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Web Appendix

F Implementation of Result 5

Remark 1. (i) From Result 5, it follows that under a partition into s groups of sizes l =⌊
N

s

⌋
and l+1 (or alternatively l+1 = a+

⌊
θ

s

⌋
), we have the following relationship:

lgl + (l + 1)gl+1 = N, gl + gl+1 = s,

where gl is the number of groups of size l. The trivial solution of these equations

shows that we have gl = s(l + 1)−N and gl+1 = N − sl.

(ii) From Result 5, it follows that under a partition into s+1 groups of sizes w =

⌊
N

s+ 1

⌋
and w + 1 (or alternatively w + 1 = a+

⌊
θ

s

⌋
) we have the following relations:

wgw + (w + 1)gw+1 = N, gw + gw+1 = s+ 1,

The trivial solution of these equations shows that we have gw = (s + 1)(w + 1) − N

and gw+1 = N − w(s+ 1).

G Ungar Construction

We recall that Ungar’s (1960) fundamental result examines the general problem when group

testing is preferable to individual testing.

Result from Ungar (1960): The individual testing is optimal if and only if p ≥ 3−
√
5

2
.

We need to show Ungar’s (1960) construction for N = 2 to prove future results. The

tree below presents a reasonable group testing algorithm for N = 2 as it was presented by

Ungar (1960) (the left branch of the tree represent the negative test result, and the right

branch represents the positive test result):
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test 1 and 2

stop (T=1) test 1

stop (T=2) test 2 (T=3)

The expected number of tests per person is
1

2

(
3− q − q2

)
. Comparing it with 1, we

conclude that this algorithm is better than individual testing when p <
3−

√
5

2
or q >

√
5− 1

2
.

H Connection of group testing and coding theory

The connection of group testing with noiseless-coding theory was presented in group testing

literature by Sobel and Groll (1959) and further investigated in Sobel (1960, 1967), Kumar

and Sobel (1971), (Hwang, 1974, 1976), Glassey and Karp (1976), Wolf (1985) and Yao

and Hwang (1990). For a comprehensive discussion, see Katona (1973).

To demonstrate the connection, first consider the case when N = 2. There are 4 possible

outcomes which correspond to the total number of tests T = 1, 2, 3. We use the code − if

a person is free from decease and + otherwise. Therefore, there are M = 22 = 4 possible

states of nature:

−− with probability q2,

−+ with probability q(1− q),

+− with probability q(1− q),

++ with probability (1− q)2.

We use a binary (in which only the binary digits 0 and 1 are employed) prefix code for

these 4 possible states of nature. The code is called a prefix code if no code word is the

prefix (contained fully as the beginning) of any other code word. We want to code these 4

states with the binary prefix code with lengths l1, l2, l3, l4 such that the expected length

p1l1 + p2l2 + p3l3 + p4l4,
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will be minimal, where {p1, p2, p3, p4} =
{
q2, q(1− q), q(1− q), (1− q)2

}
. The solution of

this problem is due to Huffman (1952) and the simple explanation here is due to Rényi

(1984). Without loss of generality, assume p1 ≥ p2 ≥ p3 ≥ p4. Denote L4 as the minimal

expected length. For M = 2 with p1 ≥ p2, the problem is trivial. For M = 3, with

p1 ≥ p2 ≥ p3, it has to be decided which of these probabilities should be assigned to the

point which is one unit away from the root. It is clear that it must be the largest of the

three probabilities (i.e., p1), and that the two smaller ones (p2 and p3) should be assigned

to the point which is 2 units away. Below are the assignment and the optimal prefix code

as a tree presentation for M = 3:

root

0 10 11

As it was noticed, to the largest p1 is assigned code 0, and to the two others, p2,

and p3, are assigned codes 10 and 11. Now it is clear how to proceed with M = 4 with

p1 ≥ p2 ≥ p3 ≥ p4. Denote p34 = p3 + p4. In the previous case, M = 3 and we know how

to construct a tree. On this tree, we will branch out two new branches from the node with

p34 and put the numbers p3 and p4 at the two terminal nodes.

Now we can apply this optimal construction to the group testing with N = 2 (M = 4)

For q ≥ 1/4, we have p1 = q2 ≥ p2 = q(1 − q) ≥ p3 = q(1 − q) ≥ p4 = (1 − q)2, and for

q ≥ (
√
5− 1)/2 we have p1 ≥ p34 = p3 + p4 = 1− q ≥ p2.

prob. 1

with prob. q2 (code 0) prob. 1-q2

with prob. q(1-q) (code 10) prob. 1-q

prob. q(1-q) (code 110) prob. (1-q)2(code 111)

Therefore, L4 = 3 − q − q2 and equals to the expected number of tests in the Ungar

construction with N = 2.

Comment 1. (i) For N = 2, the total expected number of tests under the procedures D′

and S equals L4 and, therefore, is optimal among all group testing algorithms.
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(ii) The optimal group size under procedures D′ and S can be 2 (see Tables 1 and 2).

Therefore, from part (i) it follows that cut-off points for the procedures D′ and S

equal UCP pU .

Comment 2. (i) Sobel (1967) noticed that in general (for N ≥ 3) the optimal group

testing strategy does not coincide with the optimal prefix code of Huffman. Therefore,

LM , M = 2N can serve as a theoretical lower bound which is not attainable in general.

(ii) In general, the closed-form expression for LM is not available, except for the case

where p and N satisfy some condition (Jakobsson, 1978). It is also well known that

the complexity of calculation of LM is O (M log2(M)) ,M = 2N due to the sorting

effort. Therefore, even for small N , obtaining the exact value of LM seems to be

impossible.

(iii) A well-known information theory result (Noiseless Coding Theorem; see, e.g., Katona

(1973), Cover and Thomas (2006)) is

H(P ) ≤ LM ≤ H(P ) + 1,

where H(P ) is the Shannon formula of entropy, H(P ) = N

{
p log2

1

p
+ q log2

1

q

}
. It

is clear that H(P ) is easy to calculate and can serve as a reference information lower

bound for any group testing algorithm.

(iv) It is important to note that Yao (1988) obtained improvement over the information

lower bound for the values of p close to pU and Abrahams (1993) obtained it for values

of p close to zero.

I Development of the optimal nested procedure

The definition of nested procedure R1 was presented in Section 3 of the article. We need

the following (Sobel, 1960) result and lemma. We will cite them verbatim.

For a defective set of size m ≥ 1, denote the number of defective units Y and denote by

Z the number of defectives presents in the subset of size x (with with 1 ≤ x ≤ m − 1)
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randomly chosen from the defective set, then

P (Z = 0 |Y ≥ 1) =
qx(1− qm−x)

1− qm
. (1)

Lemma 1. Given a defective set of size m ≥ 2 and given that a proper subset of size

x with 1 ≤ x ≤ m − 1 also proves to contain at least one defective, then the posteriori

distribution associated with m − x remaining units is precisely that m − x independent

binomial chance variables with common probability q of being good.

Let G(m,n) denote the minimum expected number of tests needed to classify all m

units in defective set and the remaining n−m units in a binomial set (G-situation). Define

H1(n) = G(0, n) (H-situation). Then, from (1) and Lemma 1 above, we have the following

recursion (dynamic programming) equation which will lead as to the goal H1(N):

H1(0) = 0, H1(1) = 1,

H1(n) = 1 + min
1≤x≤n

{qxH1(n− x) + (1− qx)G(x, n)} , n = 2, . . . , N, (2)

G(1, n) = H1(n− 1) n = 1, 2, . . . , N,

G(m,n) = 1 + min
1≤x≤m−1

{
qx − qm

1− qm
G(m− x, n− x) +

1− qx

1− qm
G(x, n)

}
, 2 ≤ m ≤ n = 2, . . . , N.

It can be verified that the complexity of the calculation using above DP algorithm (2)

is O(N3).

Sobel (1960) reformulated the problem and found a solution with complexity O(N2)

in the following way. The iteration equations (2) for n = 2, . . . , N will always lead to the

“break down” defective set of size m ≥ 2. In particular, if the unit i is the first defective

units in the defective set that we found, then we come to the H-situation with n− i units

(follows from Lemma 1 above). This observation allows us to proceed in the following

way. Denote F1(m) as the minimum expected number of tests required to “break down”

a defective set of size size m ≥ 2 and for the first time reach H-situation when q is given.

Then F1(m) does not depend on n and we can write

G(m,n) = F1(m,n) +
m∑
i=1

qi−1p

1− qm
H(n− i), 2 ≤ m ≤ n = 2, . . . , N. (3)

Denote

F ∗
1 (m) =

1− qm

1− q
F1(m), G∗(m,n) =

1− qm

1− q
G(m,n).
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Then combining (2) with (3) leads to the improved dynamic programming algorithm (be-

low) with complexity O(N2):

H1(0) = 0, H1(1) = 1,

H1(n) = 1 + min
1≤x≤n

{
qxH1(n− x) + (1− q)

[
F ∗
1 (x) +

x∑
i=1

qi−1H1(n− i)

]}
, n = 2, . . . , N,

(4)

F ∗
1 (1) = 0,

F ∗
1 (m) =

1− qm

1− q
+ min

1≤x≤m−1
{qxF ∗

1 (m− x) + F ∗
1 (x)} , m = 2, . . . , N.

Comment 3. (i) Kumar and Sobel (1971) reduced the computational complexity of (4)

by half, showing that the value x in the last equation of (4) is bounded by m/2.

(ii) For N = 2, H1(2) equals L4 and, therefore, is optimal among all group testing algo-

rithms. In this case the procedures R1, S and D′ are equivalent (see also Comment 1

part (i)).

We demonstrate the construction of an optimum nested algorithm with the following

example.

Example: p = 0.05, N = 13

n 13 12 11 10 9 8 7 6 5 4 3 2

xH 13 12 11 10 9 8 7 6 5 4 3 2

xG 5 4 4 4 4 4 3 2 2 2 2 1

In this table, n is a size of the set C that still is not yet classified, xH is the size of

the subset that we have to check given that the set C is the binomial set (H-situation)

and xG is the size of the subset that we have to check given that set C is the defective set

(G-situation).
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J Matlab code for the optimum nested procedure

(i) Matlab function “Fstar”

#function [Fs Loc]=Fstar(p,n)

#q = 1− p;

#Fs = zeros(n, 1); Fs(1, 1) = 0; Loc = [];

#for m = 2 : 1 : n

#f = floor(m/2); l = zeros(f, 1);

#for x = 1 : 1 : f

#l(x) = (qx) ∗ Fs(m− x) + Fs(x);

#end

#Fs(m) = (1− qm)/(1− q) +min(l);

#%Location of min loc

#ll = min(l); loc = find(l == ll); Loc = [Loc;m loc];

#end end

(ii) Matlab function “H1”

#function [H1 D] = H1(p, n)

#q = 1− p; [Fs Loc] = Fstar(p, n);

#H1 = zeros(n, 1); H1(1, 1) = 1; D = [];

#for N = 2 : 1 : n

#l = zeros(N, 1);

#qN = ((fliplr(eye(N − 1))) ∗ (q.[0 : 1 : N − 2]′)). ∗H1(1 : N − 1, 1);

#S = [];

#for x = 1 : 1 : N − 1

#l(x) = (qx)∗H1(N−x)+(1−q)∗(Fs(x)+sum(qN(((N−1)−(x−1)) : (N−1), 1)));

#S = [S; 1 + l(x) N x];

#end

#l(N) = (1− q) ∗ (Fs(N) + sum(qN));

#S = [S; 1 + l(N) N N ]; SS = S(S(:, 1) == min(S(:, 1)), :);

#D = [D;SS]; H1(N) = 1 +min(l); end

#D = D(:, 2 : end);
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