Supplementary Information

Zhang et al. MORC2 regulates DNA damage response through a PARP1-dependent

pathway

Figure S1. MORC2 interacts with PARP1

(A-B) Nuclear extracts of HeLa cells were immunoprecipitated with an anti-MORC2 antibody or control IgG, and the precipitated protein complexes were subjected to sliver staining and liquid chromatography-tandem mass spectrometry (A). The identified peptides for MORC2, PARP1, and NAT10 are showed in B. Protein identification results were filtered with the correlation factor (Xcorr) (>1.9) and delta correlation factor (dCn) (>0.1) as a conservative criteria set developed by Yates and coworkers (1). (C) Immunoblotting analysis of the expression levels of PARP1 and MORC2 in 9 breast cancer cell lines. (D) Lysates from MCF-7 cells were subjected to IP and immunoblotting analysis with the indicated antibodies. (E-F) Lysates from MCF-7 cells were immunoprecipitated with control IgG or an anti-MORC2 (E) or an

anti-PARP1 (F) antibody in the presence or absence of 50 μ g/ml ethidium bromide (EtBr), followed by immunoblotting analysis with the indicated antibodies. (G-H) Lysates from MCF-7 cells were immunoprecipitated with control IgG or an anti-MORC2 (G) or an anti-PARP1 (H) antibody in the presence or absence of 0.35 U/µl DNase, followed by immunoblotting analysis with the indicated antibodies.

Figure S2. Depletion of PARP1 does not affect the protein expression levels and nuclear localization of MORC2

(A) MCF-7 cells were transfected with siNC or three siRNAs targeting PARP1. After 48 h of transfection, cells were harvested for immunoblotting analysis with the indicated antibodies. (B) Lysates from WT and PARP1 KO MCF-7 cells were subjected to immunoblotting analysis with the indicated antibodies. (C) Validation of PARP1 KO cells by PCR and sequencing across the CRISPR target sites. Sequences in red indicate CRISPR target sites, while the sequences in green represent the mutations generated. (D) MCF-7 cells were transfected with siNC or siPARP1. After 48 h of transfection, cells were immunostained with the indicated antibodies. Actin filaments (F-actin) were labeled CytoPainter Phalloidin-iFluor 680 reagent (red). Nuclei were stained with DAPI. (E) WT and PARP1 KO MCF-7 cells were immunostained with the indicated antibodies. Actin filaments (F-actin) were labeled CytoPainter Phalloidin-iFluor 680 reagent (red). Nuclei were stained with DAPI.

Figure S3. The effect of PARylation on the subcellular localization and stability of MORC2

(A) Sequence alignments of the CW-ZF domain of MORC2 from several species revealed five evolutionary conserved residues (K504, E516, K517, D518, and D521) that can potentially undergo PARylation. (B) HEK293T cells were transfected with the indicated expression vectors. After 48 h of transfection, cells were treated with or without 1 mM MMS for 30 min and lysates were subjected to IP and immunoblotting analyses with the indicated antibodies. (C) HEK293T cells were transfected with the indicated antibodies. (C) HEK293T cells were immunostained with the indicated antibodies. Actin filaments (F-actin) were labeled CytoPainter Phalloidin-iFluor 680 reagent (red). Nuclei were stained with DAPI. (D) HEK293T cells were transfected with the indicated expression vectors.

were treated with 100 μ g/ml CHX for the indicated times and analyzed by immunoblotting with the indicated antibodies. Relative Flag-MORC2 expression levels (Flag-MORC2/vinculin) are shown in lower panel. The quantitative results are represented as mean ± s.d. as indicated from three independent experiments.

Figure S4. Validation of MORC2 KO cells and negative controls for PLA assays

(A) Validation of MORC2 KO cells by PCR and sequencing across the CRISPR target sites. Sequences in red indicate CRISPR target sites, while the sequences in green represent the mutations generated. (B) MORC2 KO MCF-7 cells stably expressing Flag-MORC2 and Flag-MORC2-2A were treated with or without 1 mM MMS for 30 min. Negative controls for *in situ* PLA assays were performed using a single antibody against Flag or γH2AX. Nuclei were counterstained with DAPI (blue).

Figure S5. MORC2 does not affect the mRNA levels and subcellular localization of PARP1

(A) qPCR analysis of MORC2 and PARP1 mRNA levels in MCF-7 and SK-BR-3 cells stably expressing shNC and shMORC2. (B) MCF-7 and SK-BR-3 cells were transfected with siNC or three different siRNAs targeting MORC2 (siMORC2 #1-3). After 48 h of transfection, RNA was isolated and then subjected to qPCR analysis of MORC2 and PARP1 mRNA levels. (C) MCF-7 and SK-BR-3 cells were transfected with siNC or siMORC2. After 48 h of transfection, cells were immunostained with the indicated antibodies. Actin filaments (F-actin) were labeled CytoPainter

Phalloidin-iFluor 680 reagent (red). Nuclei were stained with DAPI. (D) HEK293T cells were transfected with the indicated expression vectors. After 48 h of transfection, cells were treated with 10 µM MG-132 for 5 h and then incubated with or without 5 µM Olaparib for another 1 h. IP and immunoblotting analyses were performed with the indicated antibodies. Lysis buffer was also supplemented with 10 µM MG-132 in the subsequent assays. (E) HEK293T cells were transfected with the indicated plasmid DNAs. After 48 h of transfection, cells were treated with 10 µM MG-132 for 6 h, and sequential IP and immunoblotting analyses were performed with the indicated antibodies. Lysis buffer was also supplemented with 10 µM MG-132 in the subsequent assays. (F) HEK293T cells were transfected with HA-PARP1 or HA-PARP1 K949R. After 48 h of transfection, cells were treated with 100 µg/ml CHX for the indicated times and analyzed by immunoblotting with the indicated antibodies. Relative HA-PARP1 expression levels (HA-PARP1/Vinculin) are shown in lower panel. The quantitative results are represented as mean ± s.d. as indicated from three independent experiments.

Figure S6. MORC2 stabilizes PARP1 in an acetylation-dependent manner

(A) MCF-7 cells were treated with DMSO or 5 μ M TSA plus 5 mM NAM for 12 h. Lysates were immunoprecipitated with control IgG or an anti-PARP1 antibody, followed by immunoblotting analysis with the indicated antibodies. (B) MCF-7 and SK-BR-3 cells were DMSO or 5 μ M TSA plus 5 mM NAM for 12 h. Lysates were analyzed by immunoblotting with the indicated antibodies. (C-D) MCF-7 cells stably expressing shNC and shMORC2 were treated with DMSO or 5 μ M TSA (C) or 5 mM NAM (D) for the indicated times. Lysates were analyzed by immunoblotting with the indicated by immunoblotting with the indicated stable or 5 μ M TSA (C) or 5 mM NAM (D) for the indicated times. Lysates were analyzed by immunoblotting with the indicated times and stable or 5 mM NAM (right) for 12 h. Then, cells were treated with 100 μ g/ml CHX for the indicated times and analyzed by immunoblotting with the indicated antibodies.

Relative PARP1 expression levels (PARP1/Vinculin) are shown in lower panels. The quantitative results are represented as mean ± s.d. as indicated from three independent experiments. (F) MCF-7 cells were treated with DMSO or 5 µM TSA plus 5 mM NAM for 6 h, and then incubated with 10 µM MG-132 for another 6 h. Lysates were immunoprecipitated with control IgG or an anti-PARP1 antibody, followed by immunoblotting analysis with the indicated antibodies. Lysis buffer was also supplemented with 10 µM MG-132 in the subsequent assays. (G) HEK293T cells were transfected with the indicated plasmid DNAs. After 48 h of transfection, MCF-7 cells were treated with DMSO or 5 µM TSA or 5 mM NAM for 6 h, and then incubated with 10 µM MG-132 for another 6 h. Lysates were subjected to sequential IP and immunoblotting analyses were performed with the indicated antibodies. Lysis buffer was also supplemented with 10 µM MG-132 in the subsequent assays. (H) HEK293T cells were transfected with pCDH or Flag-PARP1. After 48 h of transfection, cells were treated with the increasing doses of NAT10 inhibitor remodelin (0, 1, 5 or 10 µM) for 12 h and then subjected to IP and immunoblotting analyses with the indicated antibodies. The immunoprecipitated PARP1 has been adjusted to be equal to make the levels of acetylated PARP1 comparable to those of immunoprecipitated PARP1.

Figure S7. NAT10 acetylates PARP1 at lysine 949

(A) Potential acetylation sites of PARP1 identified by proteomic analyses. Sequence alignments of PARP1 from several species showed that these potential acetylation sites are evolutionary conserved. (B-C) HEK293T cells were transfected with the indicated expression vectors. After 48 h of transfection, lysates were subjected to IP and immunoblotting analyses with the indicated antibodies. (D-E) MCF-7 cells were treated with 5 μ M remodelin for the indicated times. Cells were harvested and subjected to immunoblotting (D) or qPCR (E) analysis of PARP1 protein or mRNA

levels, respectively. (F) HEK293T cells were transfected with HA-PARP1, HA-PARP1 K949R, or HA-PARP1 K949Q. After 48 h of transfection, cells were treated with 100 μ g/ml CHX for the indicated times and analyzed by immunoblotting with the indicated antibodies. Relative HA-PARP1 expression levels (HA-PARP1/Vinculin) are shown in lower panel. The quantitative results are represented as mean ± s.d. as indicated from three independent experiments.

Figure S8. MORC2, PARP1, and NAT10 form a ternary complex

(A-B) Lysates from MCF-7 and T47D cells were immunoprecipitated with control IgG or antibodies against MORC2, PARP1, or NAT10 in the absence (A) or the presence (B) of 0.35 U/µl DNase, followed by immunoblotting analysis with the indicated antibodies. (C) GST or GST-PARP1 deletion fragments were incubated with MCF-7 nuclear extracts. The pull-down protein complex was subjected to immunoblotting analysis with an anti-MORC2 or anti-NAT10 antibody. GST or GST-PARP1 proteins were stained by Coomassie brilliant blue (CB) solution as loading controls. The domain of PARP1 for MORC2 and NAT10 binding is indicated in bottom panel. (D) GST or GST- NAT10 deletion fragments were incubated with MCF-7 nuclear extracts. The pull-down protein complex was subjected to immunoblotting analysis with an anti-MORC2 and NAT10 binding is indicated in bottom panel. (D) GST or GST- NAT10 deletion fragments were incubated with MCF-7 nuclear extracts. The pull-down protein complex was subjected to immunoblotting analysis with an anti-MORC2 and NAT10 binding is indicated in bottom panel. (D) GST or GST- NAT10 deletion fragments were incubated with MCF-7 nuclear extracts. The pull-down protein complex was subjected to immunoblotting analysis with an anti-MORC2 or anti-PARP1 antibody. GST or GST-NAT10 proteins were stained by

CB solution as loading controls. The region of NAT10 for MORC2 and PARP1 binding is shown in bottom panel. (E) GST or GST-MORC2 deletion fragments were incubated with MCF-7 nuclear extracts. The pull-down protein complex was subjected to immunoblotting analysis with an anti-NAT10 or anti-PARP1 antibody. GST or GST-MORC2 proteins were stained by CB solution as loading controls. The region of MORC2 for NAT10 and PARP1 binding is shown in bottom panel. (F) WT and MORC2 KO cells (MCF-7 and HEK293T) were harvested for immunoblotting analysis with indicated antibodies. (G-H) HEK293T cells were transfected with the indicated expression vectors. After 48 h of transfection, lysates were subjected to sequential IP and immunoblotting analysis with the indicated antibodies. (I) HEK293T cells were transfected with the indicated expression vectors. After 48 h of transfection, cells were treated with 10 µM MG-132 for 6 h, and lysates were subjected to sequential IP and immunoblotting analysis with the indicated antibodies. Lysis buffer was also supplemented with 10 µM MG-132 in the subsequent assays.

Figure S9. Acetylation of PARP1 at K949 affects its PAR activity

(A) *In vitro* PARylation assay was performed using purified WT, K949R, or K949Q mutant of PARP1 in the presence or absence of NAD+ and sonicated salmon sperm DNA as indicated. PARylated PARP1 was detected with an anti-PAR antibody. (B) MCF-7 cells were treated with or without 1 mM MMS for 30 min. Negative controls for *in situ* PLA assays were performed using a single antibody against XRCC1 or PAR. Nuclei were counterstained with DAPI (blue).

Supplementary Tables

Plasmids	Sources	Vectors
Myc-DDK-MORC2	Origene	pCMV6-Entry
Flag-MORC2-WT	Subcloned	pCDH-CMV-MCS-EF1-Puro
Flag-MORC2-K504A	Subcloned	pCDH-CMV-MCS-EF1-Puro
Flag-MORC2-E516A	Subcloned	pCDH-CMV-MCS-EF1-Puro
Flag-MORC2-K517A	Subcloned	pCDH-CMV-MCS-EF1-Puro
Flag-MORC2-D518A	Subcloned	pCDH-CMV-MCS-EF1-Puro
Flag-MORC2-D521A	Subcloned	pCDH-CMV-MCS-EF1-Puro
Flag-MORC2-2A	Subcloned	pCDH-CMV-MCS-EF1-Puro
Flag-MORC2-5A	Subcloned	pCDH-CMV-MCS-EF1-Puro
GST-MORC2	Subcloned	pGEX-6P-1
GST-MORC2 63-490	Subcloned	pGEX-6P-1
GST-MORC2 491-718	Subcloned	pGEX-6P-1
GST-MORC2 491-718 5A	Subcloned	pGEX-6P-1
GST-MORC2 719-1032	Subcloned	pGEX-6P-1
GST-MORC2-K504A	Subcloned	pGEX-6P-1
GST-MORC2-E516A	Subcloned	pGEX-6P-1
GST-MORC2-K517A	Subcloned	pGEX-6P-1
GST-MORC2-D518A	Subcloned	pGEX-6P-1
GST-MORC2-D521A	Subcloned	pGEX-6P-1
GST-MORC2-2A	Subcloned	pGEX-6P-1
Mvc-DDK-PARP1	Origene	pCMV6-Entry
Myc-DDK-PARP1 K197R	Subcloned	pCMV6-Entry
Myc-DDK-PARP1 K203R	Subcloned	pCMV6-Entry
	Subcloned	pCMV6-Entry
	Subcloned	pCMV6-Entry
	Subcloned	pCMV6 Entry
Myo DDK DADD1 E099K	Subcloned	pCMV6 Entry
	Subcloned	
	Subcloned	
	Subcioned	pCDH-CMV-MCS-EF1-Puro
	Subcione	pCDH-CMV-MCS-EF1-Puro
	Subcioned	
GST-PARPT 1-331	Subcioned	
GST-PARP1 332-001	Subcioned	
GST-PAPRT 002-1014	Subcioned	
	Subcioned	pCDH-CMV-MCS-EF1-Puro
HA-NAT10 G641E	Subcioned	pCDH-CMV-MCS-EF1-Puro
GFP-NAT10	Origene	
GST-NAT10 1-201	Subcioned	
GST-NAT10 201-488	Subcioned	pGEX-6P-1
GST-NAT10 489-753	Subcioned	pGEX-6P-1
GS1-NAI10 /54-1025	Subcioned	
	Vivogene	
GSI-CHFR	Subcloned	pGEX-6P-1
shMORC2	Origene	pGFP-C-shLenti
LentiCas9	Addgene	LentiCas9-Blast
Lenti	Addgene	LentiGuide-Puro

Table S1. Information for the expression vectors used in this study

Plasmids	Primers	Sequences
nCDH-Flag-MORC2	Forward	
pedi - l'ag-monez	TUIWalu	
	Povorco	
	Reveise	
pCDH-Flag-MORC2-	Forward	ACCACCATCCAGTGCGATTIGTGTCT
K504A	_	GGUTTGGAGAACCUTU
	Reverse	ACICAGCIGGAAGGGGAGGGIICIC
		CAAGCCAGACACAAAIC
Flag-MORC2-E516A	Forward	CTCCCCTTCCAGCTGAGTTCTGTGGC
		TAAAGATTACCCT
	Reverse	AACCCAGGTGTCAGGGTAATCTTTAG
		CCACAGAACTCAG
Flag-MORC2-K517A	Forward	CCCTTCCAGCTGAGTTCTGTGGAAGC
		TGATTACCCTGAC
	Reverse	GCAAACCCAGGTGTCAGGGTAATCAG
		CTTCCACAGAACT
Flag-MORC2-D518A	Forward	TTCCAGCTGAGTTCTGTGGAAAAAGC
C		TTACCCTGACACC
	Reverse	GGAGCAAACCCAGGTGTCAGGGTAA
		GCTTTTTCCACAGA
Flag-MORC2-D521A	Forward	AGTTCTGTGGAAAAAGATTACCCTGCT
	i onnara	ACCTGGGTTTGCTCCATGAACCCT
	Reverse	
	Reverse	CAGGGTAATCTTTT
	Forward	CONTROLOGICACIÓN
Tiag-MORCZ-ZA	TUIWalu	
	Poveree	
	Reveise	CACCCACACACT
	Forward	
	Forward	
E516/K517/D518/D521A	D	
	Reverse	
		AGGGTTCATGGAGCAAACCCAGGTAG
		AG
GST-MORC2	Forward	AAGIGICGACAIGCIIIGCIIIIIGGA
	_	IGAI
	Reverse	AAAIGCGGCCGCGICCCCCIIGGIGA
		TGAG
GST-MORC2 K504A	Forward	ACCACCATCCAGTGCGATTTGTGTCT
		GGCTTGGAGAACCCTC
	Reverse	CAGCTGGAAGGGGAGGGTTCTCCAA
		GCCAGACACAAAT
GST-MORC2 E516A	Forward	CTCCCCTTCCAGCTGAGTTCTGTGGC
		TAAAGATTACCCT
	Reverse	AACCCAGGTGTCAGGGTAATCTTTAG
		CCACAGAACTCAG
GST-MORC2 K517A	Forward	CCCTTCCAGCTGAGTTCTGTGGAAGC
		TGATTACCCTGAC
	Reverse	GCAAACCCAGGTGTCAGGGTAATCAG
		CTTCCACAGAACT
GST-MORC2 D518A	Forward	TTCCAGCTGAGTTCTGTGGAAAAAGC
		TTACCCTGACACC
·		

Table S2. Primers used for molecular cloning of expression vectors

	Reverse	GGAGCAAACCCAGGTGTCAGGGTAA
	F	
GST-MORC2 D521A	Forward	AGTICIGIGGAAAAAGATIACCCIGCI ACCTGGGTTTGCTCCATGAACCCT
	Reverse	AGGGTTCATGGAGCAAACCCAGGTAG
		CAGGGTAATCTTT
GST-MORC2 63-490	Forward	CTGGGATCCCCGGAATTCATGCTTTG
031-1001(02 03-490	TOIWalu	CTTTTTCCATCATCCAC
	D	
	Reverse	GUGGUUGUTUGAGTUGAUTTAGAUU
		AGGTAGGGCACATCAACAAC
GST-MORC2 491-718	Forward	CTGGGATCCCCGGAATTCATGGTCCT
		GGAGCCTACACACAACAACA
	Reverse	GCGGCCGCTCGAGTCGACTTATGGA
		GTCTTGATGACTTTGGGAGA
GST-MORC2 491-718 2A	Forward	CCCTTCCAGCTGAGTTCTGTGGCTGC
		TGATTACCCTGAC
	Reverse	GCAAACCCAGGTGTCAGGGTAATCAG
	ILEVEI3E	
GST-MORC2 491-7 18 5A	Forward	CIGGGAILCEUGGAAIICAIGGILEI
	_	GGAGCCTACACACAACAACA
	Reverse	GCGGCCGCTCGAGTCGACTTATGGA
		GTCTTGATGACTTTGGGAGA
GST-MORC2 719-1032	Forward	CTGGGATCCCCGGAATTCATGGTGGT
		GAAGAAGACAGAGTCACCC
	Reverse	GCGGCCGCTCGAGTCGACTTAGTCC
		CCCTTGGTGATGAGGTC
Mvc-DDK-PARP1 K197R	Forward	GCTACAGAGGATAAAGAAGCCCTGAA
	i ormana	GCGACAGCTCCCAGGA
	Roverse	TCCTTCACTCTTGACTCCTGGGAGCT
	Reverse	CTCCCTTCACCCCTTC
	Forward	
MyC-DDR-FARF I R203R	Forwaru	
	Deverse	
	Reverse	
Myc-DDK-PARP1 K207R	Forward	CAGCICCCAGGAGICAAGAGIGAAG
		GACGAAGAAAAGGCGAT
	Reverse	CACTCCATCCACCTCATCGCCTTTTCT
		TCGTCCTTCACTCTT
Myc-DDK-PARP1 K433R	Forward	AACAAGGCTTCCCTGTGCATCAGCAC
		CCGAAAGGAGGTGGAA
	Reverse	CTTCTTATTCATCTTTTCCACCTCCTTT
		CGGGTGCTGATGCA
Myc-DDK-PARP1 K524R	Forward	GGTATCAACAAATCTGAAAAGAGAATG
,		CGATTAACTCTTAAA
	Reverse	CACAGCTGCTCCTCCTTTAAGAGTTAA
		TCGCATTCTCTTTTC
Myc-DDK-PARP1 K528R	Forward	ΤΟΤGAAAAGAGAATGAAATTAACTCTT
	rorward	CCACCACCACCT
	Povorco	
	Reveise	
Myc-DDK-PARP1 K662R	Forward	AAGAAGCIGACAGIAAAICCIGGCAC
	_	CCGATCCAAGCTCCCC
	Reverse	GTCCTGAACTGGCTTGGGGAGCTTG
		GATCGGGTGCCAGGATT
Myc-DDK-PARP1 K664R	Forward	CTGACAGTAAATCCTGGCACCAAGTC

-		
	Roverse	
	11000130	GTCGGGACTTGGTGCC
	Forward	
Myc-DDR-I AIRI I R949R	TOIWalu	CCACCTTTCCCCAAA
	Roverse	
	11000130	CTCCCACACTGTGCTT
	Forward	
Myc-DDR-I AIRI I R949Q	TOIWalu	
	Roverse	
	ILEVEISE	CACGTCTCATTCAC
	Forward	GTGAATGACACCTCTCTACTATATAAC
Mye DDRT/ART 1 2000R	rorward	
	Reverse	
		CTTGTTATATAGTAG
	Forward	AAGGTCTAGAATGGCGGAGTCTTCGG
	rorward	ΔΤΔΔ
	Reverse	AAGGGCGGCCGCTTAAGCGTAGTCTG
	10000100	GGACGTCGTATGGGTACCACAGGGA
		GGTCTTAAAATT
HA-PARP1 F988K	Forward	GTGAATGACACCTCTCTACTATATAAC
	ronnara	AAGTACATTGTCTAT
	Reverse	TACCTGAGCAATATCATAGACAATGTA
		CTTGTTATATAGTAG
HA-PARP1 E988Q	Forward	GTGAATGACACCTCTCTACTATATAAC
		CAGTACATTGTCTAT
	Reverse	ATAGACAATGTACTGGTTATATAGTAGA
		GAGGTGTCATTCAC
His-PARP1	Forward	AAGGGTCGACATGGCGGAGTCTTCG
		GATAA
	Reverse	AAGGCTCGAGTTACCACAGGGAGGTC
		TTAAAATT
GST-PARP1 1-331	Forward	CTGGGATGGGGGGGAATTCATGGCGG
		AGTCTTCGGATAA
	Reverse	GCGGCCGCTCGAGTCGACTTACATAC
		ACTTGGTCCAGGCAGT
GST-PARP1 332-661	Forward	CTGGGATGGGGGGAATTCGTCAAGAC
		ACAGACACCCAAC
	Reverse	GCGGCCGCTCGAGTCGACTTAGGTG
		CCAGGATTTACTGTCAG
GST-PAPR1 662-1014	Forward	CTGGGATGGGGGGAATTCAAGTCCAA
		GCTCCCCAAGCCA
	Reverse	GCGGCCGCTCGAGTCGACTTACCACA
		GGGAGGTCTTAAAATTG
HA-NAT10	Forward	AAGGGAATTCATGCATCGGAAAAAGG
	_	TGGAT
	Reverse	AAGGGGATCCTTAAGCGTAGTCTGGG
		ACGICGIAIGGGTATTTCTTCCGCTTC
	_ .	AGTTICATA
HA-NAI10 G641E	Forward	GCTGTTCACCCAGATTATCAAGGGAT
	David	GGGCTATGAAAGCCGTGCTCTGCAGC
	Reverse	TG
		TTCATAGTACATCTGCAGCAGCTGCAG
		AGCACGGCTTTCATAGCCCCATCCCTT

GST-NAT10 1-201 Forward AACCGGATCCATGCATCGGAAAAAGG TGGAT Reverse AACCGCGGCCGCCTAATCAATGACGA GACACTTCTT
TGGAT Reverse AACCGCGGCCGCCTAATCAATGACGA GACACTTCTT
Reverse AACCGCGGCCGCCTAATCAATGACGA GACACTTCTT
GACACTTCTT
GST-INATIO 201-400 FOIWAID AACCGGATCCGACCAGCTCAACATCC
Reverse TGC
AACCGCGGCCGCCTAATCCAGGCACA
GCAAGTCAT
GST-NAT10 489-753 Forward AACCGGATCCTGCCTCAACATCACTC
GGAT
Reverse AACCGCGGCCGCCTAATCATGCTGAA
GACGCTCAC
GST-NAT10 754-1025 Forward AACCGGATCCGATGAGGATGAGGCTG
ACC
Reverse AACCGCGGCCGCCTATTTCTTCCGCT
TCAGTTTCAT
GST-CHFR Forward AATGAATTCATGGAGCGGCCCGAGGA
AG
Reverse AATCTCGAGTTAGTTTTTGAACCTTGT
CTGTTCA

Table S3.siRNA target sequences

	Primers	Sequences
siPARP1#1	Forward	UUCCUGCGUCUUCAUGUCCTT
	Reverse	UUCCUGCGUCUUCAUGUCCTT
siPARP1#2	Forward	GAGGAAGGUAUCAACAAAUTT
	Reverse	AUUUGUUGAUACCUUCCUCTT
siPARP1#3	Forward	GAGACCCAAUAGGCUUAAUTT
	Reverse	AUUAAGCCUAUUGGGUCUCTT
siMORC2#1	Forward	GCAGUACGGGAAUGGGUUATT
	Reverse	UAACCCAUUCCCGUACUGCTT
siMORC2#2	Forward	GCAGAGAAGCCGAUGUCAATT
	Reverse	UUGACAUCGGCUUCUCUGCTT
siMORC2#3	Forward	GGACAUGAAGACGCAGGAATT
	Reverse	UUCCUGCGUCUUCAUGUCCTT
siPARG#1	Forward	GGAAUCAAGACAGCGGAAUTT
	Reverse	AUUCCGCUGUCUUGAUUCCTT
siPARG#2	Forward	GCGGUGAAGUUAGAUUACATT
	Reverse	CCACGACGAAAUGCUAAGATT
siPARG#3	Forward	CCACGACGAAAUGCUAAGATT
	Reverse	UCUUAGCAUUUCGUCGUGGTT
siMacroD1#1	Forward	CCACCGGCGUGUUUGGCUATT
	Reverse	UAGCCAAACACGCCGGUGGTT
siMacroD1#2	Forward	GCUGCUACCUGAGCAGUCUTT
	Reverse	AGACUGCUCAGGUAGCAGCTT
siMacroD1#3	Forward	GGCUGAUCAUCUGCGUGUUTT
	Reverse	AACACGCAGAUGAUCAGCCTT

Table S4. Primers used for the PCR reaction

	Primers	Sequences
MORC2	Forward	CGTTGAGCTAGCACCCTAAAG
	Reverse	GGGCTCCTCTGAGCTGCATT
PARP1	Forward	CCCCTGCTTGGATTTAACAAG
	Reverse	ATTATAGTCAATAGAGGGAC

Antibodies	Vendors	Cat#	Species	WB	IHC	IP	IF
MORC2	Bethyl	A300-149	Rabbit pAb				
Flag	Sigma	F3165	Mouse mAb			\checkmark	
Vinculin	Sigma	V9131	Mouse mAb			,	
HA	CST	C29F4	Rabbit pAb		1		1
PARP1	Santa	SC8007	Mouse mAb	\checkmark	\checkmark	\checkmark	
	Cruz			I	1	1	1
NAI10	Abcam	ab194297	Rabbit mAb	N	\mathbf{v}	N	N
GFP	Santa	sc-9996	Mouse mAb	ν		γ	γ
	Cruz			.1		./	
	GNI	GINI4110-IMC	Mouse mAD	N		N	
		4297 4225 MC 10	Raddit mAd	N		N	al
PAR	Irevigen	4335-IVIC-10 0	Mouse mad	N		N	N
PARG	CST	66564	Rabbit mAb	\checkmark		\checkmark	
γΗ2ΑΧ	CST	7631s	Rabbit mAb	\checkmark			
γΗ2ΑΧ	Abcam	ab26350	Mouse mAb	\checkmark	\checkmark	\checkmark	\checkmark
V5	CST	13202S	Rabbit pAb	\checkmark		\checkmark	
GST	CST	2624	Mouse mAb				
Acetylated-Ly	CST	9441s	Rabbit mAb	\checkmark	\checkmark	\checkmark	
sine						,	
Ubiquitin	CST	3936s	Rabbit mAb		1		1
XRCC1	Abcam	134056	Rabbit pAb	\checkmark	\checkmark	\checkmark	\checkmark
Rad51	Abcam	ab133534	Rabbit pAb	\checkmark			\checkmark
53BP1	Abcam	ab175933	Rabbit pAb	\checkmark	\checkmark	\checkmark	\checkmark
BRCA1	Santa	sc-6954	Mouse mAb	\checkmark		\checkmark	\checkmark
	Cruz						
MacroD1	Origene	A331983	Rabbit pAb	\checkmark			

 Table S5.
 Primary antibodies used in this study

mAb, monoclonal antibody; pAb, polyclonal antibody.

Table S6. Primers for qPCR analysis

Genes	qPCR Primers	Sequences
MORC2	Forward	AAGCCGTTTCAAGACC
	Reverse	GTCGCAACATCACCCT
PARP1	Forward	CTGGGGAGTCGGCGATCTT
	Reverse	GGTTACCCACTCCTTCCGGT
GAPDH	Forward	CGAGATCCCTCCAAAATCAA
	Reverse	TTCACACCCATGACGAACAT

References

1. Washburn, M.P., Wolters, D. and Yates, J.R., 3rd. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. *Nat Biotech*, **19**, 242-247.