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SUMMARY
Despite the importance of understanding how variability across induced pluripotent stem cell (iPSC) lines due to non-genetic factors

(clone and passage) influences their differentiation outcome, large-scale studies capable of addressing this question have not yet been

conducted. Here, we differentiated 191 iPSC lines to generate iPSC-derived cardiovascular progenitor cells (iPSC-CVPCs). We observed

cellular heterogeneity across the iPSC-CVPC samples due to varying fractions of two cell types: cardiomyocytes (CMs) and epicar-

dium-derived cells (EPDCs). Comparing the transcriptomes of CM-fated and EPDC-fated iPSCs, we discovered that 91 signature genes

and X chromosome dosage differences are associated with these two distinct cardiac developmental trajectories. In an independent

set of 39 iPSCs differentiated into CMs, we confirmed that sex and transcriptional differences affect cardiac-fate outcome. Our study pro-

vides novel insights into how iPSC transcriptional andX chromosome gene dosage differences influence their response to differentiation

stimuli and, hence, cardiac cell fate.
INTRODUCTION

Variability in human induced pluripotent stem cell (iPSC)

lines compromises their utility for regenerative medicine

and as a model system for genetic studies. This variability

affects iPSC differentiation outcome and, despite using

standardized differentiation protocols, results in the gener-

ation of samples with cellular heterogeneity (i.e., multiple

cell types are present within a given sample and the propor-

tions of cell types vary across samples). Previous large-scale

quantitative trait loci studies in iPSCs (DeBoever et al.,

2017; Kilpinen et al., 2017) have shown that genetic varia-

tion accounts for the majority of expression differences

between iPSC lines, but non-genetic (i.e., clonality and pas-

sage) factors also contribute to these differences (Panopou-

los et al., 2017b). Understanding how non-genetic tran-

scriptional differences between iPSC lines affect their

differentiation outcome is necessary to improve the ability

to generate cell types of interest.

Well-established small-molecule protocols for generating

iPSC-derived cardiovascular progenitor cells (iPSC-CVPCs)

(Lian et al., 2013) produce fetal-like cardiomyocytes, which

can undergo further specification as cells mature in culture

into various cardiac subtypes (atrial, ventricular, or nodal)

(Burridge et al., 2014). Based on variable cardiac troponin

T (cTnT) staining, the derived samples are known to display
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cellular heterogeneity (Dubois et al., 2011; Witty et al.,

2014), but the origin of the cTnT-negative non-myocyte

cells, and whether the same or different non-myocyte cell

types are consistently derived alongside cTnT-positive my-

ocytes across samples, have not previously been investi-

gated. The differentiation protocol is dependent onmanip-

ulation of WNT signaling, initially through activation of

the pathway by GSK3 inhibition, followed by inhibition

of the pathway by Porcupine (PORCN) inhibition (Mo

et al., 2013; Wang et al., 2013). An in-depth analysis of

the outcomes of independent differentiations of hundreds

of iPSC lines with different genetic backgrounds could pro-

vide insights into the origins of the non-myocyte cells, as

well as the extent to which non-genetic transcriptional dif-

ferences between iPSC lines contribute to the iPSC-CVPC

cellular heterogeneity.

Here, we used a highly standardized and systematic

approach to conduct 232 directed differentiations of 191

iPSC lines into iPSC-CVPCs. We characterized the cellular

heterogeneity of the iPSC-CVPC samples and showed

that only two distinct cell types were present, cardiomyo-

cytes (CMs) and epicardium-derived cells (EPDCs), which

varied in proportion across samples. As differentiation pro-

tocols to derive iPSC-CMs and iPSC-EPDCs primarily differ

by a step involving WNT inhibition to derive the former

but not the latter (Bao et al., 2016), we hypothesized that
e Author(s).
ns.org/licenses/by/4.0/).

mailto:mdantonio@ucsd.edu
mailto:kafrazer@ucsd.edu
https://doi.org/10.1016/j.stemcr.2019.09.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.stemcr.2019.09.011&domain=pdf
http://creativecommons.org/licenses/by/4.0/


(legend on next page)

Stem Cell Reports j Vol. 13 j 924–938 j November 12, 2019 925



the observed cellular heterogeneity could result from sub-

optimal WNT inhibition in subsets of cells across iPSC

lines. To test this hypothesis, we analyzed transcriptional

differences between iPSC lines that differentiated into

CMs and those that differentiated into EPDCs (e.g., iPSCs

with a CM fate or EPDC fate) and discovered 91 signature

genes associated with these two distinct cardiac differenti-

ation trajectories. These signature genes are involved in

differentiation, including the Wnt/b-catenin pathway,

muscle differentiation or cardiac-related functions, and

the transition of epicardial cells to EPDCs by epithelial-

mesenchymal transition (EMT). While the proportion of

variance explained by each of the signature genes varied

over three orders of magnitude, altogether they captured

approximately half of the total variance underlying iPSC

fate determination. Additionally, we show that variability

in X chromosome gene dosage (XactiveXactive versus Xactive

Xinactive versus XY) across iPSCs plays a role in cardiac-

fate determination. The association with X chromosome

gene dosage could in part be due to higher expression in

CM-fated iPSCs of chrXp11 genes, which encodes ELK1

and PORCN. Transcriptomic analysis of an independent

set of 39 iPSCs differentiated to the cardiac lineage using

a similar small-molecule protocol (Banovich et al., 2018)

confirmed our findings.
RESULTS

iPSC-CVPCs Show Cellular Heterogeneity across

Samples

Togain insights intomolecularmechanisms thatcould influ-

ence variability in human iPSC differentiation outcome, we

employed a highly systematic approach (Figure S1) to differ-

entiate 191 pluripotent lines from 181 iPSCORE individuals

(Figure 1A and Table S1A) into iPSC-derived cardiovascular

progenitorcells (iPSC-CVPCs).Weuseda small-molecule car-

diac differentiation protocol used to derive cardiomyocytes

(Lian et al., 2015) followed on day 15 by lactate selection to

obtain pure cardiac cells (Tohyama et al., 2013). In total,
Figure 1. Characterization of Cellular Heterogeneity in iPSC-CVPC
(A) Overview of the study design. Skin fibroblasts from 181 subjec
(191 lines, 232 differentiations). After WNT pathway activation at da
CMs if WNT signaling is successfully inhibited. If WNT signaling is n
differentiations, 193 were completed (day 25), and we observed that
(B) Distribution of %cTnT. Dashed red line represents the median val
(C–E) Immunofluorescence staining of (C) iPSC-CVPCs, (D) human atr
(F–H) Immunofluorescence staining of iPSC-CVPCs with markers DAPI,
showing (G) the presence of three populations: CMs (orange), EPDCs (b
samples (eight iPSC-CVPC lines and one ESC line) across the three clu
(I) Scatterplot showing the correlation between the %cTnT and the f
(J) Heatmap showing across all 34,905 single cells the expression ma
See also Figures S1 and S2.

926 Stem Cell Reports j Vol. 13 j 924–938 j November 12, 2019
we conducted 232 differentiations, of which 193 (83.2%,

from 154 lines derived from 144 subjects) were completed,

i.e., reachedday25ofdifferentiation,while39 (from37 lines

derived from 37 subjects) were terminated prior to day 25

because they did not form a syncytial beating monolayer

(Tables S1B and S1C). The completed iPSC-CVPCs at day

25onaveragehadahighfractionofcells that stainedpositive

for cTnT (%cTnT, median = 89.2%; Figure 1B) and were pos-

itive by immunofluorescence for cardiac markers (Figures

1C–1F and S1); however, 15 lines had %cTnT <40%, indi-

cating that despite lactate selection, there was substantial

cellular heterogeneity within and across samples.
Subset of Cells Shows Differential Response to WNT

Inhibition during Differentiation

To examine the cellular heterogeneity in the iPSC-CVPCs,

we performed single-cell RNA sequencing (scRNA-seq) on

eight samples with varying %cTnT values (42.2%–95.8%,

Tables S1E and S1F) and combined these data with scRNA-

seq from the H9 embryonic stem cell (ESC) line (total of

34,905 cells). We detected three distinct cell populations:

(1) population 1, 21,056 cells (60.3%); (2) population 2,

11,044 cells (31.6%); and (3) population 3, 2,805 cells

(8.1%, Figures 1G and S1; Table S1G). While populations 1

and2 comprised the eight iPSC-derived samples, population

3 almost exclusively included ESCs (97.7% of the 2,870

ESCs, Figures 1H and S2). The relative proportions of cells

that each of the iPSC-CVPC samples contributed to popula-

tion 1 versus population 2was strongly correlatedwith its%

cTnT value (r = 0.938, p = 1.893 10�4, t test; Figure 1I), sug-

gesting that population 1 was cardiomyocytes (CMs).

As CMs and epicardium lineage cells could both survive

lactate purification (Iyer et al., 2015; Tohyama et al.,

2013), we investigated whether the non-myocyte cells

composing population 2 were iPSC-EPDCs. We examined

the expression levels of 17 marker genes (Figure 1J) specific

for either CMs or EPDCs (including smooth muscle, fibro-

blasts, and genes involved in EMT) and two marker genes

for stem cells. Consistent with having a high number of
Samples
ts were reprogrammed to iPSCs and differentiated to iPSC-CVPCs
y 0 and its inactivation by IWP-2 at days 3–5, cells differentiate to
ot sufficiently inhibited, cells differentiate to EPDCs. Of the 232
different CVPC samples had different proportions of CMs and EPDCs.
ue.
ium, and (E) ventricle with markers DAPI, ACTN1, and CX43.
MLC2a+ and MLC2v+, and MLC2v+MLC2a+ (F). scRNA-seq UMAP plots
lue), and ESCs (green), and (H) the distribution of the nine analyzed
sters.
raction of cells in population 1 (CMs) for each of the nine samples.
rkers for stem cells, CMs, EMT, fibroblasts, and smooth muscle.



Figure 2. Transcriptomic Features of 180
iPSC-CVPC Samples
(A) Relative distributions of cell populations
estimated using CIBERSORT across 180 iPSC-
CVPC samples.
(B) Scatterplot showing the correlation be-
tween %cTnT (x axis) and the fraction of
population 1 in the iPSC-CVPCs calculated
using CIBERSORT (y axis).
(C) Heatmap showing the expression levels of
CM and EPDC marker genes (Figure 1J) in 180
iPSC-CVPC samples. Samples are colored
based on their fraction of population 1.
(D) PCA of the 1,000 genes with highest
variability from 184 iPSC samples, 180 iPSC-
CVPCs (triangles colored according to their
percentage of population 1), and samples
from GTEx (squares—left ventricle, right
ventricle, coronary artery, and aorta).
cTnT-positive cells, population 1 expressed high levels of

CM-specific genes while population 2 expressed high levels

of EPDC-specific genes, and population 3 expressed high

levels of the stem cell markers POU5F1 and SOX2 (Fig-

ure S2). Of note, TNNT2 was expressed in some of the cells

in population 2, which is consistent with the strong, but

not absolute correlation between%cTnT value and fraction

of population 1 (Figure 1I), and previous studies showing

that some EPDCs express TNNT2 (Witty et al., 2014). These

results show that the small-molecule differentiation proto-

col followed by lactate purification resulted in the absence

of undifferentiated cells at day 25 and in the derivation of

two distinct cell populations, one of which expresses high

levels of CM markers, including TNNT2, NKX2-5, and

MEF2C (population 1), and the other which expresses

EPDC markers, including SNAI2, DDR2, VIM, and ACTA2

(population 2). Of note, the protocols for generating

iPSC-derived cardiomyocytes (iPSC-CMs) and iPSC-EPDCs

both involve activating the WNT signaling pathway (Bao

et al., 2016; Iyer et al., 2015) and have a shared intermedi-

ate mesoderm progenitor, but subsequent WNT inhibition

directs differentiating cells to iPSC-CMs and endogenous

levels of WNT signaling direct differentiating cells to

iPSC-EPDCs (Witty et al., 2014) (Figure 1A). Therefore,

our results suggest that iPSC-CVPC cellular heterogeneity

results from suboptimalWNT inhibition in a subset of cells

during differentiation, which then give rise to EPDCs.

iPSC-CVPCs Are Composed of Immature CMs and

EPDCs

To estimate the relative abundances of CM and EPDC cells

across our collection of iPSC-CVPC samples, we selected

the top 50 significantly overexpressed genes in each of
the three scRNA-seq populations (150 genes in total,

p < 10�13, edgeR, Table S2), obtained their expression levels

in bulk RNA-seq from 180 iPSC-CVPCs, and inputted these

values into CIBERSORT (Newman et al., 2015). We

observed that the proportions of each cell type varied

across the samples, although the iPSC-CVPCs tended to

have a greater fraction of CMs (84.8% ± 31.8%, Figure 2A)

than EPDCs (14.7% ± 32.0%), and essentially no stem cells

(0% ± 0.8%). Due to lactate selection, the small number

(67) of cells predicted to be ESCs may represent a distinct

differentiated cell type that is more similar to stem cells

than either CMs or EPDCs. The estimated fraction of CMs

and EPDCs in the iPSC-CVPCs was highly correlated with

%cTnT values (r = 0.927, p z 0, t test; Figure 2B), similar

to that observed in the analysis of the scRNA-seq data (Fig-

ure 1J). Finally, we showed that the iPSC-CVPCs with high

estimated CM or EPDC cellular fractions, respectively,

showed higher expression of CM markers (MEF2C, NKX2-

5, and ACTN2) and EPDC markers (ACTA2, TAGLN,

DDR2, and SNAI2, Figure 2C). These results indicate that

cellular heterogeneity across iPSC-CVPC samples largely

reflects different proportions of CMs and EPDCs.

To characterize the similarities between the iPSC-CVPC

transcriptomes and those of adult heart and artery samples,

we performed a principal-component analysis (PCA) using

the transcriptomes of 184 iPSCORE iPSCs, 180 iPSC-

CVPCs, and the 1,072 GTEx samples, including left

ventricle, atrial appendage, coronary artery, and aorta

(GTEx Consortium et al., 2017). We found that principal

component 1 (PC1) showed that iPSC-CVPCs correspond

to an intermediate state between the iPSCs and adult sam-

ples, suggesting that the derived CMs and EPDCs are

similar to immature cardiac cells (Figure 2D). PC2 divided
Stem Cell Reports j Vol. 13 j 924–938 j November 12, 2019 927
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the samples based on cardiac lineage, namely the myocar-

dium (left ventricles and atrial appendages) and epicar-

dium (coronaries and aorta) (Perez-Pomares et al., 2016).

This analysis shows that derived iPSC-CMs and iPSC-

EPDCs lie on different cardiac developmental trajectories,

with the CMs corresponding to immature myocardium

and the EPDCs to immature epicardium.

iPSC Expression Signatures Affect Cardiac-Fate

Differentiation

Although all iPSCORE iPSCs have previously been shown

to be pluripotent (Panopoulos et al., 2017a), we sought to

determine whether transcriptomic differences existed be-

tween the iPSC lines that derived CVPCs containing CMs

versus those that gave rise to EPDCs (Figure 3A). Given

that all 180 iPSC-CVPCs contain both CMs and EPDCs

but at different ratios, we initially had to determine the

optimal CM/EPDC ratio to group the iPSC lines into those

that were CM-fated and those that were EPDC-fated.

Thresholds for 193 iPSC-CVPCs that completed differenti-

ation (harvested on day 25) were defined by the ratio of

CM/EPDC estimates from CIBERSORT (estimated %CM/

estimated %EPDC), while the 39 iPSC-CVPC differentia-

tions terminated prior to day 25 for not forming a beating

syncytium were assigned a CM/EPDC ratio of 0:100 (0%

CM/100% EPDC). We tested ten different CM/EPDC ratios

and found 116 autosomal genes that were differentially ex-

pressed at one or more of these ratios (Storey q value <0.1,

t test; Figures 3A and 3B; Table S3A). We observed that the

maximum number of the 116 genes (84, 72.5%) was differ-

entially expressed at the 30:70 (CM/EPDC) threshold and

55 of them (47.4%) had their strongest p value at this ratio

(Figure S3). For this reason, we determined that the 30:70

threshold was optimal, and grouped the iPSCs into 125

that were CM-fated (produced R30% CMs) and 59 that
Figure 3. iPSC Gene Signatures Associated with Cardiac Different
(A) Testing of ten CM/EPDC ratios (0:100 to 90:10, with 10% increm
CM-fated or EPDC-fated. For each threshold, the number of iPSC lines
(B) At the same thresholds indicated in (A), shown are the numbers
defined as CM-fated and EPDC-fated. The 30:70 threshold has the ma
(C) Volcano plot showing mean difference in expression levels for all
lines (x axis) and p value (y axis, t test). A positive difference indicat
indicates overexpression in EPDC-fated iPSCs. Significant genes are in
(D) Expression levels of the 91 signature genes in iPSCs as a function
Thick lines represent the average for 36 genes overexpressed in CM-f
iPSCs (blue).
(E) WNT/b-catenin pathway, muscle/cardiac related, or EMT/mesench
with nominal p values [p < 0.0015] indicated with an asterisk).
(F) GLM estimate (%CM population/expression) calculated for each s
(G) Bar plot showing the percentage of variability in iPSC fate that is e
show the 35 signature genes identified by L1 normalization that indep
do not have independent expression, the total sum of the percent va
See also Figures S3–S5.
were EPDC-fated (produced >70% EPDCs; Figures 3B and

S4; Table S3B).

Of the 84 autosomal differentially expressed genes at the

30:70 (CM/EPDC) threshold, 35 were overexpressed in the

CM-fated iPSC lines and 49 were overexpressed in the

EPDC-fated iPSCs (Figures 3B–3D). These genes have func-

tions associated with three differentiation signatures: (1)

Wnt/b-catenin pathway (13 genes); (2) muscle and/or car-

diac differentiation (six genes); and (3) EMTand/or mesen-

chymal tissue development (six genes; Figure 3E and Table

S3C). We noted that seven borderline significant auto-

somal genes were also involved in one of the three repre-

sented signatures, and therefore added them to the final

list of differentially expressed genes. We investigated the

associations between the expression levels of the final list

of 91 signature genes in the 184 iPSCs and the fraction of

CMs in the resulting iPSC-CVPCs using linear regression,

and found significant associations for all genes (Figure 3F

and Table S3D). These results show that, independently

of the 30:70 (CM/EPDC) threshold used in the initial differ-

ential expression analysis, the expression levels of these

signature genes in the 184 iPSCs were significantly associ-

ated with differentiation outcome (e.g., CM or EPDC fate).

Signature Genes Capture a Large Fraction of the

Variance Underlying iPSC Fate Outcome

While the signature genes likely affected cardiac-fate deter-

mination, we did not expect each gene to contribute

equally. To explore the impact of each gene individually

on differentiation outcome, we calculated how much the

91 genes explained the variability underlying iPSC cell

fate. To quantify the percent of variance explained by

each gene (R2), we fit a generalized linear regression model

with a logit link function to each gene individually. We

found that the percentage of variance explained by each
iation Fate
ents) to determine the optimal threshold for defining an iPSC as
defined as CM-fated (orange) or EPDC-fated (blue) is shown.
of differentially expressed autosomal genes between the iPSC lines
ximum number of differentially expressed genes.
autosomal genes between CM-fated iPSC lines and EPDC-fated iPSC
es overexpression in CM-fated iPSCs, whereas a negative difference
dicated in red.
of the %CM population in their corresponding iPSC-CVPC samples.
ated iPSCs (orange) and for 55 genes overexpressed in EPDC-fated

ymal development signature genes (those differentially expressed

ignature gene. Mean and 95% confidence interval are shown.
xplained by each of the 91 signature genes. Bars highlighted in red
endently contributed to variance. Due to the fact that the 91 genes
riance explained is >1.
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individual gene varied over three orders of magnitude

(1.73 3 10�3 < R2< 8.97%; Figure 3G).

We next asked how these signature genes altogether

captured variability in differentiation fate. As several of the

signature genes had correlated expression levels (Figure S4),

to reduce overfitting in the regression analysis we included

an L1 norm penalty (i.e., LASSO regression) and used

10-fold cross-validation. We identified 35 genes that inde-

pendently contributed to variance and whose expression

levels collectively explainedmore thanhalf of the variability

in differentiation outcome across iPSC lines (average R2

from the 10-fold cross-validation = 0.512). Together these

data show that, while the proportion of variance explained

by each of the signature genes varied widely, altogether

they captured approximately half of the total variance

underlying differential iPSC fate outcome.

Inherited Genetic Variation Does Not Influence

Differentiation Outcome

We investigated whether genetic variation associated with

the expression of any of the signature genes contributed to

the differentiation outcome of iPSCs.We assessed the geno-

types of 8,620,159 variants in each iPSC line and per-

formed a genome-wide association study (GWAS) to inves-

tigate the association between genotype and the fraction of

CMs in the corresponding iPSC-CVPCs. We found that

none of these variants was associated with differentiation

outcome at genome-wide significance (p < 5 3 10�8;

Table S3E and Figure S5). To further examine the associa-

tion between genetic background and differentiation

outcome, we tested whether differentiations of different

iPSC clones from the same individual, and from members

of the same twin pair, were more likely to yield similar out-

comes compared with differentiations of iPSC clones from

individuals with different genetic backgrounds, and

observed similar distributions (Figure S5). While our power

to perform a GWAS was limited, this analysis shows that

the genetic background did not contribute to the variance

underlying iPSC differentiation outcome, indicating that

non-genetic (i.e., clonality and passage) factors played a

role in determining whether an iPSC line differentiated to

CMs or EPDCs.

GSEA Implicates ELK1 Targets and Genes on the X

Chromosome

To understand whether the transcriptomic differences

between CM-fated and EPDC-fated iPSCs were associated

with alterations in specific pathways or cellular function,

we performed a gene-set enrichment analysis (GSEA) on

9,808 MSigDB gene sets (Subramanian et al., 2005) using

the 15,228 expressed autosomal genes in the 184 iPSCs.

We identified 22 gene sets that were significantly associated

with iPSC fate, including enrichment in the 59 EPDC-fated
930 Stem Cell Reports j Vol. 13 j 924–938 j November 12, 2019
iPSCs for extracellularmatrix (Figure 4A and Table S4A) and

in the 125 CM-fated iPSCs for transcription factor activity

and ELK1 targets. To capture gene sets associated with

expression differences on the X chromosome, we per-

formed differential expression and GSEA on 113 female

iPSC lines (87 CM-fated and 26 EPDC-fated). The two

most significant gene sets were loci locatedwithin chrXp11

and chrXp22 (Figure 4B). Notably, the chrXp11 locus en-

codes both ELK1 and PORCN, whose protein product

(Porcupine) is targeted for WNT inhibition in CM differen-

tiation protocols but not EPDC differentiation protocols

(Mo et al., 2013; Wang et al., 2013) (Figure 4B). The

chrXp22 locus includes the majority of genes (52/99,

52.5%) that are known to escape chromosome X inactiva-

tion (Tukiainen et al., 2017), and thus may potentially

have varying X-linked gene dosage across female iPSCs.

Overall, GSEA shows that genes differentially expressed

between CM-fated and EPDC-fated iPSCs are involved in

a variety of pathways, including ELK targets, and are poten-

tially associated with the X chromosome activation status.

Sex Is Associated with iPSC Differentiation Outcome

To identify other iPSC factors potentially associated with

differentiation outcome, we examined three characteristics

of the 181 subjects in our study (sex, ethnicity, and age) and

passage of the iPSCs at day 0. Analyzing the 125 CM-fated

and 59 EPDC-fated iPSC lines with a general linear model,

we found no association between differentiation outcome

and age or ethnicity (p > 0.8; generalized linear model

[GLM], Z test; Figure S6 and Table S4B), but observed a sig-

nificant association with sex (p = 2.573 10�5, GLM, Z test;

Figure 4C) and a trend for iPSC passage at day 0 (p = 0.069,

GLM, Z test; Figure S6). These data suggest that iPSCs

derived from female subjects and iPSCs with higher pas-

sages at day 0 had an increased predisposition for the CM

fate. Furthermore, considering only the 191 completed dif-

ferentiations (day-25 iPSC-CVPC samples), we found that

iPSC-CVPC samples derived from female subjects

compared with those derived from males had significantly

higher %cTnT values (mean = 83.0% and 77.7%, respec-

tively, for females and males; p = 6.0 3 10�4, Mann-Whit-

ney U test; Figure S6) and a higher fraction of CMs

(p = 6.463 10�4,Mann-Whitney U test). These results indi-

cate that iPSCs derived from female subjects and, to a lesser

extent, iPSCs that have spentmore time in cell culture have

a greater inherent predisposition to differentiate toward

the CM lineage.

Female iPSCs with X Chromosome Reactivation

Associated with CM Fate

Given the observation that female iPSCs have a greater po-

tential to differentiate to CMs and that differential expres-

sion of chrXp11 genes were associated with differentiation



Figure 4. X Chromosome Gene Dosage
Plays a Role in Cardiac Differentiation Fate
(A) GSEA results. For each gene set,
�log10(q value) is shown. Positive values
correspond to gene sets enriched in CM-fated
iPSCs, whereas negative values correspond to
EPDC-fated iPSCs. For autosomes all iPSCs
were included (top), for the chromosome X
only the 113 female iPSCs were analyzed
(bottom). Storey q value was used to adjust
for multiple testing hypothesis; q values
<0.05 were considered significant.
(B) Cartoon showing the positions of differ-
entially expressed loci on chromosome X and
of ELK1 and PORCN.
(C–F) Bar plot (C) showing the associations
between sex and differentiation outcome
(orange: iPSC-CVPC samples with CM fraction
>30%; blue: with EPDC fraction >70%). p
values were calculated using Z test. Density
plots showing the differences in allelic
imbalance fraction between: (D) autosomal
genes (pink) and chrX genes outside of the
pseudoautosomal region (maroon) in female
iPSCs; (E) chrX genes in female CM-fated
(light orange) and EPDC-fated (light blue)
iPSCs; (F) chrX genes in female day 25 iPSC-
CVPC samples with CM fraction >30% (orange)
and EPDC fraction >70% (blue). p values in
(D) to (F) were calculated using the Mann-
Whitney U test.
See also Figure S6.
outcome, we asked whether variation in X chromosome

inactivation (Xi) and activation (Xa) state across female

iPSC lines was associated with CM or EPDC fate. Using

RNA-seq data generated from the 113 female iPSCs, we

evaluated allele-specific effects (ASE) of X chromosome

and autosomal genes (Table S4C). We defined the strength

of ASE for each gene as the fraction of RNA transcripts that

were estimated to originate from the allele with higher

expression (hereafter referred to as ‘‘allelic imbalance frac-

tion’’ [AIF]). We observed that AIF in autosomal genes

was close to 0.5, indicating that both alleles were equally
expressed (Figure 4D), while AIF on the X chromosome in

iPSCs tended to be bimodal, with some genes showing

monoallelic expression (AIF �1.0; XaXi) and others

showing biallelic expression (AIF�0.5; XaXa).We observed

that AIFwas less in the 87CM-fated female iPSCs compared

with the 26 EPDC-fated female iPSCs (p = 0.011, Mann-

Whitney U test; Figure 4E) and that this difference in AIF

became even more pronounced in the corresponding

derived iPSC-CVPC samples (p = 4.813 10�6, Mann-Whit-

ney U test; Figures 4F and S7). These findings show that in

iPSCs, differential chromosome XaXi status as well as
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Figure 5. Validation of Association between iPSC Gene Signatures, Sex, and Differentiation Outcome
(A) Schematic depicting differences between the iPSCORE and Yoruba iPSC samples.
(B) Estimated fractions of CMs and EPDCs for 13 Yoruba iPSC-CM samples from RNA-seq using CIBERSORT (two iPSC-CMs did not have
RNA-seq).
(C) Scatterplot showing the correlation between %cTnT and the fraction of cells in population 1 for 13 Yoruba iPSC-CM samples.
(D) Box plots showing the distribution of estimated fraction of cells in population 1 in females and males.
(E) Box plots showing correlation of gene expression in all 184 iPSCORE iPSCs with RNA-seq (purple), 34 Yoruba iPSCs with RNA-seq used for
differentiation, and the pairwise comparison of the Yoruba iPSCs against the iPSCORE iPSCs (gray).
(F) Volcano plot showing mean difference in expression levels for all autosomal genes between 14 Yoruba iPSC lines that were successfully
differentiated and 125 iPSCORE iPSC-CM-fated lines and p value (y axis, t test). Significant genes are indicated in red.
(G) Smooth color density scatterplot showing gene-expression differences between iPSCs with different fates in 184 iPSCORE iPSCs to the
expression differences between iPSCs with different outcomes in Yoruba iPSCs (14 successful versus 20 terminated) (y axis). A positive
difference indicates shared overexpression of genes between CM-fated iPSC in iPSCORE and successfully differentiated iPSC in the Yoruba
set, whereas a negative difference indicates shared overexpression of genes between EPDC-fated iPSC in iPSCORE and terminated iPSC in

(legend continued on next page)
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altered gene expression in chrXp22 and chrXp11 contrib-

utes to differences in cardiac-fate differentiation outcome.

Sincewe observed differences in X chromosome reactiva-

tion state between CM-fated and EPDC-fated female iPSCs,

we next asked whether the two GSEA X chromosome-asso-

ciated intervals (chrXp22 and chrXp11; Figure 4A) showed

corresponding allelic imbalance trends. We plotted AIF dif-

ferences, whereby a positive AIF difference indicates X

chromosome reactivation in the 26 EPDC-fated iPSCs and

a negative effect in the 87 CM-fated iPSCs (Figure S6). We

observed that distinct regions across the X chromosome

were differentially eroded in the EPDC-fated versus CM-

fated iPSCs. In particular, chrXp22 showed X reactivation

in CM-fated iPSCs (p = 6.31 3 10�3, Mann-Whitney U

test), with both escape (p = 0.020, Mann-Whitney U test)

and non-escape genes (p = 0.023, Mann-Whitney U test)

showing evidence of reactivation (Figure S6). As chrXp22

contains more than half of the escape genes on the X chro-

mosome, this observation confirms that increased X reacti-

vation in CM-fated iPSCs results in increased expression of

both escape and non-escape genes. As GSEA identified

genes on chrXp11 to be overexpressed in CM-fated iPSCs,

the lack of X reactivation in this interval (p = 0.28,

Mann-Whitney U test) suggests that alternative regulatory

mechanismsmay also alter gene-expression levels on the X

chromosome.Overall, these results suggest that differential

X chromosome reactivation as well as other mechanisms

underlying altered regulation of X chromosome and auto-

somal genes contribute to iPSC cardiac lineage fate

determination.

Independent iPSC-CM Derivation Study Validates

Findings

To assess the generalizability of our findings, we examined

an independent collection of 39 iPSCs (Banovich et al.,

2018) reprogrammed using an episomal plasmid from

Yoruba lymphoblastoid cell lines (Figure 5A and

Table S5). Differentiation of these lines resulted in the suc-

cessful derivation of 13 iPSC-CMs (%cTnT range at day 32:

40–96.9), whereas 24 were terminated on or before day 10

due to the fact that they did not form a beating syncytium.

To examine whether the successfully derived Yoruba iPSC-

CMs showed the presence of EPDCs, we used RNA-seq data

and CIBERSORT to estimate cellular compositions and

observed variable relative distributions of CM and EPDC

populations (Figure 5B). Consistent with our iPSCORE

iPSC-CVPC samples, the estimated CM population frac-
the Yoruba set. Of the 91 signature genes that were differentially exp
significant expression differences in the same direction in the Yorub
(H) Bar plot showing that the eight iPSCORE differentially expressed
same direction (e.g., overexpressed or down regulated) in the Yoruba
See also Figure S7.
tions were significantly correlated with %cTnT values

(r = 0.81, p = 7.94 3 10�4, t test; Figure 5C). To understand

whether the CMs and EPDCs appear at the same time dur-

ing differentiation, we analyzed data generated the from

the Yoruba lines at four time points (Strober et al., 2019)

and observed that both cardiac lineages are typically pre-

sent by day 5 and that the ratio of these two cardiac cell

types remains relatively stable past day 10 (Figure S7).

Finally, Yoruba iPSC-CMs derived from females tended to

have an increased percentage of CMs compared with those

derived from males (Figure 5D). These observations show

that the Yoruba iPSCs and derived cardiac cells could be

used to investigate the generalizability of the associations

that we had observed between transcriptomic differences

in iPSCs and cardiac-fate differentiation outcome.

As several factors (Figure 5A) were different between the

iPSCORE iPSC and Yoruba iPSC sets (i.e., different reprog-

ramming method, genetic backgrounds, and donor cell

types), we expected that there would be significant differ-

ences between their transcriptional profiles. We initially

analyzed how correlated gene expressionwas: (1) within iP-

SCORE iPSCs; (2) within Yoruba iPSCs; and (3) between all

pairwise comparisons of the iPSCs in these two different

collections (Figure 5E). We observed high correlations of

gene expression across iPSCs within each collection; how-

ever, the correlation between samples from different

studies was significantly decreased, indicating that the

two sets have significant genome-wide gene-expression dif-

ferences. We next examined differential gene expression

between the CM-fated iPSCORE iPSC and Yoruba iPSCs

that successfully differentiated into iPSC-CMs (Figure 5F),

and observed that the majority of genes (69.6% with q

value <0.10) were significantly differentially expressed be-

tween the two iPSC sets. These results show that there are

strong batch effects on gene expression between the

iPSCORE and Yoruba iPSC lines.

We investigated whether, despite the strong batch effects

on gene expression between iPSCORE and Yoruba iPSCs,

we could detect inherent transcriptional differences

affecting cardiac-fate determination that were shared be-

tween the iPSC sets. Given the relatively small size of the

Yoruba study, there was insufficient power to detect tran-

scriptional differences between the lines with different dif-

ferentiation outcomes (successfully completed versus

terminated). Therefore, for each gene, we compared the

mean expression differences between iPSCs with different

cardiac-fate outcomes in iPSCORE (CM fate minus EPDC
ressed in the iPSCORE iPSCs based on cell fate, eight had nominally
a iPSC set (shown in red).
genes in (G) with nominal significant expression differences in the
iPSCs are greater than random expectation.
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Figure 6. iPSC Characteristics that Influence Their Cardiac-Fate
Determination
Cartoon showing iPSC characteristics that influence their cardiac-
fate determination, including: (1) the expression levels of 91 genes
grouped into three gene signature classes (WNT/B-catenin
pathway, cardiac development genes, and genes involved in EMT);
(2) sex: female iPSCs are more likely to differentiate to CMs than
males; and (3) X chromosome activation state: female iPSCs that
have activated both X chromosomes (XaXa) are more likely to
differentiate to CMs.
fate) to the expression differences between iPSCs with

different differentiation outcomes in the Yoruba set

(successfully completed minus terminated; Figure 5G).

We observed a small but significant correlation (r =

0.0299, p = 4.71 3 10�4, t test) between genes that were

differentially expressed in the iPSCORE iPSCs and those

that were differentially expressed in the Yoruba iPSCs.

Furthermore, we specifically examined the 91 signature

genes significantly associated with iPSCORE iPSC cardiac-

fate outcome and found eight with nominally significant

expression differences in the same direction (e.g., overex-

pressed or downregulated) in the two sets of iPSCs (Fig-

ure 5G), which is 2.5 times more than random expectation

(p = 0.012, Fisher’s exact test; Figure 5H). These data suggest
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that the iPSCORE iPSCs and Yoruba iPSCs shared transcrip-

tional differences that affected cardiac-fate differentiation

outcome.
DISCUSSION

While previous directed cardiac differentiation studies

have observed the emergence of both cardiomyocytes

and a non-contractile cell population, the origin of these

non-contractile cells, and whether the same or different

non-myocyte cell types are present across iPSC-CVPC sam-

ples, has not previously been addressed. We showed that

two distinct cell types were present in 154 iPSC-CVPC sam-

ples derived from iPSCs in iPSCORE. One of the derived cell

types were CMs, characterized by high expression levels of

cardiac-specific genes, and the other derived cell type was

EPDCs, characterized by high expression of marker genes

for EMT, smooth muscle, and fibroblasts. We found the

same two cardiac cell types present in iPSC-CMs derived

from an independent collection of 39 Yoruba iPSCs, both

ofwhichwere typically present by day 5, and their ratios re-

mained relatively stable past day 10 (Banovich et al., 2018;

Strober et al., 2019). A recent study showed that adding hu-

man ESC-derived epicardial cells to cardiomyocyte grafts

in vivo improves transplantation efficacy, as it increases

contractility, myofibril structure, and calcium handling

and decreases tissue stiffness (Bargehr et al., 2019). Our

findings suggest that the generation of EPDCs during

iPSC-CM differentiation may enhance the structure of

the derived CMs and that to efficiently use iPSC-CVPCs

in a clinical setting, future studies may need to optimize

the relative proportions of CMs and EPDCs that maximize

their transplantation efficiency.

The scale of our study, 232 attempted differentiations of

191 iPSC lines into the cardiac lineage, provided the power

to develop a framework to identify non-genetic transcrip-

tional differences in iPSCs that influence their cardiac dif-

ferentiation outcome. To minimize the factors that might

influence differentiation outcome, such as the optimal

cell confluence at which to start differentiation, we attemp-

ted to standardize all steps in the differentiation protocol in

order to remove subjective decisions and diminish experi-

mental differences between samples. We identified 91

signature genes whose differential expression was associ-

ated with differentiation outcome and showed that many

of these genes are involved in cardiac development,

including the Wnt/b-catenin pathway, muscle differentia-

tion or cardiac-related functions, and the transition of

epicardial cells to EPDCs by EMT (Figure 6). Many of the

transcriptomic differences between iPSCORE iPSCs with

CM fates versus those with EPDC fates may be due to aber-

rant epigenetic landscapes resulting from a combination of



the reprogramming method (Sendai virus) and cell of

origin (fibroblasts). However, given that the Yoruba iPSCs

were reprogrammed using a different method (episomal

plasmid) and cell of origin (lymphoblastoid cell lines

[LCLs]) and yet the iPSCORE and Yoruba iPSCs shared

gene-expression differences associated with cardiac lineage

outcome, it is likely that our findings will likely be general-

izable to other collections of iPSCs. We hypothesize that

the signature genes associated with cardiac lineage

outcome will vary across iPSC collections and depend on

the reprogramming method and cell type of origin, but

will largely be involved in the same pathways identified

in this study.

We observed that variability across iPSCs on X chromo-

some gene dosage (XaXa versus XaXi versus XY) played a

role in cardiac lineage fate (Figure 6). While human iPSCs

are known to have only partial XaXa (Barakat et al., 2015;

Kim et al., 2014), we identified two loci (chrXp11 and

chrXp22) encoding genes whose expression levels are asso-

ciated with two distinct cardiac differentiation trajectories

(CMs versus EPDCs). The higher expression of chrXp11

genes in CM-fated iPSCs may at least in part be due to

fact that ELK1 and PORCN are both encoded in this inter-

val, as the protein product of PORCN (Porcupine) is in-

hibited by IWP-2 during CM differentiation (Mo et al.,

2013) but not during EPDC differentiation (Bao et al.,

2016; Iyer et al., 2015; Witty et al., 2014) (some EPDC pro-

tocols inhibit Porcupine but then reactivate the WNT

pathway at a later time point [Guadix et al., 2017; Paik

and Wu, 2017; Zhao et al., 2017]). Furthermore, we found

that ELK1 targets are overexpressed in CM-fated iPSCs,

which is consistent with previous studies showing that

knockdown of ELK1 in immortalized human bronchial

epithelial cells, small airway epithelial cells, and luminal

breast cancer cell line (MCF-7) is associated with increased

EMT (Desai et al., 2017; Tatler et al., 2016). Also consistent

with ELK1 playing a role in the association betweenX chro-

mosome dosage and differentiation outcome is a previous

study showing that ELK1 overexpression or downregula-

tion, respectively, mimics the phenotypes of XaXa or

XaXi PSCs (Bruck et al., 2013). Of note, atrioventricular

septal defects occur in �20% of individuals with Down

Syndrome (DS), and have a higher prevalence in female

DS patients (Diogenes et al., 2017). Given that EPDCs

play an essential role in septal formation (Gittenberger-de

Groot et al., 2000), our study suggests that future work

should investigate the extent to which X chromosome

gene-expression levels are altered in cardiomyocytes from

individuals with DS, and whether this is associated with

the formation of fewer EPDCs.

Overall, our study suggests that expression differences of

91 signature and X chromosome genes result in the

iPSCORE iPSC lines having differential propensities to
respond to WNT inhibition during differentiation, and

consequently are fated to produce iPSC-CVPC samples

with different proportions of CMs and EPDCs. As iPSCs

in the iPSCORE collection have passed standard quality

checks to confirm their pluripotency and genomic integ-

rity (Banovich et al., 2018; Panopoulos et al., 2017a), these

transcriptomic expression differences associated with car-

diac lineage outcome are not detected using current quality

metrics. In conclusion, our findings suggest that to derive

human iPSC lines that respond similarly in differentiation

protocols, it may be necessary to improve reprogramming

methods such that the transcriptome and X chromosome

activation state is fully reset to the naive state, and incorpo-

rate inactivation of one of the X chromosomes in female

lines as an early step in differentiation protocols.
EXPERIMENTAL PROCEDURES

Please refer to Supplemental Experimental Procedures for detailed

methods.
Subject Information and Whole-Genome Sequencing
Individuals (108 females and 73males) were recruited as part of the

iPSCORE project (Panopoulos et al., 2017a) and included 7 MZ

twin pairs, members of 32 families (2–10 members/family), and

71 singletons and were of diverse ancestries. Subject descriptions

including subject sex, age, family, ethnicity, and cardiac diseases

were collected during recruitment. As previously described (DeBo-

ever et al., 2017), we generated whole-genome sequences from the

blood or skin fibroblasts of the 181 subjects on the HiSeqX

(Illumina; 150-bp paired end). The recruitment of these individ-

uals was approved by the Institutional Review Boards of the Uni-

versity of California, San Diego and The Salk Institute (project

no. 110776ZF).
iPSC Derivation and Somatic Mutation Analysis
As previously described, we reprogrammed fibroblast samples us-

ing non-integrative Cytotune Sendai virus (Life Technologies),

and the 191 iPSCs (seven subjects had two or more clones each)

were shown to be pluripotent and to have high genomic integrity

with no or low numbers of somatic copy-number variants (CNVs)

(D’Antonio et al., 2018; Panopoulos et al., 2017a).
Large-Scale Derivation of iPSC-CVPC Samples
To generate iPSC-derived cardiovascular progenitors (iPSC-

CVPCs), we used a small-molecule cardiac differentiation protocol

(Lian et al., 2013). The 25-day differentiation protocol consisted of

five phases (Figure S1A); the optimizations for each step are

described in the Supplemental Experimental Procedures.
Flow Cytometry
On day 25 of differentiation, iPSC-CVPCs were stained with cTnT

antibody, acquired using fluorescence-activated cell sorting and

analyzed using FlowJo V10.2.
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Immunofluorescence Analysis of iPSC-CVPCs
Immunofluorescence was assessed in five iPSC-CVPC lines. Live

frozen iPSC-CVPC harvested on day 25 were thawed, plated

for 5 days, fixed, permeabilized, and incubated with antibodies

(Table S1D).

Generation of RNA-Seq Data
For gene-expression profiling of iPSCs, we used RNA-seq data from

184 samples (cell lysates collected between passages 12 and 40). For

gene-expression profiling of iPSC-CVPCs, we generated RNA-seq

data from 180 samples at day 25 of differentiation. All RNA-seq sam-

ples were generated and analyzed using the same pipeline to obtain

transcripts per million base pairs (TPM) (DeBoever et al., 2017).

Generation of scRNA-Seq Data
To capture the full spectrum of heterogeneity among the iPSC-

CVPCs, we selected eight samples with variable percentage of

cTnT (42.2%–95.8%). After removing proliferating cells and dou-

blets, we obtained 34,905 cells.

CIBERSORT
Expression levels of the top 50 genes overexpressed in each of the

three cell populations (total 150 genes)were used as input forCIBER-

SORT (Newman et al., 2015) to calculate the relative distribution of

the three cell populations for the 180 iPSC-CVPC samples at day 25.

Characterizing Transcriptional Similarities of iPSCs,

iPSC-CVPCs, and GTEx Adult Tissues
Weperformed PCAof RNA-seq on 184 iPSCs, 180 iPSC-CVPCs, and

1,072 RNA-seq samples from GTEx.

Determining Optimal CM/EPDC Ratio Estimates from

CIBERSORT to Define iPSC Cardiac Fates
To obtain the optimal threshold, we conducted a series of differen-

tial expression analyses on 15,228 autosomal genes in the 184 iPSC

lines (147 completed and 37 terminated) considering the ratio of

population frequencies at ten thresholds. The 30:70 (CM/EPDC)

ratio resulted in the highest number of differentially expressed

genes (84 genes with Storey q value <0.1, t test), which is substan-

tially greater than random expectation. Thus, we grouped the 184

iPSC lines into: (1) those that have CM fates, i.e., produced iPSC-

CVPC with R30% population 1; and (2) those that have EPDC

fates, i.e., produced iPSC-CVPC with >70% population 2.

Comparing the Number of Differentially Expressed

Genes with Random Expectation
To determine whether the number of significantly differentially

expressed genes was higher than expected by chance, we shuffled

the assignments of the 184 iPSC RNA-seq samples to differentia-

tion fate (125 CM and 59 EPDC) 100 times.

Contribution of 91 Signature Genes in iPSCs to

Determination of Cardiac Fate
For each of the 91 signature genes, we built a GLMwith the expres-

sion of the gene as input and the differentiation outcome (e.g., per-

centage of population 1) as output using a logit link function. To
936 Stem Cell Reports j Vol. 13 j 924–938 j November 12, 2019
understand the cumulative contribution of all 91 signature genes

on cardiac differentiation fate, we built a GLM with an L1 norm

penalty using the expression of all 91 genes as input and the differ-

entiation outcome as output. To avoid overfitting the model, we

used a 10-fold cross-validation.
Detecting Associations between Genetic Background

and Differentiation Outcome
We obtained genotypes for 8,620,159 biallelic SNPs and short in-

dels with allelic frequency >5% in the iPSCORE collection. Geno-

types were obtained for each SNP in all individuals using bcftools

view (Li, 2011). Linear regression was used to calculate the associa-

tions between the genotype of each variant and differentiation

outcome (percent CM population in the iPSC-CVPCs), using pas-

sage at monolayer and sex as covariates.
GSEA Using the MSigDB Collection
We performed GSEA using the R gage package (Luo et al., 2009) on

all MSigDB gene sets (Subramanian et al., 2005). False discovery

rate correction was performed independently for each collection.

The normalized mean expression difference between iPSCs that

differentiated to CMs and iPSCs that differentiated to EPDCs was

used as input for GSEA.
Associations between iPSC and Subject Features and

Differentiation Outcome
A GLM was built in R using age, sex, ethnicity, age, and passage of

the iPSCs at day 0 of differentiation as input and differentiation

outcome as output (0 = EPDCs; 1 = CMs).
Identifying X Chromosome Inactivation in Female

iPSCs and iPSC-CVPCs
To analyze X chromosome inactivation, we used 113 female iPSCs,

of which 87 where CM-fated and 26 were EPDC-fated. We called

ASE in RNA-seq from iPSC and iPSC-CVPCs as previously

described (DeBoever et al., 2017). Genes lying in X chromosome

pseudoautosomal (PAR) regions (PAR1: 60,001–2,699,520; PAR2:

154,931,044–155,260,560) were removed from analysis. We

defined the strength of ASE for each gene as the fraction of RNA

transcripts that were estimated to originate from the allele with

higher expression (referred to as AIF).
Validation of Findings in Yoruba iPSC Set
The Yoruba iPSCs (Banovich et al., 2018) were generated fromLCLs

using episomal reprogramming. Differentiation was performed us-

ing a small-molecular method and iPSC-CMs were harvested on

days 31 or 32. Fifteen lines successfully generated iPSC-CMs and

24 were terminated on or before day 10. We downloaded RNA-

seq for 34 of the Yoruba iPSC and 13 iPSC-CM samples from the

Gene Expression Omnibus (GEO: GSE89895) as well as 297 sam-

ples from 19 distinct iPSCs in a time-course experiment (days

0–15) performed on the same Yoruba iPSC samples (Strober et al.,

2019). RNA-seq was aligned using STAR, and gene expression was

quantified using the RSEM package and normalized to TPM. The

RNA-seq for the 13 Yoruba iPSC-CMs and from all time-course



time points were analyzed using CIBERSORT, similar to the

iPSCORE samples.

ACCESSION NUMBERS

Accession numbers for the RNA-seq data, scRNA-seq, and WGS

genotypes are dbGaP: phs000924 (https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id=phs000924) and phs001325

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs001325). The 191 iPSC lines are available through

WiCell Research Institute: https://www.wicell.org/; NHLBI

Next Gen Collection.
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Figure S1: Optimization of iPSC-CVPC differentiation protocol. Related to Figure 1. 

 



 3 

(A) Schematic of differentiation protocol. To achieve large-scale derivation of iPSC-derived cardiovascular 

progenitor cells (iPSC-CVPCs), we optimized existing small molecule protocols to increase throughput and 

efficiency. We optimized several steps of the protocol, including automating detection of iPSC monolayer 

confluency (orange box), optimizing the IWP-2 concentration (green box), and incorporating lactate selection 

(blue box). 

(B) Density plot showing distribution of days recorded from 253 iPSC samples to reach 80% confluency. It was 

observed that 75-85% iPSC monolayer confluence at day 0 (D0), which marks the initiation of differentiation 

by WNT activation, yields the most efficient differentiations (Burridge et al., 2014; Lian et al., 2013); however, 

iPSCs have variable growth rates, and therefore it would be difficult to consistently achieve this confluency 

across hundreds of lines.  

(C) Confluency levels from one line (2_3) measured from ten sections of T150 flask. Due to observed 

variability in iPSC growth rates, we developed ccEstimate, an automated tool that determines confluency by 

processing images from multiple locations in three T150 flasks over a period of at least 72 hours, and then 

estimates when a particular iPSC line will reach an average confluency of 80% based on its growth rate (Figure 

S2). Circles represent measured values. The points at D0 were obtained based on the ccEstimate algorithm’s 

predictions. 

(D, E) Effects of IWP-2 concentration (5.0µM or 7.5µM) given on D3 or D3 and D4 on (D) structure score and 

(E) beat score (Table S1H). We optimized WNT inhibition at D3, which is required for robust iPSC-CVPC 

differentiations by testing two concentrations of IWP-2 (5µM and 7.5µM) both with and without a media 

change between D3 and D4. We differentiated one iPSC line (iPSCORE_2_3_iPSC_C5_P13) under each of the 

four IWP-2 conditions, and observed that 7.5 µM IWP-2 without a media change between D3 and D4 resulted 

in iPSC-CVPCs with the thickest structures and strongest beating (structure score: p = 0.00415, beat score: p = 

0.0126; Paired t test) (Table S1H). P-values were calculated using paired t test. 

(F) Effects of metabolic purification of iPSC-CVPCs by lactate and glucose. To examine the efficacy of using 

lactate for iPSC-CVPC metabolic purification (Burridge et al., 2014; Kadari et al., 2015; Tohyama et al., 2013), 

we tested lactate and glucose at D16 in three different iPSC-CVPC lines (2_3, 8_2, and 3_2), and found that 

lactate resulted in significantly purer iPSC-CVPC populations at D25 (93.95% vs. 68.55%; p = 0.00435). P-

values were calculated using Mann-Whitney U test. 

(G) Immunofluorescence staining of five iPSC-CVPC lines at D30 with IF markers DAPI (blue), ACTN1 (red), 

and CX43 (green).  
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(H) Immunofluorescence staining of five iPSC-CVPC lines at D30 with IF markers DAPI (blue), MLC2a+ 

(red), and MLC2v+ (green), and MLC2v+ MLC2a+ (yellow). 

(I) Filtering doublets from and selection of k-means clustering k in scRNA-seq: t-SNE plot of gene expression from 

36,839 cells from 8 iPSC-CVPC and 1 ESC. We removed 1,934 cells from the scRNA-seq analysis (Figure 1), 

including cells that were visually identified as being doublets (pink) and actively dividing cells with (>2 UMI 

MK167, green).  

(J) Cells are colored by k-means clusters with k = 9 cluster assignment. Cells that clustered together in the t-

SNE plot, but were assigned to multiple different clusters were considered as doublets. Doublets are highlighted 

in the yellow and cyan box.  

(K) Zoomed in region of the yellow box.  

(L) Zoomed in region of the cyan box.  

(M-O) PCA of gene expression from 36,839 cells from 8 iPSC-CVPC and 1 ESC colored by k-means 

clustering: (M) k = 3, (N) k=4; and (O) k = 9. The PCA shows that three cell populations are present and thus 

we used three clusters (k = 3) for all scRNA-seq analysis. In summary, we analyzed 34,905 single cells assigned 

to three cell populations. 
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Figure S2: Distribution of single cells across the three clusters. Related to Figure 1. 

 

(A) Distribution of single cells across the three cell populations for the nine analyzed samples: scRNA-seq UMAP plots 

from 34,905 single cells showing their distributions across the three different clusters for the nine analyzed samples 

(8 iPSC-CVPCs lines and one ESC line). Each of the nine samples have a different color. 

(B) Expression levels for marker genes: For each gene in Figure 1J, density plots show the gene expression 

distribution across all cells associated with each cell population (Population 1 = orange; Population 2 = blue; 
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Population 3 = green.). Red dashed line represents the median. UMAP plots from 34,905 cells show in maroon 

all the cells expressing the indicated marker gene higher than its median expression across the three populations. 
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Figure S3: Differentially expressed genes at ten CM:EPDC thresholds. Related to Figure 3. 
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Analysis to determine the optimal CM:EPDC ratio to group the iPSC lines into those that were CM-fated and those that 

were EPDC-fated. We tested ten different CM:EPDC ratios and found 116 autosomal genes that were differentially 

expressed at one or more of these ratios (Storey q-value < 0.1, t-test Figure 3A,B, Table S3A-B). Heatmap showing at each 

threshold whether each of the 116 differentially expressed genes is significant (red or black = q-value < 0.1; gray: q-value 

> 0.1). Red squares indicate the threshold at which each gene is most significant. The heatmap shows that the 30:70 

(CM:EPDC) threshold is where the most genes have their highest significance. For the vast majority of genes, the threshold 

at which they are most significantly differentially expressed is between 20% and 40%, confirming that the 30% threshold 

is optimal to distinguish between CM-fated and EPDC-fated iPSCs. 
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Figure S4: Expression of 91 signature genes in 184 iPSCs. Related to Figure 3. 

 

(A) Heatmap showing the expression levels of the 91 signature genes differentially expressed between CM-fated 

and EPDC-fated iPSCs. Each row represents an iPSC sample. The “CMs” scale represents the %CM population 

(Population 1) in the associated iPSC-CVPC samples for each iPSC. 

(B) Comparison between the observed number of signature genes and random expectation: A QQ plot showing that the 

observed p-value distribution (black) was substantially different than random expectation. To determine if the identification 

of 84 signature genes that were significantly differentially expressed between CM-fated and EPDC-fated iPSCs was higher 

than random expectation, we shuffled the assignments of the 184 iPSC RNA-seq samples to differentiation fates (125 CM 

and 59 EPDC) 100 times. For each shuffle, we performed differential expression analysis and obtained the number of genes 

that were significantly differentially expressed (gray).  
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(C) Correlation between the 91 signature genes differentially expressed between CM-fated and EPDC-fated iPSCs: 

Heatmap showing the correlation of expression levels in the 125 CM-fated iPSCs versus the 59 EPDC-fated iPSCs 

for the 91 signature genes. White stars show significant correlations (Bonferroni p-value < 0.05).  
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Figure S5: Associations between genetic background and differentiation outcome 

 

(A) Manhattan plot showing the association between genetic variation and differentiation outcome (measured as % CM 

population in iPSC-CVPCs). Red dashed line shows p-value = 0.05 adjusted using Bonferroni’s method (p = 5 x 10-8). 

(B) Boxplots showing distributions of the differences in the %CM population between differentiations of different iPSC 

clones from the same subject, from the same twin pair, and from individuals with different genetic backgrounds. P-values 

were calculated using Mann-Whitney U test. 
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Figure S6: X chromosome inactivation in iPSCs. Related to Figure 4. 

 

(A-C) Associations between differentiation outcome (orange: iPSC-CVPC samples with CM fraction > 30%; blue: with 

EPDC fraction > 70%) and (A) ethnicity (most similar superpopulation from the 1000 Genomes Project), (B) age at 

enrollment, and (C) passage at monolayer (D0). (A) is shown as barplots; (B,C) are shown as density plots. P-values were 

calculated using Z-test (glm function in R). 

(D-E) Density plots showing the association between sex (teal: males; magenta: females) and (D) %cTnT, and (E) fraction 

of CM population for 191 iPSC lines. P-values were calculated using Mann-Whitney U test.  
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(F) Allelic imbalance difference between CM-fated and EPDC-fated iPSCs. The dots represent each gene on chrX, while 

the black solid line corresponds to the smoothed interpolation of differences for all the genes. The locations of the Xp22 

and Xp11 loci on the chrX G-banding ideogram are highlighted in yellow, as well as ELK1 (yellow) and PORCN (red). P-

values above each locus indicate the difference in allelic imbalance between CM-fated and EPDC-fated iPSCs in each locus 

(Mann Whitney U test). 

(G-I) Allelic imbalance fraction from inactive and escape genes in Xp22: Density plots showing the allelic imbalance 

differences in chrX genes on the Xp22 loci in female samples between iPSC lines with CM-fate (light blue) and EPDC-fate 

(light orange) differentiations. Allelic balances compared in Xp22 are from all genes in the region (G), escape genes (H), 

and inactive genes (I). P-values were calculated using Mann Whitney U test. 
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Figure S7: Cell populations at 15 time points during iPSC-CM differentiations 

 

For each of 19 samples in Strober et al. (Strober et al., 2019), at each day during differentiation the relative distributions of 

iPSCs, CMs, EPDCs are shown.  Related to Figure 5. 
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TABLE LEGENDS 

Table S1: Characterization of cellular heterogeneity in iPSC-CVPC samples. Related to Figure 1. 

Table S1A: Subject information for participants in iPSCORE for which iPSCs were used for iPSC-CVPC 

differentiation.  

iPSCORE_ID indicates family and individual number (e.g. iPSCORE_family#_individual#). Subject_UUID is 

an assigned Universal Unique Identifier (UUID) for the subject. Family_ID classifies the subject by family to 

identify related family members. Columns D-G represent the twin and parent information for each subject, as 

included in dbGaP (phs001325.v1.p1; phs000924.v1.p1) as part of the iPSCORE Resource: Twin_ID_dbgap 

identifies the dbGaP id if the subject is a twin; Twin_type_dbGap indicates the type of twin (MZ = monozygotic; 

DZ = dizygotic) if the subject is a twin; Father_subject_ID_dbGap indicates the subject_UUID of the father of 

the subject if part of the iPSCORE resource; Mother_subject_ID_dbGap indicates the subject_UUID of the 

mother of the subject if part of the iPSCORE resource. Sex and Age_at_enrollment of the subject are shown. 

Ethnicities (Self-reported race/ethnicity, Recorded_Ethnicity_Grouping, and Most_similar_1KGP_population) 

are recorded as described by Panopoulos et al. (Panopoulos et al., 2017). Column M represents cardiac 

phenotypes. 

Table S1B: Table linking identifiers for iPSCORE participants with iPSC-CVPC differentiations and metrics of 

differentiation outcome.  

Unique Differentiation IDentifier (UDID) is a unique digit assigned for each attempted iPSC-CVPC 

differentiation. iPSCORE_ID indicates family and individual number (e.g. iPSCORE_family#_individual#). 

Subject_UUID is an assigned Universal Unique IDentifier (UUID) for the subject. iPSC_iPSCORE_ID is the 

iPSC line identifier submitted to dbGap (phs001325.v1.p1), which indicates clone and passage of iPSC. 

iPSCORE_resource indicates by TRUE or FALSE if this line is one of the 222 lines described by Panopoulos et 

al.(Panopoulos et al., 2017). iPSC_ID is the iPSC line identifier. iPSC_passage_at_monolayer (D0) is reported. 

D_to_D0 describe how many days the iPSC line was cultured to achieve 80% confluency before initiation of 

differentiation. If the UDID was harvested on D25 (Column I), the harvest density (Column J), number of 

cryovials frozen (Column K), and measured %cTNT+ by FACS (Column L) is reported. 

Successful_iPSC_CM_differentiation indicates if the iPSC-CVPC sample was harvested at D25 (e.g. not 

prematurely terminated). Population_1 indicates the estimated composition of population 1 (cardiomyocyte 

population) for each sample with RNA-seq (column M, see Table S1E) and the estimated_cell_type (Column N) 
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indicates iPSC-CVPC samples with ≥30% population 1 as CM and iPSC-CVPC samples with <30% population 

1 as EPDC.  

Table S1C: Table describing the number of lines and subjects for each attempted differentiation.  

For each cell type: iPSC and derived iPSC-CVPCs (both terminated prior to D25 and D25), the number of 

differentiations performed (Column B) are given. For these differentiations, the number of unique lines used 

(Column C) from the number of unique subjects used (Column D) is provided. 

Table S1D: Antibodies used for FACS and immunofluorescence.  

This table describes the antibodies (Column A) and clone (Column B) used for FACS and immunofluorescence 

experiments. Catalog numbers (Column C), brand (Column D), dilution (Column E), time of staining in minutes 

(Column F), and temperature of staining (Column G) is indicated for each antibody. 

Table S1E. Table linking identifiers for iPSC and iPSC-CVPC genomic data.  

UDID is given if the iPSC or iPSC-CVPC genomic data were collected during an attempted differentiation, 

indicated by UDID (Column A). Subject_UUID (Column B) is an assigned Universal Unique Identifier (UUID) 

for the subject. Cell (Column C) indicates the stage for which the genomic data was generated (iPSC or iPSC-

CVPC). Genomic data UUIDs are given in Columns D-E, including rna_assay_uuid (bulk RNA-seq; Column D), 

scrna_assay_uuid (scRNA-seq; Column E). Estimated cellular composition from CIBERSORT of populations 1-

3 is given in Columns F-H.  

Table S1F. Generated molecular data.  

For each cell type (iPSC and iPSC-CVPC) (Column A) and for each assay for which molecular data was generated 

(RNA-seq and scRNA-seq), the number of data samples (Column C), from the number of unique lines (Column 

D), and from the number of unique subjects (Column E) are given. 

Table S1G: scRNA-seq features for each sequenced single cell.  

For each of the 34,905 cells with scRNA-seq data, the table shows iPSCORE subject ID (Column A) and UUID 

(Column B), barcode (Column C), associated population (Column D), and coordinates on the t-SNE plot 

(Columns E, F). For the H9 ESC line sample, which is not included in iPSCORE, iPSCORE ID and Subject UUID 

are labeled as “ESCs”. This table is ordered on population (e.g. clusters 1, 2, 3). 
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Table S1H: Table describing observed beat scores and structure scores for iPSC-CVPC differentiations.  

UDID (Column A) for each differentiation measured is given. Beat.Score (Column B) indicates the estimated 

beat score for the differentiation and Structure.Score indicates the observed structure score for the sample 

(Column C).  

Table S2: Overexpressed genes in each scRNA-seq population. Related to Figure 2. 

For each of 34,528 genes (Columns A, B) with at least one transcript detected in the scRNA-seq samples, the 

mean UMI counts, log2 fold change, and FDR-adjusted p-value is shown for each population. The last column 

indicates the 150 genes used as input for CIBERSORT. 

Table S3: iPSC gene signatures associated with cardiac differentiation fate. Related to Figure 3. 

Table S3A-B: Differential expression between iPSCs differentiated to CMs and iPSCs differentiated to EPDCs using 

multiple thresholds 

We used 10 different thresholds to divide iPSCs based on their %CM population detected using CIBERSORT 

(Figure S7). For each threshold (Columns B-M) (>0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%; males 

and females; EPDC fate vs. Terminated), differential expression between the samples passing and not passing the 

threshold was calculated using t-test. Table S3A and Table S3B respectively show nominal p-values and Storey 

q-values. P-values of differentially expressed genes calculated by t-test are shown for all 15,228 human genes 

(Column A) expressed in iPSC-CVPCs. We examined genes that were differentially expressed in the iPSCs 

generated from females versus males (column L), and removed 242 genes that were differentially expressed from 

downstream analyses (Storey q-values < 0.1). Across the ten CM:EPDC ratios there were 116 genes that were 

differentially expressed at one or more ratio. At the 30% threshold, there were the greatest number of significantly 

differentially expressed genes. EPDC-fated iPSCs consisted of those with completed iPSC-CVPC differentiations 

(i.e. reached D25) with >70% Population 2 and iPSCs with differentiations that were terminated before D25. We 

did not observe significant expression differences between the 22 iPSCs that differentiated to EPDCs (>70% 

Population 2) and the 37 iPSCs whose differentiations were terminated before D25 (column M). For further 

analyses, we used the 30:70 (CM:EPDC) threshold, because it maximized the differences between CMs and 

EPDCs, i.e. the largest number of differentially expressed genes (84).  

Table S3C: Differential expression analysis using 30:70 CM:EPDC ratio as threshold.  
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In this table, we report the differential expression analysis performed between the 125 iPSC samples defined as 

CM-fated and 59 iPSC samples defined as EPDC-fated (15,228 autosomal genes, labeled as “All iPSC samples” 

in column H). We also report the differential expression analysis performed between the 87 female iPSC samples 

defined as CM-fated and the 26 female iPSC samples defined as EPDC-fated (15,398 expressed genes located on 

both autosomes and on the chromosome X, labeled as “Female samples” in column H). For each gene (Columns 

A, B), shown are: 1) the mean normalized expression across the CM-fated iPSCs (column C), 2) the mean 

normalized expression across the EPDC-fated iPSCs (column D), 3) the difference between mean normalized 

expressions (column E), 4) the p-value (t-test) (Column F), and 5) Storey q-value (Column G). A positive 

difference between mean normalized expressions indicate CM-fated over-expression, whereas a negative 

difference between mean normalized expressions indicate EPDC-fated over-expression. 

Table S3D: Description and supporting literature of 91 signature genes in iPSC.  

In this table, we describe the known functions of the 91 signature genes identified as differentially expressed 

between CM-fated and EDPC-fated iPSCs. For each gene, gene name (Column A), ensemble gene id (Column 

B), Chromosome (column C), gene start (Column D) and end (Column E), the difference between mean 

normalized expressions (column F), the p-value (t-test) (Column G), and Storey q-value (Column H) are given. 

Additionally, for each gene functional descriptions (Column J) and PMIDs for supporting literature (Column I) 

are provided. This table is ordered on the difference between mean normalized expressions. 

Table S3E: Regression estimates showing the associations between signature genes and %CM populations.  

For each of the 91 signature genes (Columns A, B), linear regression estimate (Column C), standard error (Column 

D), p-values (Column E, calculated in R as 2*pnorm(estimate / standard error)) and R2 (Column F) are shown. 

Columns G-J show the 35 signature genes that L1 norm identified as having significant contribution to cell fate 

determination: LASSO regression coefficient (Column G), median TPM (Column H), median contribution 

(Column I), and absolute value of the median contribution to the model (Column J) are shown. Column K shows 

the seven ELK1 targets as identified in the MSigDB gene set SCGGAAGY_ELK1_02 (Xie et al., 2005). 

Table S3F: Associations between genetic variation and differentiation outcome. 

For each variant with a GWAS p-value > 10-5, shown are their chromosome (Column A), coordinates (Column 

B), reference and alternative allele (Columns C, D), dbSNP ID (Column E), allele frequency in iPSCORE 

(Column F), regression estimate (Column G), standard error (Column H) and p-value (Column I). Regression 
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estimate, standard error and p-value were calculated using the glm(CM population ~ genotype, family = 

"quasibinomial") function in R. 

Table S4: X chromosome gene dosage plays a role in cardiac differentiation fate. Related to Figures 4 & 5. 

Table S4A: GSEA showing functional enrichment of genes differentially expressed between CM-fated and EPDC-

fated iPSCs 

For each of 9,808 MSigDB gene sets (Column A), GSEA enrichment (Column B), and p-value (Column C) 

calculated using the R gage package are shown. Storey q-value was used to adjust for multiple testing hypothesis, 

q-values < 0.05 were considered significant. The analysis (Column E) shows whether the test was performed on 

all 184 iPSCs (“All iPSC-CVPC samples”) or just on the 113 female samples (“Female samples”). Positive GSEA 

enrichment indicate enrichment for CM-fated iPSCs, whereas negative GSEA enrichment indicate enrichment 

for EPDC-fated iPSCs.  

Table S4B: Table describing results of linear regression analysis to predict factors influencing differentiation 

potential of iPSC towards CM or EPDC fates. Related to Figure 4. 

Factors (Column A) input into the linear regression model. Columns B-E describe the results of the model, 

including estimate (Column B), standard error (Column C), z-value (Column D), and p-value (Column E).  

Table S4C: Allelic imbalance fraction of genes on the X chromosome not in pseudoautosomal regions in females 

from iPSC samples and from iPSC-CVPC samples. Related to Figure 4. 

Gene_id indicates the ensemble gene id (Column A) for X chromosomes genes not in pseaudoautomsomal 

regions. Columns B-HR show the rna_assay_uuid (Table S1E) of each of the female iPSC (Figure 4D,E) and 

iPSC-CVPC samples (Figure 4F) for which the allelic imbalance fraction was calculated for each gene.  

Table S5: Table describing differentiation outcomes and molecular data ID references from the Yoruba 

set. Related to Figure 5. 

Data from 39 Yoruba iPSC samples (Banovich et al., 2018) (Column A) and their sex (Column B) are given. 

Outcome (Column C) indicates if the iPSC-CM differentiation was completed or terminated before completion. 

%cTnT values (Column E), GEO iPSC RNA-seq sample IDs (Column F), and GEO iPSC-CM sample IDs 
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(Column G) (GEO; GSE89895) are given. Five of the Yoruba iPSCs and two of the iPSC-CM samples did not 

have RNA-seq data. 

SUPPLEMENTARY EXPERIMENTAL PROCEDURES 

iPSCORE subject information 

Fibroblasts obtained by skin biopsies from the181consented individuals (108 female and 73 male) used in this study were 

recruited as part of the iPSCORE project (Panopoulos et al., 2017). These individuals included seven monozygotic (MZ) 

twin pairs, members of 32 families (2-10 members/family) and 71 singletons (i.e. not related with any other individual in 

this study) and were of diverse ancestries: European (118), Asian (27), Hispanic (12), African American (4), Indian (3), 

Middle Eastern (2) and mix ethnicity (15). The recruitment of these individuals was approved by the Institutional Review 

Boards of the University of California, San Diego and The Salk Institute (Project no. 110776ZF). Subject descriptions 

including subject sex, age, family, ethnicity and cardiac diseases were collected during recruitment (Table S1). While 

individuals in the iPSCORE Resource were not selected for carrying specific diseases, six individuals had prolonged QT 

(due to dominant mutations in KCNQ1 or KCNH2), and two members of the same family had Danon disease (due to 

mutations in LAMP2). In addition to fibroblast collection for iPSC reprogramming and differentiation, whole blood samples 

were obtained for whole genome sequencing. 

Whole genome sequencing 

As previously described (DeBoever et al., 2017), we generated whole genome sequences from the 181 subjects used for 

iPSC derivation. Genomic DNA was isolated from whole blood using DNEasy Blood & Tissue Kit (Qiagen) and Qubit 

quantified. DNA was then sheared using Covaris KE220 instrument and normalized to 1µg, where WGS libraries were 

prepared using TruSeq Nano DNA HT kit (Illumina) and normalized to 2 - 3.5nM in 6-samples pools. Pooled libraries were 

clustered and sequenced on the HiSeqX (Illumina; 150 base paired-end) at Human Longevity, Inc. (HLI).   

iPSC derivation and somatic mutation analysis 

As previously described (Panopoulos et al., 2017), we reprogrammed fibroblast samples from the 181 individuals in this 

study using non-integrative Cytotune Sendai virus (Life Technologies) (Ban et al., 2011) following the manufacturer’s 

protocol. The 191 iPSCs used in this study (7 subjects had 2 or more clones each; Table S1B) were generated and shown to 

be pluripotent by analysis of RNA-seq by PluriTest (Muller et al., 2008) and for a subset based on >95% positive double 

staining for Tra-1-81and SEEA-4 (Panopoulos et al., 2017). The iPSCORE lines have been examined using SNP arrays and 

shown to have high genomic integrity with no or low numbers of somatic copy-number variants (CNVs) (Panopoulos et al., 

2017). Eighteen iPSCORE lines have been analyzed using whole genome sequencing and the mutational profiles shown to 
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be stable (i.e., not evolving) between passage 12 and later passages, and throughout differentiation into iPSC-CVPCs 

(D'Antonio et al., 2018).  

Large-scale derivation of iPSC-CVPC samples 

To generate iPSC-derived cardiovascular progenitors (iPSC-CVPCs) we used a small molecule cardiac differentiation 

protocol (Lian et al., 2013). The 25-day differentiation protocol consisted of five phases (Figure S1A), the optimizations for 

each step are described in detail below: 1) expansion: we developed the ccEstimate algorithm (Figure S2) to automate the 

detection of 80% confluency for iPSCs in T150 flasks (Figure S1B,C); 2) differentiation: we tested whether increasing the 

dosage of IWP-2 to induce to inhibit the WNT pathway improved differentiation efficiency and found that 7.5 µM at D3 of  

the differentiation provided in a single dose for 48 hours results in the most efficient differentiation (Figure S1D, E, Table 

S1H); 3) purification: since fetal cardiomyocytes use lactate as primary energy source and have a higher capacity for lactate 

uptake than other cell types (Fisher et al., 1981; Werner and Sicard, 1987), we incorporated lactate metabolic selection for 

five days to improve iPSC-CVPC purity (Tohyama et al., 2013) (Figure S1F); 4) recovery: after metabolic selection, iPSC-

CVPCs were maintained in cell culture for five days; and 5) harvest: we collected iPSC-CVPCs at D25 for downstream 

molecular assays and cryopreserved live cells. 

The 232 attempted differentiations of the 191 iPSC lines (Table S1B) were performed as follows: 

Expansion of iPSC: One vial of each iPSC line was thawed into mTeSR1 medium containing 10 μM ROCK Inhibitor 

(Sigma) and plated on one well of a 6-well plate coated overnight with matrigel. During the expansion phase, all iPSC 

passaging was performed in mTeSR1 medium containing 5 μM ROCK inhibitor, when cells were visually estimated to be 

at 80% confluency. The iPSCs were passaged using Versene (Lonza) from one well into three wells of a 6-well plate. Next, 

the iPSCs were passaged using Versene onto three 10 cm dishes at 2.54x104 per cm2 density. The iPSCs molonalyer was 

plated onto three T150 flasks at the density of 3.66 x 104 per cm2 using Accutase (Innovative Cell Technologies Inc.). Prior 

to expansion with Versene, after thaw iPSCs were passaged 1-2 times using Dispase II (20mg/ml; Gibco/Life technologies). 

iPSCs were at passage 22.7 ± 4.8 (range 17 to 44) at the monolayer stage (i.e., initiation of differentiation; Table S1B).  

Differentiation: At 80% iPSC confluency (measured using ccEstimate, see section below “Estimation of optimal time for 

initiation of iPSC-CVPCs differentiation using ccEstimate”) cell lysates were collected from 32 lines for RNA-seq data 

generation, where these iPSC and subsequent generated molecular data are referred to as D0 iPSC (Table S1E). After 

reaching 80% confluency (usually within 4-5 days), differentiation was initiated with the addition of the medium containing 

RPMI 1960 (gibco-life technologies) with Penicillin – Streptomycin (Gibco/Life Technologies) and B-27 Minus Insulin 

(Gibco/Life Technologies) (hereafter referred to as RPMI Minus supplemented with 12μM CHIR-99021 (D0). After 24h of 

exposure to CHIR-99021, medium was changed to RPMI Minus (D1). On D3 medium was changed to 1:1 mix of spent and 

fresh RPMI Minus supplemented with 7.5μM IWP-2 (Tocris). On D5, after 48h of exposure to IWP-2, the medium was 

change to RPMI Minus. On D7, medium was changed to RPMI 1960 with Penicillin – Streptomycin (Gibco/Life 
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Technologies) and B-27 Supplement 50X (hereafter referred to as RPMI Plus) (Gibco/Life Technologies). Between D7 and 

D13, RPMI Plus medium was changed every 48h.  

Purification: On D15 the cells were collected from the flask using Accutase and plated onto fresh T150 flasks at confluency 

1-1.3 x 106 per cm2. On D16, cells were washed with PBS without Ca2+ and Mg2+ (Gibco/Life Technologies) and medium 

was changed for RPMI 1960 no glucose (Gibco/Life Technologies) supplemented with Non-Essential Amino Acids 

(Gibco/Life Technologies), L-Glutamine (Gibco/Life Technologies), Penicillin-Streptomycin 10,000U (Gibco/Life 

Technologies) and 4mM Sodium L-Lactate (Sigma) in 1M HEPES (Gibco/Life Technologies). Medium supplemented with 

lactate was changed on D17 and D19.  

Recovery: On D21 cells were washed with PBS and medium was changed for RPMI Plus. On D23 medium was again 

changed for RPMI Plus. The first beating cells were usually observed between D7 and D9 and as early as D7 (immediately 

after the media change) and robust beating was usually observed between D8 and D11. During the lactate selection iPSC-

CVPC were beating robustly less than 16 hours after reseeding. For all successfully derived iPSC-CVPCs on D25, total-

cell lysate material was collected and frozen for downstream RNA-seq assays. 

Harvest: On D25 cells were collected using Accutase and processed for the following molecular material for downstream 

assays: 1) cell lysates (RNA-Seq); 2) permeabilized cells (ATAC-Seq); 3) live frozen cells (scRNA-seq); 4) cross-linked 

cells (ChIP-Seq, median number of vials/iPSC line = 3; ~1.0 x 107 cells/vial), and 5) dry cell pellets (methylation and 

protein). RNA-seq was generated from 180 iPSC-CVPC differentiations (149 lines from 139 subjects) that successfully 

reached D25 (Table S1E). 

Estimation of optimal time for initiation of iPSC-CVPCs differentiation using ccEstimate 

Heterogeneity of growth rates across different iPSC lines could result in different confluency at the monolayer stage (i.e., 

faster growing lines will be more confluent) and hence impact differentiation outcome. To reduce the effects of the iPSC 

lines having different growth rates, we developed an automatic pipeline that analyzes images of monolayer-grown cells, 

determines their confluency and predicts when cells reach 80% confluency to initiate the differentiation protocol (Figures 

S1C, S2). Cell confluency estimates (ccEstimate) are performed by first dividing each T150 flask into 10 sections (Figure 

S1C) and acquiring images for each section every 24 hours after cells are plated as a monolayer. The final image is acquired 

immediately after treatment with CHIR, which occurs when their confluence is at least 80% (Day 0). The time required for 

cells to reach 80% confluence is estimated on the basis of the confluence curve derived for each section in each flask. To 

digitally measure iPSC confluency, ccEstimate performs image analysis using the EBImage package in R (Pau et al., 2010). 

Images are read using the readImage function.  

Confluency measurement data is collected for at least the first three days after plating as monolayer to train a generalized 

linear model (GLM) using the function glm in R to estimate when cells must be treated with CHIR. Estimation is performed 
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separately for each flask section and CHIR is added to all three flasks associated to a given line when at least 75% of sections 

have confluence 80% (Figure S1C). 

Using this method, we could start differentiation at the same confluency level for each iPSC sample, thereby reducing or 

neutralizing the effects of different growth rates. On average, each sample required 4.23 ± 1.12 days to reach 80% 

confluency (Table S1E). The correlation between the number of days required to reach 80% confluency and the %CM 

population was -0.05, suggesting that iPSC growth rate does not affect differentiation outcome.  

Optimization of IWP-2 concentration by visual estimation of iPSC-CVPCs structure and beating quality 

To optimize the IWP-2 concentration, one iPSC line (2_3) was differentiated under four different IWP-2 conditions (Figure 

S1D, E): 1) 5µM IWP-2 added on D3, 2) 7.5µM IWP-2 added on D3, 3) 5µM IWP-2 added on D3 and D4, or 4) 7.5µM 

IWP-2 added on D3 and D4. In all four conditions cells were exposed to IWP-2 for 48 hours. At D15 of differentiation, the 

quality of generated iPSC-CVPC structures and beating were estimated by visual evaluation using two metrics that we 

established in the lab: 1) structure score; and 2) beat score. Both structure score and beat score were evaluated at 10 spots 

on each 150T flask that had also been used for digital measurement of cell confluency (Table S1H). Structure score and 

beat score had 4-point scales where 0 was the lowest and 3 was the highest grade. For structure score 0 = less than 10% of 

cells were cardiomyocyte-like with thick structures; 1 = 10-25% of cells were cardiomyocyte-like with thick structures; 2 = 

over 50% of cells were cardiomyocyte-like with thick structures; 3 = over 90% of cells were cardiomyocyte-like with thick 

structures. For beat score 0 = less than 10% of cells were cardiomyocyte-like beating robustly as a sheet; 1= 10-25% of cells 

were cardiomyocyte-like beating robustly; 2 = over 50 of cells were cardiomyocyte-like beating robustly; 3 = over 90% of 

cells were cardiomyocyte-like beating robustly. In cases of uncertainty or intermediate results, cells were assigned a lower 

grade. Grade 3 was assigned only for the iPSCs with thick, robustly beating sheets of cells.  

Comparison of lactate and glucose treated iPSC-CVPCs 

To examine the effects of lactate purification, three iPSC-CVPC lines derived from unrelated individuals (2_3, 8_2, and 

3_2) were differentiated to D15 (Figure S1F). At D16, medium supplemented with either 4mM Sodium L-Lactate (Sigma) 

or 2mg/mL D-glucose (Gibco/Life Technologies). Medium was changed on D17 and D19. On D21 cells were washed with 

PBS and medium was changed for RPMI Plus. Lactate and glucose treated cells were harvested on D25. 

Flow cytometry 

On D25 of differentiation, 5x105iPSC-CVPCs were permeabilized and blocked in 0.5% BSA, 0.2% TX-100 and 5% goat 

serum in PBS for 30 minutes at room temperature. Cells were stained with Troponin T, Cardiac Isoform Ab-1, Mouse 

Monoclonal Antibody (Thermo Scientific, MS-295-P0) at 4°C for 45 minutes, followed by Alexa Fluor 488 secondary 

antibody (Life Technologies, A11001). Stained cells were acquired using BD FACSCanto II system (BD Biosciences) and 

analyzed using FlowJo V10.2. 
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Immunofluorescence analysis of iPSC-CVPCs 

Immunofluorescence (IF) was assessed in 5 iPSC-CVPC lines (13_1, 14_2, 29_1, 2_1, and 42_1). Cells for IF were obtained 

by thawing live frozen iPSC-CVPC harvested on D25 and plating them directly on 0.1% gelatin-coated glass-bottom plates 

for five days (D30). Cells were then fixed using 4% paraformaldehyde (PFA) in PBS or 20 min at room temperature (RT). 

Fixed cells were permeabilized for 8 min at RT with 0.1% Triton X-100 in PBS, blocked in 5% bovine serum albumin for 

30 min at RT and incubated overnight at 4°C with a primary antibody. Cells were incubated with rabbit polyclonal anti-

connexin 43 (Cx43) antibody (Invitrogen, 710700) and with mouse monoclonal anti-sarcomeric alpha-actinin antibody 

(Sigma, A7811), or with rabbit polyclonal anti-MLC2V (Proteintech, 10906-1-AP) and/or mouse monoclonal anti-MLC2A 

(Synaptic Systems, 311011). All antibodies are described in Table S1D. 

After overnight incubation cells were washed three times with PBS and incubated with appropriate secondary antibodies: 

donkey anti-rabbit Alexa Fluor 488(Invitrogen, A-21206) and goat anti-mouse Alexa Fluor 568 (Invitrogen, A-11004) 

secondary antibodies for 45 minutes at RT. Cells were washed three times with PBS and nuclei were counterstained with 

DAPI and mounted. Slides were imaged using Olympus FluoView FV1000 confocal microscope at UCSD Microscopy 

Core. 

Generation of RNA-seq data 

For gene expression profiling of iPSCs, we used RNA-seq data from 184 samples (cell lysates were collected between 

passages 12 to 40, Table S1, dbGaP: phs000924) (DeBoever et al., 2017). For gene expression profiling of iPSC-CVPCs, 

we generated RNA-seq data from 180 samples at D25 differentiation (Table S1F, dbGaP: phs000924). All RNA-seq samples 

were generated and analyzed using the same pipeline (DeBoever et al., 2017). Briefly, we isolated total RNA from total-

cell lysates using the Quick-RNA™ MiniPrep Kit (Zymo Research) from frozen total-cell lysate, including on-column 

DNAse treatment steps and eluted in 48 µl RNAse-free water. RNA elutions were run on a Bioanalyzer (Agilent) to 

determine integrity and all samples had RNA integrity number (RIN) values greater than 9. Illumina Truseq Stranded mRNA 

libraries were prepared and sequenced on HiSeq4000, to an average of 28 M 125 bp paired-end reads per sample. RNA-Seq 

reads were aligned using STAR (Dobin et al., 2013) with a splice junction database built from the Gencode v19 gene 

annotation. RNA-Seq data with percent uniquely mapped reads greater than 70% and percent duplication less than 50% 

were considered to be good quality. Transcript and gene-based expression values were quantified using the RSEM package 

(1.2.20) (Li and Dewey, 2011) and normalized to transcript per million bp (TPM).  

Generation of scRNA-seq data 

Rationale: To capture the full spectrum of heterogeneity among the iPSC-CVPCs, we selected eight samples with variable 

%cTnT (42.2 to 95.8%). Given the high correlation that we observed between %cTnT and %CM populations in these eight 

samples, as well as the high correlation between %cTnT and deconvoluted %CM population across all samples with bulk 
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RNA-seq, we concluded that eight samples were sufficient to capture the full diversity of heterogeneity among the 191 iPSC 

lines that were differentiated.  

Generation: For eight iPSC-CVPCs sample and one H9 ESC line, single cells were captured using the 

10x Chromium controller (10x Genomics) according to the manufacturer’s specifications and manual (Manual CG00052, 

Rev C). Cells for each sample were loaded on the individual lane of a Chromium Single Cell A Chip. Libraries were 

generated using Chromium Single Cell 3’ Library Gel Bead Kit v2 (10xGenomics) following manufactures manual. 

Libraries were sequenced using a custom program (26-8-98 Pair End) on HiSeq 4000. Each library was sequenced on an 

individual lane. In total we captured 36,839 cells. We retrieved FASTQ files and used CellRanger V2.1 

(https://support.10xgenomics.com/) with default parameters using Gencode V19 gene annotation to generate single-cell 

gene counts for each individual sample.  

Processing: To combine the scRNA-seq from each individual sample, we used cellranger aggr and obtained a total of 

36,839 cells from 8 iPSC-CVPCs and 1 ESC sample. We removed 1,934 cells because they were not in G0 phase, as they 

expressed the proliferation marker MKI67 (Scholzen and Gerdes, 2000) at high levels (UMI > 2, Figure S4A-D). We also 

removed doublets (i.e. sequenced droplets containing more than one cell)(Kang et al., 2018)by visual inspection of the t-

SNE plots (Figure S4). There were 34,905 cells remaining after proliferating cells and doublets were removed. K-means 

clustering was performed on the 34,905 cells using k values 3, 4, and 9 (FigureS4E-G). k = 3 was determined to be the most 

suitable value, as visual inspection of the principal component analysis showed 3 distinct clusters (Figure S4E). The 

clustering shown both in the heatmap and in the UMAP plots (Figure 1G, 1H, 1J) was performed on the top 10 principal 

components calculated based on the expression levels of each single cell, according to the CellRanger pipeline.  

Differential expression: Differential expression across the three scRNA-seq clusters was performed by comparing the 

distribution of unique molecular identifiers (UMI) for a given gene from all the cells specific to one cluster (k-means; k = 

3) with all the cells specific to the other two clusters using edgeR asymptotic beta test (Robinson and Smyth, 2008) (Table 

S2). Differentially genes that had a total UMI ≥ 1 and FDR < 0.05 were considered to be significantly overexpressed in a 

given cluster. For visualization of gene expression in the t-SNE plots, transcript levels for each gene were normalized using 

the calcNormFactors function in edgeR (Robinson et al., 2010). 

CIBERSORT 

The expression levels of the top 50 genes overexpressed in each of the three cell populations (total 150 genes), with nominal 

p-value < 1.0 x 10-13 and mean UMI > 1 (Table S1G), were used as input for CIBERSORT (Newman et al., 2015) to calculate 

the relative distribution of the three cell populations for all the 180 iPSC-CVPC samples at D25. CIBERSORT 

(https://cibersort.stanford.edu/) was run with default parameters using the TPM values for the 150 genes in all 180 iPSC-

CVPC samples. 

https://support.10xgenomics.com/
https://cibersort.stanford.edu/
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Characterizing transcriptional similarities of iPSCs, iPSC-CVPCs and GTEx adult tissues by principal 

component analysis 

We performed principal component analysis (PCA) on RNA-seq using R prcomp function on 184 iPSCs, 180 iPSC-CVPCs 

and 1,072 RNA-seq samples from GTEx, including 303 left ventricle samples, 297 atrial appendage samples, 173 coronary 

artery samples and 299 aorta samples.  

Determining optimal CM:EPDC ratio estimates from CIBERSORT to define iPSCs cardiac fates 

For each iPSC line that had more than one iPSC-CVPC differentiation, we used the sample with the highest Population 1 

fraction. To obtain the optimal threshold, we used the RNA-seq data to conduct a series of differential expression analyses 

on 15,228 autosomal genes in the 184 iPSC lines (147 completed and 37 terminated) with RNA-seq data considering the 

ratio of population frequencies in the corresponding derived iPSC-CVPCs (0:100, 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 

70:30, 80:20 and 90:10, Table S3A-B). For example, for the 90:10 ratio we compared gene expression in the 60 iPSCs that 

differentiated into iPSC-CVPCs with >= 90% Population 1 to 124 iPSCs that differentiated into iPSC-CVPCs with less than 

90% Population 1. iPSC lines that that had terminated differentiations were assigned a CM:EPDC ratio of 0:100. To 

calculate differential expression at each threshold between CM-fated iPSCs and EPDC-fated iPSCs, we first retained all 

genes with TPM ≥ 2 in at least 10 samples and then transformed the RNA-seq TPM data to standard normal distributions 

by quantile normalization using the function normalize.quantiles from R package preprocessCore (Bolstad et al., 2003). 

Quantile normalized expression levels were then corrected for the first 10 factors calculated by PEER (Stegle et al., 2012). 

To remove any biases resulting from the fact that the ratio of male to female iPSCs was 71:113, we identified 242 genes 

that were significantly differentially expressed between female and male iPSCs (Storey q-value < 0.1, t-test) and removed 

them from further analyses (Table S3A-B). Across the ten thresholds, there were 116 differentially expressed autosomal 

genes (t-test, Table S3A-B). Considering these 116 genes, the 30:70 (CM:EPDC) ratio resulted in the highest number of 

differentially expressed genes (84 genes with Storey q-value < 0.1, t-test, Figure 3, Table S3C), which is substantially greater 

than random expectation (Table S9). Thus, we grouped the 184 iPSC lines into: 1) those that have CM fates, i.e. produced 

iPSC-CVPC with >= 30% Population 1 (125 lines), and 2) those that have EPDC fates, i.e. produced iPSC-CVPC with > 

70% Population 2 (22 lines differentiated to D25 and 37 terminated lines). We did not observe significant expression 

differences between the 22 iPSCs that were designated EPDC-fated because their corresponding iPSC-CVPCs had >70% 

Population 2 and the 37 iPSCs designated EPDC-fated because their differentiations were terminated before D25 (Table 

S3A-B). 

Comparing the number of differentially expressed genes with random expectation 

To determine if the number of significantly differentially expressed genes was higher than expected by chance, we shuffled 

the assignments of the 184 iPSC RNA-seq samples to differentiation fate (125 CM and 59 EPDC) 100 times. For each 

shuffle, we performed differential expression analysis and obtained the number of genes that were significantly differentially 
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expressed. In Figure S9 we show a QQ plot that demonstrates that the observed p-value distribution was substantially 

different than random expectation.  

Contribution of 91 signature genes in iPSCs to determination of cardiac fate  

Individual contributions: For each of the 91 signature genes, we built a generalized linear model (GLM) with the expression 

of the gene as input and the differentiation outcome (e.g. % Population 1) as output using the LinearRegression function 

from sklearn. To model the continuous property of the % Population 1 distributions, but maintain their boundary from 0-

100, we used a logit link function to transform measurements of % cardiomyocyte to ln(OR) of % Population 1, calculated 

as ln( % Population 1/ (1 - % Population 1) and capped the percentages at 0.99 and 0.01 to avoid infinite or undefined odds 

ratios. For each gene, the percent of variance explained is defined as the model’s R2. 

Cumulative impact: To understand the cumulative contribution of all 91 signature genes on cardiac differentiation fate, we 

built a generalized linear model (GLM) with an L1 norm penalty (ie LASSO) using the expression of all 91 genes as input 

and the differentiation outcome (e.g. % Population 1) as output using the LassoLarsCV function from sci-it learn. v0.19.1 

To model the continuous property of the % Population 1 distributions, but maintain their boundary from 0-100, we used a 

logit link function to transform measurements of % cardiomyocyte to ln(OR) of % CM population, calculated as ln( % CM/ 

(1 - % CM) and capped the percentages at 0.99 and 0.01 to avoid infinite or undefined odds ratios. To avoid overfitting the 

model, we used a 10-fold cross validation implemented in sci-kit learn v0.19.1 with 10,000 max iterations (Pedregosa et al., 

2011). The average R2, as reported by sci-it learn, is calculated by finding the R2 for each of the individual folds (i.e., 10 

R2s), and averaging these values to find how well the model performs across different data subsets. 

Detecting associations between genetic background and differentiation outcome 

We obtained genotypes for 8,620,159 biallelic SNPs and short indels with allelic frequency >5% in the iPSCORE collection 

(Panopoulos et al., 2017). Genotypes were obtained for each SNP in all individuals using bcftools view (Li, 2011). Linear 

regression was used to calculate the associations between the genotype of each variant and differentiation outcome (% CM 

population in the iPSC-CVPCs), using passage at monolayer and sex as covariates. 

To test if differentiations of different iPSC clones from the same individual or same twin pair were more likely to produce 

similar outcomes than iPSC clones from individuals with different genetic backgrounds, we first calculated the absolute 

difference in %CM between each pair of 180 iPSC-CVPCs. Next, we tested if the distributions between the three groups 

were different using Mann-Whitney U test (Figure S11B). 

Gene set enrichment analysis using the MSigDB collection 

We performed gene set enrichment analysis (GSEA) using the R gage package (V 2.20.1)(Luo et al., 2009) on all MSigDB 

gene sets (Liberzon et al., 2011; Subramanian et al., 2005) from 8 collections, including Hallmark gene sets (H), positional 
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gene sets (C1), curated gene sets (C2), motif gene sets (C3), computational gene sets (C4), Gene Ontology (GO, C5), 

oncogenic signatures (C6), and immunologic signatures (C7). FDR correction was performed independently for each 

collection. The normalized mean expression difference between iPSCs that differentiated to CMs and iPSCs that 

differentiated to EPDCs (Table S3C) was used as input for GSEA. Gene lists that were significant after multiple testing 

correction (Storey q-value  < 0.05) were considered significant.  

Associations between iPSC and subject features and differentiation outcome 

A generalized linear model (GLM) was built in R using age, sex, ethnicity, age, and passage of the iPSCs at D0 of 

differentiation as input and differentiation outcome as output (0 = EPDCs; and 1 = CMs). The model was built using the 

function glm (outcome ~ age + sex + ethnicity + passage, family=binomial(link=’logit’)).  

Identifying X chromosome inactivation in female iPSCs and iPSC-CVPCs 

To analyze X chromosome inactivation, we used 113 female iPSCs, of which 87 where CM-fated and 26 were EPDC-fated. 

To call allele specific effects (ASE) in RNA-Seq from iPSC and iPSC-CVPCs, we used the method previously described in 

DeBoever et al.(DeBoever et al., 2017). Genes lying in X chromosome pseudoautosomal (PAR) regions (PAR1: 60001- 

2699520, PAR2: 154931044 – 155260560) were removed from the analysis. We defined the strength of ASE for each gene 

as the fraction of RNA transcripts that were estimated to originate from the allele with higher expression (referred to as 

allelic imbalance fraction, AIF).  

Validation of findings in Yoruba iPSC set 

Generation of iPSCs: The Yoruba iPSCs in the Banovichet al. study (Banovich et al., 2018) were generated from 

lymphoblastoid cell lines (LCLs) using an episomal reprogramming strategy. Briefly, this included transfecting LCLs with 

the episomal plasmids and then culturing for seven days in hESC media (DMEM/F12 supplemented with 20% KOSR, 0.1 

mM NEAA, 2mM GlutaMAX, 1% Pen/Strep, 0.1# 2-Mercaptoethanol, 25ng/µl of bFGF, and 0.5mM NaB). On day eight, 

the transfected cells were plated in a 6-well plates. After four days, NaB was removed from the hESC media. Colonies were 

observed within 21 days and passaging continued for an additional 10 weeks (1 passage / week), where cells were collected 

for cryopreservation. Material collected for RNA-seq of the iPSC were collected after an additional minimum of three 

passages.   

Differentiation protocol: The Yoruba iPSC-CM derivation (Banovich et al., 2018) was performed using a small molecular 

method similar to iPSCORE iPSC differentiation protocol (see above: Large-scale iPSC-CVPC deviation). Briefly, 39 

iPSCs were expanded until 70-100% confluency (three to five days). On D0, differentiation was initiated by the 

supplementation of media with 12μM of GSK3 inhibitor CHIR-99021 for WNT pathway activation. On D3 of 

differentiation, 2µM of Wnt-C59 was added (PORCN inhibitor). On D5 of differentiation, Wnt-C59 was removed from 

culturing media and differentiating cells were grown with regular media exchanges from D5 to D14. On D14, D16, and D18 
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cultures were exposed to 5mM Sodium L-lactate for cardiomyocyte purification. On D20-D25, differentiating cells were 

exposed to 1.7 mg/mL galactose daily to force aerobic metabolism and thus aid in cardiomyocyte maturation. On D25-D27, 

cells were incubated at physiological oxygen levels (10%). On D27 cells were electrically stimulated with 6.6 V/cm, 2ms 

and 1Hz for further aid in cardiomyocyte maturation. Finally, iPSC-CMs were harvested on D31 or D32. Purity of iPSC-

CM Yoruba lines were measured by cTnT marker and flow cytometry. Out of the 39 iPSCs for which differentiation was 

attempted, 15 lines successfully generated iPSC-CMs and 24 were terminated on or before day 10 due to the fact that they 

did not form a beating syncytium (Table S5). 

RNA-seq: We downloaded RNA-seq for 34 of the Yoruba iPSC (14 successful iPSC and 20 terminated iPSC, five iPSCs 

did not have RNA-seq) and 13 iPSC-CM samples (two iPSC-CMs did not have RNA-seq) from Gene Expression Omnibus 

(GEO; GSE89895) (Banovich et al., 2018), as well as 297 samples from 19 distinct iPSCs in a timecourse experiment (day 

0-15) performed on the same Yoruba iPSC samples (Strober et al., 2019). These Yoruba RNA-seq data were generated from 

Illumina TrueSeq prepared libraries and sequenced at 50 bp single-end reads on an Illumina 2500. As iPSCORE RNA-seq 

was 125 bp paired-end reads, for comparative analyses, we trimmed all iPSCORE iPSC and iPSC-CM data to 50 bp and 

treated the paired-end reads as single-end reads. Both iPSCORE and Yoruba 50 bp RNA-seq was then processed as 

described above (Methods: Generation of RNA-seq data). Briefly, RNA-seq was aligned using STAR, then gene expression 

was quantified using the RSEM package and normalized to TPM.  

Estimation of cellular composition: The RNA-seq for the 13 Yoruba iPSC-CMs and from all timecourse time points were 

analyzed using CIBERSORT similar to the iPSCORE samples (see CIBERSORT section above). Briefly, the TPM values 

of the 150 overexpressed genes (50 from each of the three single cell populations; Table S2) were used as input to 

CIBERSORT to calculate the relative distribution of the three populations. 

Testing if iPSCORE differentially expressed genes with nominal significant expression differences in the same direction 

(e.g. over-expressed or down regulated) in the Yoruba iPSCs is greater than random expectation: Of 13,704 genes expressed 

both in the iPSCORE and Yoruba iPSCs, we obtained 6,909 for which the average normalized expression differences had 

either the same positive (CM fate/successful differentiation) or negative (EPDC fate/terminated differentiation) direction. 

The 6,909 genes included 47 of the 91 iPSCORE signature genes. We found that 466 (6.7%) of the 6,909 genes were 

nominally significant for being differentially expressed between the 14 successful and 20 terminated differentiations in the 

Yoruba samples, while 8 of the 47 iPSCORE differentially expressed genes (17.0%) had a nominal p < 0.05. This analysis 

shows that the 91 iPSCORE signature genes are 2.5 times more likely than expected (17.0% vs. 6.7%, p = 0.012, Fisher’s 

exact test) to be differentially expressed in the Yoruba samples based on cardiac differentiation fate.  
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