Appendix

Disease modeling of an α -actinin 2 mutation guides clinical therapy in hypertrophic cardiomyopathy

Maksymilian Prondzynski[#], Marc D. Lemoine[#], Antonia T. L. Zech, András Horváth, Vittoria Di Mauro, Jussi T. Koivumäki, Nico Kresin, Josefine Busch, Tobias Krause, Elisabeth Krämer, Saskia Schlossarek, Michael Spohn, Felix W. Friedrich, Julia Münch, Sandra D. Laufer, Charles Redwood, Alexander E. Volk, Arne Hansen, Giulia Mearini, Daniele Catalucci, Christian Meyer, Torsten Christ, Monica Patten, Thomas Eschenhagen, Lucie Carrier^{*}

[#]These authors contributed equally. *Corresponding author.

Table of contents

Appendix Figure S1:	Generation of hiPSC lines and disease modeling protocol.		
Appendix Figure S2:	Molecular characterization of human tissue and hiPSC-derived		
	CMs from 2D and 3D models.		
Appendix Figure S3:	Force and calcium sensitivity measurements of 3D-cultured		
	hiPSC-derived engineered heart tissues and HCM-affected		
	family member II.4.		
Appendix Figure S4:	Validation of Ca_va1.2 and $\alpha\text{-actinin}$ 2 protein interaction by		
	bioluminescence resonance energy transfer (BRET).		
Appendix Figure S5	Representative 12-lead surface ECG		
Appendix Figure S6	Fluorescent activated cell sorting (FACS) analysis of cardiac		
	troponin T (cTnT)-positive cells.		
Appendix Table S1	Analyzed HCM-associated genes.		
Appendix Table S2	Fluorescent activated cell sorting (FACS) analysis of cardiac		
	troponin T (cTnT)-positive cells.		
Appendix Table S3	Sequences of PCR primers.		
Appendix Table S4	Acronyms and names of genes evaluated with the nanoString nCounter® Elements technology.		

Appendix Figure S1. Generation of hiPSC lines and disease modeling protocol. (A) Protocol for generation of CRISPR/Cas9 isogenic control cell line HCMrep. Indicated are steps of quality assessment and approximate time needed for each step (iPSC, induced pluripotent stem cell). (B) G-banding results are depicted by these representative karyograms of the investigated hiPSC Ctrl- (passage 40), HCM- (passage 11) and HCMrep-line (passage 55). (C) Disease modeling approach for the production of hiPSC-CMs, models and experimental procedures that were used for this study (div, days in vitro; EB, embryoid body; EHT, engineered heart tissue).

Appendix Figure S2. Molecular characterization of human tissue and hiPSC-derived CMs from 2D and 3D models. (A) Western blot analysis of human tissue samples stained with antibodies directed against α -actinin 2 and cardiac troponin T (cTnT; MW, molecular weight; kDa, kilodalton). (B) Quantification of mutant and wild-type mRNA in 3D-cultured hiPSC-derived engineered heart tissues and HCM-affected family member II.4. Transcripts were quantified by conversion of RNA to cDNA, subcloning of amplified *ACTN2* RT-PCR

fragments and validation by sequencing (n=number of picked and sequenced clones; HCM-EHTs (n=15); HCM tissue (n=13); mut, mutant; WT, wild type). Data are expressed as the % of WT versus mutant mRNA transcripts. (**C**) RNA sequencing analysis revealed mismatches in the genomic range of chromosome 1 from 236.735.660 bp to 236.735.720 bp showing heterozygous C>T mutation of base 236.735.677 in ~ 50% of analyzed reads (blue bars out of grey zone) in both HCM-EHTs (n=7/6) and patient II.4 septal myectomy. CRISPR/Cas9 engineered isogenic control HCMrep-EHTs (n=7/3) showed no C>T transition at base 236.735.677, but the simultaneously introduced homozygous silent C>A and G>C mutations at bases 236.735.668 (light blue bar) and 236.735.714 (orange bar). (**D**) Gene expression analysis in hiPSC-CMs and -EHTs, performed with the nanoString nCounter® Elements technology. Data were normalized to housekeeping genes (*ABCF1, CLTC, GAPDH, ACTB*) and related to Ctrl (n=number of pooled samples/differentiations; 2D: Ctrl (n=16/3); HCM (n=15/3); HCMrep (n=18/3); EHTs: Ctrl (n=7/4); HCM (n=7/4); HCMrep (n=7/3)). Human samples were normalized to housekeeping genes (see method) and related to Ctrl (n=pool of 9 non-failing heart (NFH) tissues and n=1 for septal myectomy of patient II.4).

Appendix Figure S3. Force and calcium sensitivity measurements of 3D-cultured hiPSCderived engineered heart tissues and HCM-affected family member II.4. (A) Functional parameters of maximal force (F_{max}) normalized to cross-sectional area (CSA) obtained from permeabilized EHT-strips (n=number of analyzed muscle strips; Ctrl (n=15), HCM (n=10), HCMrep (n=7)). Data are expressed as mean±SEM, one-way ANOVA plus Bonferroni's posttest. (B) Functional parameters of force obtained from muscle strips of non-failing human heart (NFH; n=15) and septal myectomy of index patient II.4 (n=16). Data are expressed as mean±SEM. Unpaired Student's *t*-test. (C) pCa₅₀ values of EHT muscle strips from Ctrl (n=15), HCM (n=10), HCMrep (n=7). Data are expressed as mean±SEM, one-way ANOVA with Bonferroni's post-test. (D) pCa₅₀ values of non-failing heart (NFH) tissue (n=15), septal myectomy of index patient II.4 (n=16). Data are expressed as mean±SEM, unpaired Student's *t*-test. (E) pCa₅₀ curve of non-failing heart (NFH) tissue (n=11), septal myectomy from patient II.4 (n=16)). Data are expressed as mean±SEM. Concentration response curves were fitted to the data points and force-pCa relationship comparison was done by using extra sum-ofsquares F-test.

Appendix Figure S4. Validation of Ca_v α 1.2 and α -actinin 2 protein interaction by bioluminescence resonance energy transfer (BRET) assay. HL-1 transfected cells with α -actinin 2 wildtype (WT, n=11) and mutant (HCM, n=11) proteins were analyzed for their interaction with the Ca_v α 1.2 and Ca_v β 2 domain. Data are expressed as mean±SEM, two-way ANOVA, followed by Sidak's multiple comparisons test.

Appendix Figure S5. Representative 12-lead surface ECG with averaged signal and overlay of all leads (in grey, apart from V5 in black) of the genotyped family sorted by positive *ACTN2* (A, patient II.4; B, patient II.5; C, patient III.4) and negative (D, patient III.1; E, patient III.2; F, patient III.3).

Appendix Figure S6. Fluorescent activated cell sorting (FACS) analysis of cardiac troponin T (cTnT)-positive cells. Representative FACS-plots showing gating strategy for evaluation of cTnT-positive cells after cardiac differentiation. Fixed HCM-cardiomyocytes were stained with a directly labeled FITC cTnT antibody, quantified with the BD FACSCANTO II (BD Biosciences) and analyzed with the FACSDiva software (BD Biosciences).

Gene	RefSeq Accession		
ACTC1	NM_005159.4		
ACTN2	NM_001103.2		
ANKRD1	NM_014391.2		
CSRP3	NM_003476.3		
FHL1	NM_001159702.2; NM_001449.4		
FLNC	NM_001458.4		
GLA	NM_000169.2		
LAMP2	NM_002294.2; NM_001122606.1; NM_013995.2		
МҮВРС3	NM_000256.3		
MYH7	NM_000257.2		
MYL2	NM_000432.3		
MYL3	NM_000258.2		
PLN	NM_002667.3		
PRKAG2	NM_016203.3		
TNNC1	NM_003280.2		
TNNI3	NM_000363.4		
TNNT2	NM_001276345.1		
TPM1	NM_001018005.1 AY640414.1		
TTR	NM_000371.3		

Appendix Table S1. Analyzed HCM-associated genes

Appendix Table S2. Analyzed off-targets in HCMrep by PCR.

off-target position		
Exon	g.81,841-81,860	
Exon	c.1037-1056	
Exon	g.14,262-14,281	
Exon	g.149,593-149,612	
Exon	c.2942-2961	
Exon	g.24,969-24,988	
Exon	c.898-917	
Intron	g.109,195,197-109,195,219	
Intron	g.39,202,757-39,202,779	
Intron	g.60,206,273-60,206,295	
Intron	g.81,458,539-81,458,561	
Intron	g.16,615,937-16,615,959	
Intron	g.73,770,186-73,770,208	
	Exon Exon Exon Exon Exon Intron Intron Intron Intron Intron Intron	

Appendix Table S3. Sequences of PCR primers

Primers	Forward (5´ to 3´)	Reverse (5' to 3')	
ACTN2 genotyping	ggcccatgaaacacagaaat	agggccattcttcctcaagg	
NG_029480	ggggtgtatggtgttcttgg	ggcaggaggacatggtttg	
NM_016642	cttttgctttcctggtggct	gtctcctctggacagtctgc	
NG_013304	ggaagagaagacactgggct	gactgagtgtgtgcagctgg	
NG_029938	ccaaaggttcagagaagggc	cccggaagatgatggtgtct	
NM_000827	tttgtttgatcccacagcaa	ggtctccatctgctccagtt	
NG_009061	agggtgcttgagttgatcct	tgttggtggcagtggaca	
NM_025268	ccgcagaagatgatgctgta	ggctgcagctccagtgatag	
NC_018924	ttctgggttcaagccatcct	aagctcactgaaaggaaaggt	
NC_018930	cttccagtccagagcaagtg	cagtcaaatcccagctctgc	
NC_018931	tcagtttctacggccactgt	tgaaacctctctcttgccgt	
NC_018919	agtgggttgctgcagagtaa	acaggtgtgagccatgtacc	
NC_018916	tctgcactgtgtaggtcatgt	tgatgagaaaacgggaggca	
NC_018929	gcaaggcatccacgaatagt	gctatttggggcactttggt	
Allele-specific mRNA analysis	gccatggaaatcgctgagaa	atcctgttagccgctgtctc	

Gene	Acronym	Accession number (NCBI)
Alpha-Actinin 2	ACTN2	NM_001103.2
Myosin heavy chain 7	MYH7	NM_000257.2
Myosin heavy chain 6	MYH6	NM_002471.3
Natriuretic peptide B	NPPB	NM_002521.2
Serum response factor	SRF	NM_003131.3
Four-and-a-half-LIM-domains 1	FHL1	NM_001449.4
L-Type Ca ²⁺ channel	CACNA1C	NM_199460.2
Natrium-Calcium Exchanger NCX	SLC8A1	NM_021097.1
Phospholamban	PLN	NM_002667.3
ATPase sarcoplasmic/endoplasmic reticulum Ca ²⁺ transporting 2	ATP2A2	NM_001681.3
Ryanodine receptor 2	RYR2	NM_001035.2
Collagen type I alpha 1	COL1A1	NM_000088.3
Connective tissue growth factor	CTGF	NM_001901.2
Nuclear factor kappa B subunit 1	NFKB1	NM_003998.2
Caspase 3	CASP3	NM_032991.2
BCL2, apoptosis regulator	BCL2	NM_000657.2
ATP Binding Cassette Subfamily F Member 1	ABCF1	NM_001090.2
Clathrin Heavy Chain	CLTC	NM_004859.2
Glyceraldehyde 3-phosphate dehydrogenase	GAPDH	NM_002046.3
Beta-actin	ACTB	NM_001101.2
Phosphoglycerate kinase 1	PGK1	NM_000291.2
Tubulin Beta Class I	TUBB	NM_178014.3

Appendix Table S4. Acronyms and names of genes evaluated with the nanoString nCounter® Elements technology.