<0.01. n =3 for GG carries; n = 3 for AA carries; n =5 for AG carries.




#### Figure S7 Knockdown of TRANK1 promoted growthmand proliferation of HeLa cells

To study the effect of *TRANK1* knockdown on the proliferation of HeLa cells, growth curves of cells in the no target shRNA control, shRNA TRANK1\_66, and shRNA TRANK1\_69 were determined by using the MTT assay. After the expression of *TRANK1* was inhibited, cell proliferation was significantly increased in the knockdown lines within 2 or 3 days compared with that in the no-target scramble control group. \*\*p<0.001



**Figure S8**. Effects of VPA on cell cycle, proliferation, and death in iPSC derived neural progenitor cells. **a-b**, NPC cells were treated with VPA (0, 0.25, 0.5, 1, 2mM) for 72 hours, a, Dose dependent effects of VPA on cell numbers after 72h treatment. b, Fractions of surviving cells were counted for each condition. Representative phase-contrast images (10x) of NPC cells after eight days of culture in 6-well plates in NPC expansion medium. **c**, Untreated control. **d**, After seven days of treatment with 0.5 mM VPA, NPCs were plated at low density. Cell density was significant lower in the VPA-treated than the untreated group, suggesting that VPA inhibits cell proliferation. Neural progenitor cells were treated with 1 mM VPA for 24 hours, then harvested, fixed, and stained with propidium iodide before analysis by flow cytometry. **e**, Typical flow cytometric patterns for control and VPA-treated cells. **f**, The graph shows the percentage of G1, G2, and S phase cells between untreated and VPA treated cells. Treatment with VPA did not increase cell death, but increase the fraction of cells in G1 and G2 and significantly reduced S phase cells. The graph shows changes in the cell cycle distribution as assessed by DNA flow cytometric analysis.



**Figure S9**. CTCF binding sites overlapping rs906482. Binding sites were experimentally verified by ChipSeq in various cell lines. ENCODE data was summarized by (http://insulatordb.uthsc.edu), and depicted in UCSC Human Genome Browser (hg19).

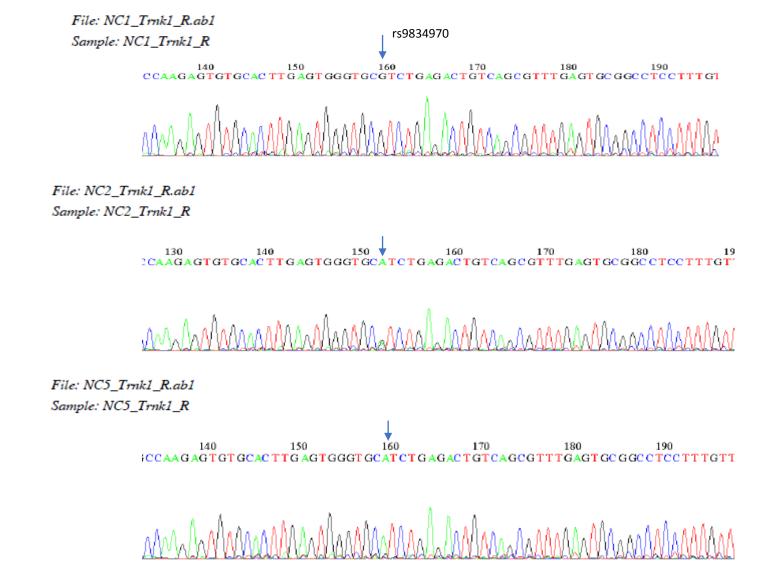



Figure S10. Representative Sanger sequences flanking rs9834970 in DNA from NPC lines with known genotypes AA, GG, and AG. 400 bp flanking rs9834970 was Sanger-sequenced at Macrogen. All samples showed the expected genotypes at rs9834970. No additional variants were detected.

| Symbol   | Fold change | Symbol      | Fold change | Symbol     | Fold change |
|----------|-------------|-------------|-------------|------------|-------------|
| ANKRD1   | 6.63        | SPINT2      | 2.03        | LOC1001331 | 1.76        |
| GDF15    | 4.79        | PTHLH       | 2.03        | SPANXA2    | 1.76        |
| ALPK2    | 4.60        | GPNMB       | 2.02        | STS-1      | 1.76        |
| OLR1     | 4.22        | LOC643031   | 2.02        | C5orf46    | 1.76        |
| SERPINE1 | 4.22        | F2R         | 2.01        | SEMA3C     | 1.75        |
| CPA4     | 4.11        | BDKRB1      | 2.01        | TIMP3      | 1.75        |
| DKK1     | 4.11        | PFKFB4      | 1.98        | KRT13      | 1.75        |
| ACTG2    | 3.86        | C9orf169    | 1.98        | EPHA2      | 1.75        |
| F3       | 3.83        | LEPREL1     | 1.98        | PSMB8      | -1.75       |
| F3       | 3.68        | TNNC1       | 1.98        | FAM89A     | -1.75       |
| MFAP5    | 3.37        | PTHLH       | 1.97        | SOX18      | -1.76       |
| ARHGDIB  | 3.13        | SH3KBP1     | 1.97        | HCP5       | -1.76       |
| IL7R     | 3.05        | SERPINB7    | 1.97        | ADAMTS8    | -1.76       |
| PTGES    | 2.97        | KRT17P3     | 1.97        | CNTNAP1    | -1.77       |
| IL7R     | 2.96        | PSG4        | 1.97        | SOBP       | -1.77       |
| NRG1     | 2.80        | DAAM1       | 1.97        | LOC728635  | -1.78       |
| BMP4     | 2.77        | S100P       | 1.97        | C14orf147  | -1.78       |
| CLIC3    | 2.74        | FAM176A     | 1.95        | CDC42EP4   | -1.79       |
| TUFT1    | 2.74        | ANTXR2      | 1.93        | CD83       | -1.79       |
| UTS2     | 2.67        | JAG1        | 1.93        | C14orf142  | -1.79       |
| NTN4     | 2.65        | PLAC8       | 1.93        | B3GNT1     | -1.79       |
| GLS      | 2.61        | EMP1        | 1.91        | DYNLT3     | -1.80       |
| NT5E     | 2.60        | LBH         | 1.90        | CA12       | -1.80       |
| NGF      | 2.59        | ARID3A      | 1.90        | TNFSF10    | -1.80       |
| KRT14    | 2.56        | LOC651397   | 1.90        | FAM89A     | -1.82       |
| TNFSF9   | 2.55        | BIRC3       | 1.89        | GAL        | -1.82       |
| PRAGMIN  | 2.53        | ACTA2       | 1.89        | SMARCA4    | -1.83       |
| THBS1    | 2.49        | MEGF6       | 1.89        | DAPL1      | -1.83       |
| CLDN1    | 2.47        | SCG5        | 1.89        | SCD        | -1.83       |
| CNN1     | 2.42        | PHLDB2      | 1.89        | LPCAT3     | -1.84       |
| GPRC5A   | 2.42        | NEXN        | 1.87        | CCL2       | -1.84       |
| LOC10012 | 2.41        | C1orf133    | 1.87        | CD74       | -1.86       |
| LOC65051 | 2.37        | TPM2        | 1.86        | BACE2      | -1.86       |
| TMEM166  | 2.35        | RIPK4       | 1.86        | PDX1       | -1.88       |
| 42067    | 2.34        | FLNB        | 1.86        | CYP27B1    | -1.90       |
| TGFA     | 2.31        | DKFZp761P04 |             | HLA-F      | -1.91       |
| CDKN1A   | 2.30        | FNDC3B      | 1.86        | NR4A2      | -1.91       |
| SLCO2A1  | 2.29        | LOC652683   | 1.85        | TAP1       | -1.91       |
| FOLR1    | 2.29        | CCND1       | 1.85        | IGFBP5     | -1.95       |
| LOC64555 |             | PDE2A       | 1.84        | KCNG1      | -1.95       |

Table S1 . Genes identified as significantly differentially expressed(P<0.05) with >1.75 fold change in TRANK1 shRNA knockdown HeLa cells vs no target control cells.

|   | DCN       | 2.26 | TMEM156   | 1.84 | IGFBP5    | -1.95 |
|---|-----------|------|-----------|------|-----------|-------|
|   | CRYAB     | 2.25 | TPM1      | 1.83 | INSIG1    | -1.96 |
|   | MFGE8     | 2.24 | ZDHHC11   | 1.83 | HLA-H     | -1.96 |
|   | TGFA      | 2.23 | HIST1H4H  | 1.83 | NR4A2     | -1.96 |
|   | PDGFC     | 2.21 | DCBLD1    | 1.83 | KCNIP3    | -1.98 |
|   | ELFN2     | 2.20 | SC5DL     | 1.82 | RHBDL3    | -1.98 |
|   | IL11      | 2.19 | PRKAG2    | 1.82 | LMNB1     | -1.99 |
|   | AFAP1L2   | 2.18 | TEK       | 1.82 | LPIN1     | -2.02 |
|   | PLAC8     | 2.17 | AKR1B10   | 1.82 | OAF       | -2.05 |
|   | MOBKL2B   | 2.16 | FTH1      | 1.82 | PCSK9     | -2.06 |
|   | PHLDB2    | 2.16 | C9orf3    | 1.81 | IFIT2     | -2.06 |
|   | LOC64476( | 2.16 | KRT80     | 1.81 | HLA-A29.1 | -2.09 |
|   | CDA       | 2.16 | LOC653110 | 1.81 | TPR       | -2.17 |
|   | TRQ1      | 2.16 | OPTN      | 1.81 | COL15A1   | -2.17 |
|   | IGFBP3    | 2.14 | ITGA5     | 1.80 | OASL      | -2.18 |
|   | GPR1      | 2.12 | CAV1      | 1.80 | SREBF1    | -2.20 |
|   | CACNG6    | 2.12 | TBC1D2    | 1.80 | TMOD1     | -2.25 |
|   | SYT11     | 2.11 | KRT80     | 1.80 | TCN1      | -2.27 |
|   | SLC35F3   | 2.11 | SH3KBP1   | 1.79 | PSMB8     | -2.27 |
|   | ENC1      | 2.11 | GPR64     | 1.79 | IFITM1    | -2.34 |
|   | FOLR1     | 2.10 | FAM176A   | 1.79 | FOS       | -2.37 |
|   | UTS2      | 2.10 | TGFBR2    | 1.79 | HLA-B     | -2.38 |
|   |           | 2.09 | AADACL1   | 1.79 | PSMB8     | -2.39 |
|   | KRT16     | 2.09 | GLIPR1    | 1.78 | NR2F1     | -2.40 |
|   | SUSD2     | 2.08 | RASGRP1   | 1.78 | FOSB      | -2.40 |
|   | IGFBP3    | 2.07 | FRMD6     | 1.78 | SREBF1    | -2.43 |
|   | CAV1      | 2.07 | YIPF5     | 1.78 | ECEL1     | -2.56 |
|   | CDK6      | 2.07 | ABLIM3    | 1.77 | NEU4      | -2.75 |
|   | EDN1      | 2.04 | SPANXB2   | 1.77 | PCOLCE    | -2.79 |
|   | LUM       | 2.03 | LOC442597 | 1.77 | C13orf15  | -3.00 |
|   | CD70      | 2.03 | FAM133A   | 1.77 | CA9       | -3.28 |
|   |           |      | HDAC1     | 1.76 | MIR1974   | -3.79 |
| _ |           |      |           |      |           |       |

| GO ACCESSION | GO Term                              | p-value  | corrected p-value | Gene Counts |
|--------------|--------------------------------------|----------|-------------------|-------------|
| GO:0005576   | extracellular region                 | 1.19E-08 | 1.85E-04          | 43          |
| GO:0005102   | receptor binding                     | 8.38E-08 | 6.54E-04          | 25          |
| GO:0050896   | response to stimulus                 | 5.10E-07 | 0.001989609       | 77          |
| GO:0032502   | developmental process                | 4.06E-07 | 0.001989609       | 49          |
| GO:0042127   | regulation of cell proliferation     | 9.64E-07 | 0.003011155       | 19          |
| GO:0023052   | signaling                            | 2.98E-06 | 0.006652566       | 63          |
| GO:0048856   | anatomical structure development     | 4.64E-06 | 0.008177349       | 39          |
| GO:0002376   | immune system process                | 4.71E-06 | 0.008177349       | 23          |
| GO:0007275   | multicellular organismal development | 6.55E-06 | 0.009181970       | 43          |
| GO:0032879   | regulation of localization           | 6.10E-06 | 0.009181970       | 17          |
| GO:0048731   | system development                   | 8.11E-06 | 0.009744492       | 35          |

# Table S2. Gene enrichment analysis of genes differentially expressed after*TRANK1* shRNA knockdown in HeLa cells.

| Symbol    | Fold change | Symbol      | Fold change | Symbol   | Fold change |
|-----------|-------------|-------------|-------------|----------|-------------|
| Sep3/     | -1.65       | H2AFJ       | 1.60        | OKL38    | -1.97       |
| Sep3/     | -1.75       | HERPUD1     | -1.53       | OLFML2A  | -3.03       |
| ACCN2     | -2.31       | HERPUD1     | -1.66       | OSBPL10  | -1.78       |
| ACLY      | -1.67       | HIST1H2BD   | 1.71        | PAG1     | -1.51       |
| ACSL4     | -1.58       | HLA-A       | 1.52        | PAK2     | -1.51       |
| ACSS2     | -1.51       | HLA-B       | 1.71        | PARM1    | -1.59       |
| ACSS2     | -1.52       | HNRNPA2B1   | -1.56       | PIK4CA   | -1.59       |
| ADAM11    | -2.10       | HOMER2      | -1.53       | PLCG1    | -1.52       |
| AFAP1     | -1.57       | HSPA12A     | -1.88       | PLEKHA4  | -1.68       |
| AGRN      | -1.55       | IARS        | -1.53       | PLP1     | -1.52       |
| ALCAM     | -1.95       | ID2         | 1.67        | PMP22    | -1.50       |
| ANK2      | -1.60       | IDI1        | -1.59       | PPFIBP2  | 1.53        |
| ARAP3     | 1.62        | IFI6        | 2.03        | PPP1R15A | -1.50       |
| ASAP1     | -1.53       | IFI6        | 1.89        | PREX1    | -1.54       |
| ASNS      | -1.71       | INA         | -1.74       | PRKCA    | -1.63       |
| ASNS      | -1.85       | INHBE       | -2.00       | PRRG1    | -1.59       |
| ATF4      | -1.55       | INSM1       | -1.83       | PRRX1    | 1.78        |
| ATP6V1G2  | -1.67       | ISL1        | -1.65       | PTBP2    | -1.50       |
| ATP9A     | -1.60       | ITFG2       | -1.50       | PTMA     | -1.85       |
| BMP7      | 1.89        | ITGB5       | 1.60        | PTPRD    | -1.56       |
| BRSK2     | -1.62       | JAG2        | -1.50       | RAB6A    | -1.59       |
| BSN       | -1.53       | KCNQ2       | -1.58       | RAB6B    | -1.67       |
| C12orf51  | -1.60       | KIAA0182    | -1.51       | RAPGEF6  | -1.60       |
| C14orf132 | -1.70       | KIAA0363    | -1.58       | RBP1     | -1.55       |
| C17orf96  | 1.52        | KIAA1211    | -1.55       | RCAN1    | -1.55       |
| C7orf16   | -1.63       | KIF1A       | -1.62       | REC8     | 2.09        |
| C9orf171  | 1.61        | KIF21A      | -1.59       | REC8     | 1.63        |
| CACNA1H   | -1.51       | KLHL35      | -1.76       | REEP1    | -1.81       |
| CACNA2D2  | -1.53       | LCOR        | -1.60       | RGMB     | -1.54       |
| CASP3     | -1.59       | LCOR        | -1.68       | RHBDL3   | -1.80       |
| CDC2L2    | 1.51        | LGALS1      | 1.95        | RIMS3    | -1.61       |
| CDKN1A    | -1.74       | LMO3        | 1.52        | RNU1-3   | -1.85       |
| CDKN2D    | -1.83       | LOC10012806 | -1.56       | RNU1-5   | -1.76       |
| CDO1      | -1.52       | LOC10012806 | -1.64       | RNU1A3   | -1.85       |
| CDO1      | -1.55       | LOC10012825 | -1.50       | RNU1G2   | -1.71       |
| CEBPB     | -1.87       | LOC10012902 | -1.56       | RNU4ATAC | -1.71       |
| CENTA1    | -1.75       | LOC10012965 | -1.52       | RPLP1    | -1.55       |
| CHGB      | -1.59       | LOC10013120 | -1.53       | RTN1     | -1.91       |
| CHRNA3    | -1.61       | LOC10013213 | -1.61       | RTN1     | -2.15       |
| CLASP2    | -1.66       | LOC10013229 | -1.56       | RTN4     | -1.87       |
| CLEC2D    | 1.83        | LOC10013356 | 1.57        | RUFY3    | -1.80       |

Table S3 . Genes identified as significantly differentially expressed (P<0.05) w fold change in 0.5 mM VPA treatment for 72 h in neural progenitor cells

| CNTN2    | -1.76 | LOC143543 | -1.61 | SCG2     | -1.51 |
|----------|-------|-----------|-------|----------|-------|
| CNTNAP1  | -1.59 | LOC148430 | -1.91 | SCRN1    | 1.63  |
| CNTNAP3B | 1.52  | LOC157627 | -1.85 | SEL1L3   | 1.65  |
| COL4A6   | 2.01  | LOC387763 | -1.80 | SESN1    | -1.53 |
| COL6A2   | 1.79  | LOC389342 | -1.51 | SFRP2    | 1.62  |
| CORO1C   | -1.63 | LOC392285 | -1.50 | SH3PXD2A | -1.53 |
| CREB5    | -1.58 | LOC401720 | -1.51 | SILV     | -1.58 |
| CRYZ     | 2.11  | LOC440063 | -2.49 | SLC15A3  | -1.52 |
| CYP51A1  | -1.50 | LOC441506 | -1.50 | SLC15A4  | -1.64 |
| CYR61    | 1.65  | LOC441763 | 1.82  | SLC7A5   | -1.91 |
| DACH2    | -1.62 | LOC644029 | -1.51 | SLIT2    | 1.52  |
| DCLK1    | -1.62 | LOC644131 | -1.54 | SLITRK1  | -1.53 |
| DCTN1    | -1.57 | LOC644422 | 1.57  | SNORA12  | 1.51  |
| DCTN1    | -1.67 | LOC644914 | -1.51 | SNORD80  | -1.62 |
| DCX      | -1.54 | LOC645138 | -1.53 | SOST     | -1.69 |
| DDIT3    | -1.77 | LOC645979 | -1.52 | SOX8     | -1.56 |
| DDIT4    | -1.67 | LOC647673 | -1.51 | SPOCK1   | 1.83  |
| DDX17    | -1.61 | LOC649679 | -1.60 | SPRY1    | 2.18  |
| DLX1     | 2.13  | LOC650494 | 1.51  | SPRY1    | 2.05  |
| DRD4     | 1.65  | LOC653752 | 1.54  | SPTAN1   | -1.57 |
| DUS3L    | -1.56 | LOC654194 | 1.51  | SRRM4    | -1.51 |
| EBF1     | -1.57 | LOC727821 | -1.54 | STARD7   | -1.69 |
| EBF3     | -1.80 | LOC728590 | -1.62 | STMN2    |       |
| EFHD1    | 1.62  | LOC728715 | -1.51 | STMN2    | -1.53 |
| EGR2     | 1.75  | LOC728734 | -1.55 | STMN2    | -1.57 |
|          |       |           |       |          | -1.70 |
| ELAVL2   | -1.51 | LOC728843 | -1.55 | STS-1    | 1.51  |
| ELAVL3   | -1.54 | LOC728855 | 1.56  | SULF1    | 2.15  |
| ELAVL3   | -1.55 | LOC729208 | -1.51 | SYT4     | -1.63 |
| ELAVL4   | -1.59 | LOC730525 | 2.03  | TACC2    | -1.55 |
| EMX2OS   | 1.67  | LRP4      | 1.55  | TAGLN3   | -1.89 |
| EPB41L3  | -1.97 | LSS       | -1.59 | TGFBI    | 1.99  |
| F12      | 1.62  | LUM       | 1.54  | TGFBR2   | -1.85 |
| FABP5L2  | -1.58 | LY6H      | -1.74 | TGFBR2   | -1.96 |
| FABP7    | 1.79  | MAP1A     | -1.52 | TGFBR3   | -1.81 |
| FAM102B  | -1.59 | MAP4      | -1.97 | TMEFF2   | -1.96 |
| FAM190B  | -1.51 | MAPK12    | -1.53 | TNC      | 1.54  |
| FBLN2    | 1.65  | MAPT      | -1.91 | TNRC4    | -1.75 |
| FBLN2    | 1.59  | MAST1     | -1.55 | TP53INP2 | -1.74 |
| FGF13    | -1.53 | MDGA1     | -1.79 | TPBG     | 1.57  |
| FHL2     | 1.62  | MEIS2     | -1.68 | TPD52L1  | 1.57  |
| FLJ46906 | 1.51  | MEX3B     | -1.62 | TPM2     | 1.50  |
| FNDC5    | -1.68 | MFAP2     | 1.76  | TRAPPC6B | -1.51 |
| FRZB     | 1.66  | MGC3032   | -1.52 | TRIB3    | -2.00 |
| FTHL12   | -1.60 | MGC40489  | -1.52 | TRIL     | 1.61  |
| FTHL2    | -1.61 | MIAT      | -1.65 | TSC22D3  | -1.55 |
| FTHL8    | -1.51 | MMRN1     | 1.69  | TSPO     | 1.69  |
| G3BP1    | -1.55 | MTHFD1L   | -1.79 | TUBA1C   | 1.69  |
|          |       |           |       |          |       |

| GAB2    | -1.66 | MTHFD2 | -1.64 | TUBB2A | -1.57 |
|---------|-------|--------|-------|--------|-------|
| GABBR2  | -1.62 | MTHFD2 | -1.68 | TUBB4  | -1.50 |
| GALNT12 | 1.51  | MUC1   | -1.50 | TUBB4Q | -1.62 |
| GAP43   | -1.62 | MVD    | -1.53 | TXNRD1 | -1.52 |
| GCNT1   | 1.62  | MYT1   | -1.80 | TXNRD1 | -1.56 |
| GDI1    | -1.53 | NDRG4  | -1.59 | VEGFB  | 1.52  |
| GDPD5   | -1.56 | NEFM   | -1.51 | WARS   | -1.63 |
| GJA1    | 1.59  | NPIP   | -1.65 | WARS   | -1.69 |
| GNG2    | -1.81 | NQ01   | -1.94 | XBP1   | -1.51 |
| GPC3    | 1.75  | NRG1   | -1.54 | XBP1   | -1.61 |
| GPC4    | 2.10  | NRP1   | -1.56 | YARS   | -1.61 |
| GRM2    | -2.18 | NSBP1  | 1.53  | YWHAG  | -1.60 |
| GRTP1   | 1.50  | OCIAD2 | 1.66  | YWHAG  | -1.65 |
|         |       |        |       | ZMAT3  | -1.51 |

# Table S4. Gene enrichment analysis of genes differentially expressed after VPAtreatment in IPSC-derived neural progenitor cells

| GO ACCESSION | GO Term                                       | p-value  | corrected p-value | Gene Counts |
|--------------|-----------------------------------------------|----------|-------------------|-------------|
| GO:0007399   | nervous system development                    | 1.30E-14 | 2.14E-10          | 41          |
| GO:0048869   | cellular developmental process                | 3.73E-12 | 3.08E-08          | 46          |
| GO:0030154   | cell differentiation                          | 6.23E-12 | 3.42E-08          | 45          |
| GO:0022008   | neurogenesis                                  | 3.99E-11 | 1.31E-07          | 24          |
| GO:0048856   | anatomical structure development              | 6.86E-11 | 1.63E-07          | 59          |
| GO:0048699   | generation of neurons                         | 6.94E-11 | 1.63E-07          | 23          |
| GO:0032502   | developmental process                         | 1.76E-09 | 3.23E-06          | 65          |
| GO:0051128   | regulation of cellular component organization | 1.97E-07 | 2.95E-04          | 20          |
| GO:0048523   | negative regulation of cellular process       | 2.60E-07 | 3.56E-04          | 39          |
| GO:0030182   | neuron differentiation                        | 3.70E-07 | 4.47E-04          | 16          |
| GO:0040008   | regulation of growth                          | 3.91E-07 | 4.47E-04          | 14          |
| GO:0010975   | regulation of neuron projection development   | 1.11E-06 | 9.15E-04          | 7           |
| GO:0045664   | regulation of neuron differentiation          | 3.36E-06 | 2.13E-03          | 8           |
| GO:0050770   | regulation of axonogenesis                    | 8.03E-06 | 4.59E-03          | 6           |

| ID      | Donor                      | rs9834970 | Source     | Reprogramming | iPS     | C   | NP      | С   | Neur    | ons | Astro   | cytes | Gender |
|---------|----------------------------|-----------|------------|---------------|---------|-----|---------|-----|---------|-----|---------|-------|--------|
| 10      | status                     | genotype  | Jource     | method        | Lithium | VPA | Lithium | VPA | Lithium | VPA | Lithium | VPA   | Gender |
| CN1     | Healthy                    | GG        | NHLBI Core | Lenti         | -       | -   | +       | +   | -       | -   | -       | -     | м      |
| CN2     | Healthy                    | AG        | NHLBI Core | Lenti         | +       | +   | +       | +   | -       | -   | -       | -     | F      |
| CN3     | Healthy                    | AG        | NHLBI Core | Lenti         | +       | +   | +       | +   | -       | -   | -       | -     | F      |
| CN4     | Healthy                    | AG        | NHLBI Core | Lenti         | +       | +   | +       | +   | +       | +   | +       | +     | м      |
| CN5     | Healthy                    | AA        | NHLBI Core | Lenti         | -       | -   | +       | +   | +       | +   | +       | +     | F      |
| NL1     | Healthy                    | AG        | CRM        | Lenti         | +       | +   | +       | +   | -       | -   | -       | -     | м      |
| NL5     | Healthy                    | AG        | CRM        | Lenti         | -       | -   | +       | +   | -       | -   | -       | -     | м      |
| GM23476 | Healthy                    | GG        | Coriell    | Lenti         | -       | -   | +       | +   | -       | -   | -       | -     | F      |
| GM05990 | Bipolar disorder           | AA        | Coriell    | Lenti         | -       | -   | +       | +   | +       | +   | +       | +     | м      |
| 10593   | Bipolar disorder           | GG        | HGB        | Sendai        | -       | -   | +       | +   | +       | +   | +       | +     | F      |
| GM23240 | Spinomuscular<br>Atrophy I | AA        | Coriell    | Lenti         | -       | -   | +       | +   | -       | -   | -       | -     | м      |

### Table S5. Cell lines used in present study

| Gene          | Forward primer          | Reverse primer            |
|---------------|-------------------------|---------------------------|
| GAPDH(human)  | gctctctgctcctctgttc     | acgaccaaatccgttgactc      |
| GAPDH(rat)    | agctggtcatcaatgggaaa    | atttgatgttagcfgggatcg     |
| ACTB(human)   | attggcaatgagcggttc      | cgtggatgccacaggact        |
| ACTB(rat)     | cccgcgagtacaaccttct     | cgtcatccatggcgaact        |
| TRANK1(human) | gccaagaggagctttttgaa    | gggaagggtcttagtctttagca   |
| TRANK1(rat)   | tccatgtttactgggagaaagc  | ccaaccttctctttggcaag      |
| HDAC1(human)  | cggtgctggacatatgagac    | tggtccaaagtattcaaagtag    |
| HDAC1(rat)    | tttgagttctgtcagttgtccac | cttcttcgcatggtgcag        |
| HDAC2(human)  | tgaaggagaaggaggtcgaa    | tcttcaattctagctttctttgctc |
| HDAC2(rat)    | cgctgactccctctctggt     | tcactacttctacacatttagcg   |
| OCT3/4        | tgccgtgaaactggagaag     | gcttggcaaattgttcgagt      |
| SOX2          | caacagaggctgcagaacag    | cctttcttccctccttcattc     |
| Nanog         | tctccaacatcctgaacctca   | ttgctattcttcggccagtt      |
| TDGF-1        | agatggcccgcttctctta     | gagatggacgagcaaattcc      |

 Table S6. Sequences of selected oligonucleotides for quantitative RT-PCR assays

### Table S7. Sequences of the TRANK1-specific shRNAs used in this study

| shRNAs                       | Sequence                                                         |
|------------------------------|------------------------------------------------------------------|
| sh RNA for TRANK1_66         | 5'-CCGGTACTGATTCTGAGGCTTATAACTCGAGTTATAAGCCTCAGAATCAGTATTTTTG-3' |
| sh RNA for TRANK1_69         | 5'-CCGGTTGGCTGGCAGGCCTTATAAGCTCGAGCTTATAAGGCCTGCCAGCCA           |
| sh RNA for no target control | 5'-CCGGCAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTGTTTT-3'   |

Table S8. Sequences of specific and non-specific CTCF probes and of rs906482 A/G oligonucleotide probes used in EMSA assays.

| EMSA_rs906482_A_allele_Fw        | 5'Biotin CTCTTTGACGATCCTCTGGTTCTCTTACTCCC 3'              |
|----------------------------------|-----------------------------------------------------------|
| EMSA_rs906482_A_allele_Rev       | 5' GGGAGTAAGAGAACCAGAGGATCGTCAAAGAG 3'                    |
| EMSA_rs906482_G_allele_Fw        | 5' Biotin CTCTTTGACAATCCTCTGGTTCTCTTACTCCC                |
| EMSA_rs906482_G_allele_Rev       | 5'GGGAGTAAGAGAACCAGAGGATTGTCAAAGAG3'                      |
| CTCF consense probe_allele_Fw    | 5'CCCCCAGGGATGTAATTACGTCCCTCCCCGCTAGGGGGGCAGCAG-3'        |
| CTCF consense probe_allele_Rw    | 5'CTGCTGCCCCCTAGCGGGGGGGGGGGGGGGGCGTAATTACATCCCTGGGGGG-3' |
| No specific competitor_allele_Fw | 5'TGGCCAGGGCCGCGCGTGGCGGGGCCAGGGCGCGGGGCT-3"              |
| No specific competitor_allele_Rw | 5'AGCCCCGCGCCTGGCCCCGCCACGGCGCGCCCTGGCCA-3'               |