Supplementary information for:

Syngeneic animal models of tobacco-associated oral cancer reveals the activity of *in situ* anti-CTLA-4

Wang et al.,

Supplementary Figure 1

Supplementary Figure 1.Transcriptional Bias for each individual 4MOSC cell lines. The somatic mutational profiles of the four 4MOSCs were correlated to (Pearson correlation > 0.93), known mutational signatures in human cancer. The pattern of Signature 4 extracted from cancers associated with tobacco smoking was marked as dark blue columns.

b

Supplementary Figure 2. Squamous cell character. (a) Representative pictures of whole tongue tumors stained to show expression of cytokeratin 5 (CK5, green); left, 4MOSC1; right, 4MOSC2 (n = 3 mice per group). (b) Metastatic growth of 4MOSC2 cells into the lymph node. C57Bl/6 mice were implanted with $1x10^6$ of 4MOSC2 cells into the tongue. On 2 and 8 days post-implantation, cervical lymph nodes from each mouse were harvested and evaluated by H&E staining. Left, representative H&E stain of a non-metastatic (top) and a metastatic (bottom) cervical lymph node. Right, images at high magnification depict the histologic features of representative area from each individual cervical lymph node. Metastatic area is depicted with a green dotted line, with the tumor cells marked by * (n = 5 mice per group).

Supplementary Figure 3		Relative value		Concentration (pg/ml)			
	4MOSC	1	2		4MOSC1	4MOSC2	Sig.
	CCL11	2.9			292±10	100±10	***
1	CCL12	1.2			314±63	268±30	ns
1 to 2	CCL17	7.1			361±255	51±10	ns
2.1 to 4	CCL19		2.4		48.2±6.6	118±13	**
4.1 to 10	CCL2	3.1			1339±98	430±54	***
> 10	CCL20	1.7			1.2±0.2	0.7±0.1	*
	CCL21	1.7			1205±114	719±41	**
Fold difference	CCL22	4.4			73.6±6.2	16.8±0.9	***
	CCL3	1.6			312±17	198±10	***
	CCL4	2.9			295±26	102 ± 5	***
	CCL5	4.9			84.8±6.1	17.4±2.6	***
	CX3CL1	1.4			132±14	96.9±6.3	ns
	CXCL1		1.7		654±110	1137±75	**
	CXCL10		4.0		694 <u>+</u> 82	2801±1156	ns
	CXCL2		1.9		4398±835	8171±234	**
	CXCL5		8.5		361±21	3052±375	***
	EPO	1.5			2.4±0.2	1.6±0.1	**
	G-CSF		13.7		355±73	4877±68	***
	GM-CSF		13.6		52±14	704±51	***
	IFNβ1		2.5		80.6±7.8	204±99	ns
	IFNγ	1.6			4.8±1.0	3.1±0.4	ns
	IL-10		1.3		2.7±0.4	3.6±0.3	ns
	IL-11	1.9			460±138	244±51	ns
	IL-12 (p40)	1.3			2.8±0.3	2.2±0.3	ns
	IL-12 (p70)	1.2			4.2±0.8	3.6±0.2	ns
	IL-13	1.2			4.7±0.2	3.9±0.3	ns
	IL-15	1.1			6.0±0.3	5.7±0.4	ns
	IL-16	1.5			795±52	543±63	*
	IL-17	1.8			1.8±0.2	1.0±0.1	**
	IL-1a		1.8		216±13	383±33	**
	IL-1b		1.3		48.6±8.9	65.6±5.2	ns
	IL-2				6.5±0.4	6.5±0.7	ns
	IL-20	1.1			7.5±0.3	7.1±0.3	ns
	IL-3	2.8			4.0±2.2	1.4±0.2	ns
	IL-4	10.3			3.1±0.6	0.3±0.1	***
	IL-5	6.2			8.1±1.3	1.3±0.2	***
	IL-6	1.8			127±32	69.7±8.8	ns
	IL-7		2.1		2.6±0.2	5.4±0.1	***
	IL9	1.2			11.1±2.4	9.4±2.8	ns
	LIF	1.6			88.9±7.2	54.9±5.3	**
	M-CSF	1.2			28.2±3.2	24.5±3.0	ns
	TIMP-1	1.8			6242±927	3510±757	ns
	ΤΝFα	1.3			13.9±1.4	10.6±1.1	ns
	VEGF		26.8		1.4±0.2	37.5±6.5	***

Supplementary Figure 3. Chemokine expression profile of the 4MOSC tumors. C57Bl/6 mice were implanted with 1×10^6 of either 4MOSC1 or 4MOSC2 cells into the tongue. Eleven days post-implantation, tongue tumors were dissected and lysed. Tumor lysates were normalized to 1 mg/mL and analyzed to quantify concentrations of multiple chemokines, cytokines, and growth factors. Left, relative values of each chemokine in 4MOSC1 and 4MOSC2; fold differences were calculated by dividing the tumor with the higher concentration by the tumor with the lower concentration, and the tumor with the lower concentration was defined as 1-fold. Right, absolute concentration of each chemokine in 4MOSC1 and 4MOSC2 (n = 5 mice per group; not significant or ns, p > 0.05; *, p < 0.05; **, p < 0.01; and ***, p < 0.001 when comparing 4MOSC1 with 4MOSC2 with two sided Student's *t*-test; data are represented as mean \pm SEM).

Supplementary Figure 4

Supplementary Figure 4. Immunogenicity of 4MOSCs. (a-b) Memory immune responses induced by vaccination with irradiated 4MOSC cells. 4MOSC1 or 4MOSC2 cells were irradiated with 45 Gy and $1x10^6$ cell were injected into the tongue of C57Bl/6 mice, with (green) or without (blue) polyinosinic-polycytidylic acid (poly IC). Mice injected with non-irradiated 4MOSC cells (black) or mice only treated by poly IC (red) were used as controls. The average tumor volume of each group is shown (n = 5 mice per group, the tumor growth curves were compared by the longitudinal data analysis method; data are represented as mean± SEM). (c-d) Vaccinated mice (green and blue) were rechallenged with $1x10^6$ live 4MOSC cells 6 weeks after. Naïve mice (black) and mice post poly IC treatment (red) were used as controls. The average tumor volume of each group is shown (n = 5 mice per group, the tumor growth curves were compared by the longitudinal data analysis method; data are represented as mean± SEM). (c-d) Vaccinated mice (green and blue) were rechallenged with $1x10^6$ live 4MOSC cells 6 weeks after. Naïve mice (black) and mice post poly IC treatment (red) were used as controls. The average tumor volume of each group is shown (n = 5 mice per group, the tumor growth curves were compared by the longitudinal data analysis method; data are represented as mean± SEM).

Supplementary Figure 5

Supplementary Figure 5. PD-L1 is expressed on tumor and tumor-infiltrating myeloid immune cells. Frequency of live 4MOSC1 or 4MOSC2 tumors expressing PD-L1. (a) Shown are representative flow cytometry plots of PD-L1 expression on 4MOSC cells, CD45+ immune cells, MHCII⁺ antigen presenting cells (APC), F4/80⁺ MHCII⁻ tumor-associated macrophages (TAMs), and Ly6C⁺Ly6G⁺ MDSCs. (b) The averaged frequency of each immune cell population expressing PD-L1^{high} in 4MOSC1 and 4MOSC2 is shown (n = 3 mice per group; data are represented as mean \pm SEM).

Supplementary Figure 6

Supplementary Figure 6. Characterization of inhibitory receptor expression on tumor-infiltrating CD4 T cells in 4MOSCs. Frequency of live 4MOSC1 or 4MOSC2 tumors expressing inhibitory receptors. (a) Shown are representative flow cytometry plots of the frequency of CD4⁺ cells expressing inhibitory receptors PD-1, CTLA-4, LAG-3 and TIM-3 (n = 4 mice per group). Contour plots of lymphocytes from tumor (green), and corresponding cervical lymph nodes (blue), and blood (red) are overlaid and the frequencies of tumor CD4⁺ T cells expressing each inhibitory receptor are shown. (b) The expression of CTLA-4 on CD4 T cells, Tregs (CD4⁺FoxP3⁺) or non-Tregs (CD4⁺FoxP3⁻) are represented by overlaid histograms in blood, LN, and tumor (n = 4 mice per group).

Supplementary Figure 7. Histopathological analysis of tongues and cervical lymph nodes from 4MOSC1 or 4MOSC2 tumor-bearing mice. (a-b) Representative H&E stains of mouse tumors from the experiment in panel 3a (n = 10 mice per group) and 3e(n = 5 mice per group). The H&E stained tissue section of an HNSCC tumor is depicted with a dotted line. (c) Top panel, representative H&E stain of a non-metastatic cervical lymph node from mice with 4MOSC1 tumors. Bottom panel, representative H&E stain of a metastatic cervical lymph node from mice with 4MOSC1 tumors after treatment with CD8 T cell-depleting antibody. Metastatic growth of 4MOSC1 cells into the lymph node is depicted with a dotted line in the left area. ((n = 5 mice per group)) (d) Representative H&E stains of mouse tumors from the experiment in panel 3g. The H&E stained tissue section of an HNSCC tumor is depicted with a dotted line (n = 5 mice per group).

Supplementary Figure 8. Difference of immune infiltration and immune checkpoints in parental 4MOSC1 and *a***PD-1-resistant 4MOSC1.** Anti-PD-1-resistant 4MOSC1 cell lines were established by first isolating cells from anti-PD-1-treated mice showing no response and re-injecting into C57Bl/6 mice. This process was repeated for a total of 3 rounds to generate the resistant cell line. C57Bl/6 mice were implanted with 1×10^6 parental or anti-PD1-resistant 4MOSC1cells. After the tumors reached ~30 mm³, mice were treated IP with 10mg/kg of isotype control or 10mg/kg of anti-PD-1 every other day for 3 treatments total. (a) Shown is the average volume of each tumor at the endpoint of the experiment with error bars representing standard error (n = 7 mice per group; two sided Student's *t*-test; data are represented as mean \pm SEM). (b) Quantification of tumor-infiltrating PMN-MDSCs (Ly6G^{hi}) was performed by flow cytometry (n = 7 mice per group; two sided Student's *t*-test; data are represented as mean \pm SEM). (c) Shown is the average fold change of the frequency of tumor-infiltrating CD4 and CD8 T cells expressing inhibitory receptors from anti-PD-1-treated parental and resistant 4MOSC1 (n = 7 mice per group; not significant or ns, *p* > 0.05; *, *p* < 0.05; and ***, *p* < 0.001, two sided Student's *t*-test).

5

0

10

Supplementary Figure 9. Treg-mediated suppression of anti-PD-1 activity in 4MOSC1 tumors in *FoxP3*^{DTR} mice. (a) $FoxP3^{DTR}$ mice were implanted with $1x10^6$ of 4MOSC1 cells into the tongue, and when they reached approximately 30 mm³, mice were treated IP with PBS or diphtheria toxin (DT). Immunofluorescent staining of isolated tumors with FoxP3 and CD8 confirm transient elimination of Tregs with DT and increase in CD8 T cells. (b) Shown is the quantification of the FoxP3 and CD8 positive cells by 3 regions of interests (ROI) per mouse, quantified by Qupath software for mice untreated and treated with DT. (n = 6 mice per group; two sided Student's *t*-test; data are represented as mean \pm SEM). (c) $FoxP3^{DTR}$ mice with 4MOSC1 tongue tumors were treated IP with 10mg/kg of isotype control (black), 10mg/kg of anti-PD-1 (red), diphtheria toxin (green) or both (blue). (n = 5 mice per group; the tumor growth curves were compared by the longitudinal data analysis method; data are represented as mean \pm SEM).

15

20 (days)

Supplementary Figure 10. Histological analysis of tongues from 4MOSC1 or 4MOSC2 tumor-bearing mice treated with anti-CTLA-4. (a) Representative H&E stains of mouse tumors from the experiment in panel 4a. The H&E stained tissue section of an HNSCC tumor is depicted with a dotted line (n = 10 mice per group). (b) Left panel, anti-CTLA-4 dependency on CD8 T cells. C57Bl/6 mice were treated with a CD8 T cell-depletion antibody, and transplanted with $1x10^{6}$ 4MOSC1 cells into the tongue. After the tumors reached ~30 mm³, mice were treated IT with 5 mg/kg of isotype control (black) or anti-CTLA-4 (green) (n = 5 per group). Individual growth curves of 4MOSC1 tumor-bearing mice plotting primary tumor growth were recorded. Right panel, representative H&E of mouse tumors from the experiment in left panel. The H&E stained tissue section of an HNSCC tumor. C57Bl/6 mice were treated IT with $1x10^{6}$ 4MOSC2 cells into the tongue. After the tumors reached ~30 mm³, mice were treated line. (c) Left panel, antitumor efficacy of anti-CTLA-4 for mice with 4MOSC2 tumors. C57Bl/6 mice were transplanted with $1x10^{6}$ 4MOSC2 cells into the tongue. After the tumors reached ~30 mm³, mice were transplanted line. (b) Left panel, antitumor efficacy of anti-CTLA-4 for mice with 4MOSC2 tumors. C57Bl/6 mice were transplanted with $1x10^{6}$ 4MOSC2 cells into the tongue. After the tumors reached ~30 mm³, mice were treated IT with 5 mg/kg of isotype control (black) or anti-CTLA-4 (green) (n = 10 mice per group). Individual growth curves of 4MOSC2 tumor-bearing mice plotting primary tumor growth were recorded. Right panel, representative H&E of mouse tumors from the experiment in left panel. The H&E stained tissue section of an HNSCC tumor is depicted with a dotted line.

Supplementary Figure 11. Increased expression of IFNg in CD8 T cells by anti-CTLA-4 treatment. Frequency of CD45⁺, Thy1.2⁺, CD8⁺ expressing IFN γ . Top panel, a representative flow cytometry plot from one mouse showing the frequency of IFN γ^+ out of CD8⁺ cells is shown. Bottom panel, the frequency of IFN γ^+ CD8⁺ cells was quantified following treatment with anti-PD-1 or anti-CTLA-4 (n = 3 mice per group; two sided Student's *t*-test; data are represented as mean± SEM).

Supplementary Figure 12

Supplementary Figure 12. Representative flow cytometry gating strategies. Representative flow cytometry plots to gate (a) tumor-infiltrating immune cells used to quantify immune cells in Figure 2f, 3c, 4d, 4e, Supplementary Figures 8a, 8b, and 11, and (b) T cell inhibitory receptors used to characterize T cells used in Figures 2g, Supplementary Figures 6a, 6b, and 8c are shown. Gating for PD-1, TIM-3, LAG-3, and CTLA-4 on activated CD8 T cells (CD45⁺THY1.2⁺CD8⁺CD44⁺) was determined by fluorescence minus one controls.