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RNA plays essential roles in all known forms of life. Clustering RNA sequences with
common sequence and structure is an essential step towards studying RNA function.
With the advent of high-throughput sequencing (HTS) techniques, experimental and
genomic data are expanding to complement the predictive methods. However, the
existing methods do not effectively utilize and cope with the immense amount of data
becoming available. Hundreds of thousands of non-coding RNAs (ncRNAs) have been
detected, however, the annotation of these ncRNAs is lacking behind. Here we present
GraphClust2, a comprehensive approach for scalable clustering of RNAs based on
sequence and structural similarities. GraphClust2 bridges the gap between HTS and
structural RNA analysis, and provides an integrative solution by incorporating diverse
experimental and genomic data in an accessible manner via the Galaxy framework.
GraphClust2 can effciently cluster and annotate large datasets of RNAs and supports
structure probing data. We demonstrate that the annotation performance of clustering
functional RNAs can be considerably improved. Furthermore, an off-the-shelf
procedure is introduced for identifying locally conserved structure candidates in long
RNAs. We suggest the presence and the sparsity of phylogenetically conserved local
structures for a collection of long non-coding RNAs. By clustering data from two CLIP
experiments, we demonstrate the benefits of GraphClust2 for motif discovery under the
presence of biological and methodological biases. Finally, we uncover prominent
targets of double-stranded RNA binding protein Roquin-1, such as BCOR’s 3'UTR that
contains multiple binding stem-loops which are evolutionary conserved.
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RNA plays essential roles in all known forms of life. Clustering RNA sequences with common sequence and structure is an
essential step towards studying RNA function. With the advent of high-throughput sequencing (HTS) techniques,
experimental and genomic data are expanding to complement the predictive methods. However, the existing methods do
not effectively utilize and cope with the immense amount of data becoming available.

Hundreds of thousands of non-coding RNAs (ncRNAs) have been detected, however, the annotation of these ncRNAs is
lacking behind. Here we present GraphClust2, a comprehensive approach for scalable clustering of RNAs based on sequence
and structural similarities. GraphClust2 bridges the gap between HTS and structural RNA analysis, and provides an
integrative solution by incorporating diverse experimental and genomic data in an accessible manner via the Galaxy
framework. GraphClust2 can efficiently cluster and annotate large datasets of RNAs and supports structure probing data.
We demonstrate that the annotation performance of clustering functional RNAs can be considerably improved. Furthermore,
an off-the-shelf procedure is introduced for identifying locally conserved structure candidates in long RNAs. We suggest
the presence and the sparsity of phylogenetically conserved local structures for a collection of long non-coding RNAs.

By clustering data from two CLIP experiments, we demonstrate the benefits of GraphClust2 for motif discovery under the
presence of biological and methodological biases. Finally, we uncover prominent targets of double-stranded RNA binding
protein Roquin-1, such as BCOR’s 3'UTR that contains multiple binding stem-loops which are evolutionary conserved.

Key words: RNA secondary structure; structure-based clustering of RNAs; ncRNA annotation and discovery; Comparative
RNA analysis;

Functional analysis and validation of this vast amount of data
demand a reliable and scalable annotation system for the ncR-
NAs, which is currently still lacking for several reasons. First,
it is often challenging to find homologs even for many vali-
dated functional ncRNAs as sequence similarities can be very

High throughput RNA sequencing and computational screens
have discovered hundreds of thousands of non-coding RNAs
(ncRNAs) with putative cellular functionality (1, 2, 3, 4, 5, 6, 7].
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low. Second, the concept of conserved domains, which is
quite successfully applied for annotating proteins, is not well-
established for ribonucleic acids.

For many ncRNAs and regulatory elements in messenger
RNAs (mRNAs), however, it is well known that the secondary
structure is better conserved than the sequence, indicating the
paramount importance of structure for the functionality. This
fact has promoted annotation approaches that try to detect
structural homologs in the forms of RNA families and classes [8].
Members of an RNA family are similar and typically stem from
a common ancestor, while RNA classes combine ncRNAs that
overlap in function and structure. A prominent example of an
RNA class whose members share a common function without a
common origin is microRNA. One common approach to detect
ncRNA of the same class is to align them first by sequence, then
predict and detect functionally conserved structures by apply-
ing approaches like RNAalifold [9], RNAz [10], or Evofold [11].
A large portion of ncRNAs from the same RNA class, however,
have a sequence identity of less than 70%. In this sequence
identity range, sequence-based alignments are not sufficiently
accurate [12, 13]. Alternatively, approaches for simultaneous
alignment and folding of RNAs such as Foldalign, Dynalign, Lo-
cARNA [14, 15, 16] yield better accuracy.

Clusters of ncRNA with a conserved secondary structure
are promising candidates for defining RNA families or classes.
In order to detect RNA families and classes, Will et al. [17]
and Havgaard et al. [14] independently proposed to use the
sequence-structure alignment scores between all input se-
quence pairs to perform hierarchical clustering of putatively
functional RNAs. However, their applicability is restricted by
the input size, due to the high quartic computational com-
plexity of the alignment calculations over a quadratic num-
ber of pairs. Albeit the complexity of similarity computation
by pairwise sequence-structure alignment can been reduced to
quadratic 0(n?) of the sequence length [18], it is still infeasi-
ble for most of the practical purposes with several thousand
sequence pairs. For the scenarios of this scale, alignment-free
approaches such as GraphClust [19] and Nofold [20] propose
solutions.

A stochastic context-free grammar (SCFG), also known as
covariance model (CM), encodes the sequence and structure
features of a family in a probabilistic profile. CM-base ap-
proaches have been extensively used, e.g. for discovering ho-
mologs of known families [21] or comparing two families [22].
Profile-based methods [20, 23] such as Nofold generally rely
on a CM database of known families to annotate and cluster
sequences by comparing against the profiles, therefore their
applicability for de novo family or motif discovery is affected
by the characteristics of the already known families and the
provided models.

The GraphClust methodology uses a graph kernel approach
to integrate both sequence and structure information into high-
dimensional sparse feature vectors. These vectors are then
rapidly clustered, with a linear-time complexity over the num-
ber of sequences, using a locality sensitive hashing technique.
While this solved the theoretical problem, the use case guid-
ing the development of the original GraphClust work, here as
GraphClusti, was tailored for a user with in-depth experience
in RNA bioinformatics that has already the set of processed
sequences at hand, and now wants to detect RNA family and
classes in this set. However, with the increasing amount of se-
quencing and genomic data, the tasks of detecting RNA family
or classes and motif discovery have been broadened and are be-
coming a standard as well as appealing tasks for the analysis
of high-throughput sequencing (HTS) data.

To answer these demands, here we propose GraphClust2 as
a full-fledged solution within the Galaxy framework [24]. With
the development of GraphClust2, we have materialized the fol-

lowing goals, GraphClust2 is: (i) allowing a smooth and seam-
less integration of high-throughput experimental data and ge-
nomic information; (ii) deployable by the end users less experi-
enced with the field of RNA bioinformatics; (iii) easily expand-
able for up- and downstream analysis, and allow for enhanced
interoperability; (iv) allowing for accessible, reproducible and
scalable analysis; and (v) allowing for efficient parallelizations
over different platforms. To assist the end users, we have de-
veloped auxiliary data processing workflows and integrated al-
ternative prediction tools. The results are presented with intu-
itive visualizations and information about the clustering.

We show that the proposed solution has an improved clus-
tering quality in the benchmarks. The applicability of Graph-
Clust2 will be shown in some sought-after and prevailing do-
main scenarios. GraphClust2 supports structure probing data
such as from SHAPE and DMS experiments. It will be demon-
strated that the structure probing information assists in the
clustering procedure and enhances the quality. By clustering
ncRNAs from Arabidopsis thaliana with genome-wide in vivo
DMS-seq data, we demonstrate that the genome-wide prob-
ing data can in practice be used for homologous discovery, be-
yond singleton structure predictions. Furthermore, an off-the-
shelf procedure will be introduced to identify locally conserved
structure candidates from deep genomic alignments, by start-
ing from a custom genomic locus. By applying this methodol-
ogy to a couple of well-studied long non-coding RNAs (IncR-
NAs), we suggest the presence and the sparsity of local struc-
tures with highly reliable structural alignments. GraphClust2
can be used as a structure motif-finder to identify the precise
structural preferences of RNA binding proteins (RBPs) in cross-
linking immunoprecipitation (CLIP) data. By comparing public
CLIP data from two double-stranded RBPs SLBP and Roquin-1,
we demonstrate the advantage of a scalable approach for dis-
covering structured elements. Under subjective binding prefer-
ences of Roquin-1 and the protocol biases, a scaled clustering
uncovers structured targets of Roquin-1 that are evolutionary
conserved. Finally, we propose BCOR’s mRNA as a prominent
binding target of Roquin-1 that contains multiple stem-loop
binding elements.

The clustering workflow. The GraphClust approach can efficiently
cluster thousands of RNA sequences. This is achieved through
a workflow with five major steps: (i) pre-processing the input
sequences; (ii) secondary structure prediction and graph en-
coding; (iii) fast linear-time clustering; (iv) cluster alignment
and refinement, with an accompanying search with alignment
models for extra matches; and finally (v) cluster collection, vi-
sualization and annotation. An overview of the workflow is
presented in Figure 1.

More precisely, the pre-processed sequences are individ-
ually folded according to the thermodynamic free energy
models with the structure prediction tools RNAfold [25] or
RNAshapes [26]. A decomposition graph kernel is then used
to efficiently compute similarity according to the sequence and
structure features of secondary structure graphs. The Min-
Hash technique [27] and inverse indexing are used to identify
the initial clusters, which correspond to dense neighborhoods
of the graph feature space. Formal description and formula-
tions of kernel and MinHash methods are provided in section S1
of the supplementary document. The MinHash clustering ap-
proach is very fast with a linear runtime complexity over the
number of entries. This accordingly makes GraphClust2 much
more efficient than the quadratic all-vs-all approach [19]. It



permits the clustering of up to hundreds of thousands of RNA
sequences in a reasonable time frame.

After the MinHash clustering step, the initial clusters are
refined using the RNA domain-specific tools. Firstly, from the
sequences of each initial cluster a UPGMA tree is created to prune
the clusters. The pairwise distances of the tree are approxi-
mated from LocARNA sequence-structure alignment scores, as
is proposed and detailed in [17]. This pruning procedure keeps
the subtree which has the highest average pairwise alignment
on its leaves. Here we use the RNA domain-specific scores from
LocARNA alignments, although it would have been possible to
compute distances from the generic graph kernel scores. Lo-
CcARNA scores are used, since the runtime complexity is not a
concern here, as the pairwise alignments are only computed
within each cluster. Each cluster has typically about 10-100 se-
quences, which is much smaller than the entire input data. In
the second step after pruning, the multiple alignment of each
pruned cluster is refined with CMfinder’s expectation maxi-
mization algorithm [28]. Thirdly, after the alignment is re-
fined, a homology search using Infernal [21] tools is applied
over the entire dataset. Such that for each cluster’s refined
alignment, a covariance model (CM) is built using cmbuild. The
CM is then used to scan the entire sequence database using
cmsearch. This CM homology search step extends the clusters
with additional homologs that have been missed in the initial
clustering. Finally, the sequences of each cluster are aligned
with LocARNA, the consensus structures are predicted, visual-
ized and annotated by conservation and covariation metrics.

In an iterative fashion, the steps downstream of the fast
clustering can be repeated over the sequences which are not
clustered in the previous iteration. GraphClust2 can also
compute fuzzy soft overlapping clusters. The option to report
overlapping clusters instead of a hard optimal partitioning
can be set by the user at the cluster report step. Furthermore,
a pre-clustering optional step can be invoked to remove
near identical and redundant sequences using CD-HIT [29].
This pre-clustering would be beneficial for the datasets with
high redundancy or very large number of sequences, e.g.
metatranscriptomics data.

Workflow input. GraphClust2 accepts a set of RNA sequences as
input. Sequences longer than a defined length are split and
processed with a user-defined sliding window option. Two
recommended settings are provided for ncRNA clustering and
motif discovery as will be discussed in the workflow flavors
section below. In addition to the standard FASTA formatted
input, a collection of auxiliary workflows are implemented to
allow the user to start from genomic coordinate intervals in
BED format, or genomic alignments from orthologous regions
in MAF format, or sequencing data from the structure probing
experiments. Use case scenarios are detailed in the upcoming
sections.

Workflow output. The core output of the workflow is the set
of clustered sequences. Clusters can be chosen either as hard
partitions having an empty intersection or as overlapping soft
partitions. In the latter case elements can belong to more
than one cluster. In-depth information and comprehensive
visualizations about the partitions, cluster alignments and
structure conservation metrics are produced (Figure 1). The
consensus secondary structure of the cluster is annotated
with base-pairing information such as statistically significant
covariations that are computed with R-scape [30]. Evaluation
metrics for structure conservation are reported. In the case
of MAF input, color-coded UCSC tracks are automatically
generated to locate and annotate conserved clusters in the
genome browser. The in-browser integrated view of the
clusterings makes it possible to quickly inspect the results.

The Galaxy server keeps track of the input, intermediate
and final outputs. The clustering results can be shared or
downloaded to the client system.

Workflow flavors. Two preconfigured flavors of the workflow are
offered for the local and the global scenarios, to facilitate the
users without demanding an in-depth knowledge about con-
figuring complex tools. The global flavor aims for clustering
RNAs on the whole transcript, such as for annotating ncRNAs
of short and medium lengths. The local flavor serves as the
motif-finder. The motivation has been to orderly deal with
putative genomic sequence contexts around the structured ele-
ments. Prediction methods usually require different settings in
these two scenarios [31]. The main differences between the fla-
vors are the pre-configured window lengths (~250 vs. ~100),
the aligner parameters and the hit criteria of the covariance
model search (E-value vs. bit score). The motif-finder flavor
can be for example used to identify cis-regulatory elements,
where it is expected to find structured motifs within longer se-
quences.

As a feature, the fast clustering can be tuned to weigh in
sequence-based features. The graph for each entry consists
of two disjoint parts. The primary part is the structure graph
where the vertices are labeled with the nucleotides while the
backbone and paired bases are connected by edges. Besides the
primary part, a path graph can be included to represent the nu-
cleotide string (option -seq-graph-t). By including the path
graphs, sequence-only information would independently con-
tribute to the feature vectors.

RNA structure probing is an emerging experimental technique
for determining the RNA pairing states at nucleotide resolu-
tion. Chemical treatment with reagents like SHAPE (selective
2’-hydroxyl acylation analyzed by primer extension) and DMS
(dimethyl sulfate) [32, 33] provide one-dimensional reactivity
information about the accessibility of nucleotides in an RNA
molecule. Structure probing (SP) can considerably improve the
secondary structure prediction accuracy of RNAs [34, 35, 36].
SP-assisted computational prediction methods commonly in-
corporate the probing data by guiding the prediction algo-
rithms via folding constraints and pseudo-energies [37, 38, 25].
Deigan et al. first introduced the position-specific pseudo-
energy terms to incorporate the reactivity information along-
side the free energy terms of thermodynamic models [39]. The
pseudo-energy term for position i is defined as:

AG m In(1 + reactivity(i)) + b

pseudo—energy(i) =
where parameters m and b determine a scaled conversion of
the reactivities to the energy space. GraphClust2 supports
structure probing data for enabling a guided structure predic-
tion [25, 40]. The structure probing support is integrated into
the pre-processing and the structure prediction steps to gen-
erate SP-directed structure graphs.

GraphClust2 is implemented within the Galaxy framework [24].
Galaxy offers several advantages to assist our goal of develop-
ing a scalable and user-friendly solution. The platform makes
it convenient to deploy complex workflows with interopera-
ble tools. Through the uniform user interface across different
tools, it is easier for the users to work with new, unfamiliar
tools and freely interchange them. Moreover, the standard-



ized data types will ensure that only inputs with valid types
are passed to a tool. Interactive tutorial tours are produced to
introduce the user interface and guide the user through sample
clustering procedures.

GraphClust2’s toolset has been made publicly available in

Galaxy ToolShed [41] and can be easily installed into any Galaxy
server instance. GraphClust2 is available also as a standalone
container solution for a variety of computing platforms at:
https://github.com/BackofenLab/GraphClust-2 and can be freely
accessed on the European Galaxy server at: https://graphclust.
usegalaxy.eu.
The workflow implementation. GraphClust2 workflow is com-
posed of tools and scripts which are packaged in Bioconda and
Biocontainers [42] and integrated into the Galaxy framework.
This has enabled automatic installation of the tools in a
version-traceable and reproducible way. All functional units
and workflows are manually validated and are under extensive
continuous integration tests. Strict versioning of tools and
requirements ensures reproducible results over multiple
different versions of a tool while delivering updates and
enhancements.

Platform-independent virtualised container. GraphClust2 can be
deployed on any Galaxy server instance, simply by installing
the GraphClust tools from the Galaxy ToolShed. As a stan-
dalone solution, virtualised Galaxy instance based on Linux
containers (Docker, rkt) [43] are provided that can be executed
on Linux, OSX and Windows. This largely simplifies the de-
ployment phase, guarantees a reproducible setup and makes it
instantiable on numerous computation systems from personal
computers to Cloud and high-performance computing (HPC)
environments. The Docker image is based on the official Galaxy
Docker image [44, 45] and is customized to integrate Graph-
Clust2 tools, workflows and tutorial tours.

Rfam-based simulated SHAPE. A set of Rfam [46] sequences and
the associated SHAPE reactivities were extracted from the
ProbeAlign benchmark dataset [47]. The simulated SHAPE
reactivities have been generated according to the probability
distributions that are fitted to experimental SHAPE data by
Siikdsd et al. methodology [48]. Rfam families containing
at least ten sequences were used. A uniformly sized subset
was also extracted, where exactly ten random sequences
were selected per family to obtain a variation with a uniform
unbiased contribution from each family.

Arabidopsis thaliana ncRNA DMS-seq. Arabidopsis DMS-seq reads
were obtained from the structure probing experiment by Ding
et al. [49] (NCBI SRA entries SRX321617 and SRX320218).
The reads were mapped to TAIR-10 ncRNA transcripts (En-
sembl release-38) [50]. Reactivities were computed for non-
ribosomal RNAs based on the normalized reverse transcription
stop counts using Structure-Fold tool in Galaxy [51]. We used
Bowtie-2 [52] with the settings recommended by [53] (options
-trim5=3, -N=1). Transcripts with poor read coverage tend to
bias towards zero-valued reactivities [54]. To mediate this bias,
low information content profiles with less than one percent
non-zero reactivities were excluded. To focus on secondary
structure predictions of the paralogs that can have high se-
quence similarity, the graphs were encoded with the primary
part without path graphs. Information about the ncRNA fami-
lies is available in the Supplementary Table S4.

Orthology sequence extraction from long RNA locus. The genomic
coordinates of the longest isoforms were extracted from
RefSeq hg38 annotations [55] for FTL mRNA and IncRNAs

NEAT1, MALAT1, HOTAIR and XIST. To obtain the orthologous
genomic regions in other species, we extracted the genomic
alignment blocks in Multiz alignment format (MAF) [56]
for each gene using the UCSC table browser [57] (100way-
vertebrate, extracted in Aug. 2018). Alignments were directly
transferred to the Galaxy server via the UCSC-to-Galaxy data
importer. MAF blocks were concatenated using MAF-Galaxy
toolset [58] to obtain one sequence per species. An auxiliary
workflow for this data extraction procedure is provided. This
procedure is notably scalable and can be applied to any locus
independent of the annotation availability. Alternatively, the
user can provide e.g. full transcripts or synteny regions [59]
for the downstream analysis. For the background shuffled in-
put, Multiperm [60] was used to shuffle the Multiz alignment
of MALAT1 locus.

SLBP eCLIP. Binding sites of SLBP were obtained from the
ENCODE eCLIP project (experiment ENCSR483NOP) [61]. In
the consortium’s workflow, CLIPper [62] is used to extract
peak regions of the read coverage data. The peaks are
annotated with both p-values and log2-fold-change scores.
These values are determined from the read-counts of the
experiment compared with the read-counts of a size matched
input. We extracted the peaks with a log2-fold-change of at
least 4. To diminish the chance of missing the binding motif,
the peak regions were extended by 60 nucleotides both up-
and downstream. The sequences of the resulting 3171 binding
target regions were used for clustering and motif analysis.

Roquin-1 PAR-CLIP. The 16000+ binding sites of Roquin-1
(RC3H1) were obtained from Murakawa et al. [63] (hg18 coor-
dinates from the associated mdc-berlin web page). The 5000
target regions with the highest PAR-CLIP scores were used for
the downstream analysis and structural clustering. The bind-
ing sites sequences were extracted using the extract-genomic-
dna tool in Galaxy.

For each of the studied long RNAs, the sequences were ex-
tracted from the orthologous genomic regions as detailed in
the data preparation section. Clustering was performed using
the motif-finder flavor. In the preprocessing step, the sliding
window was set to 100b length and 70% shift. The LocARNA
structural alignments of the predicted clusters were further
processed using RNAz [64], Evofold [11] and R-scape [30], to
annotate clusters with structure conservation potentials in the
generated genomic browser tracks. RNAz uses a support vector
machine (SVM) that is trained on structured RNAs and back-
ground to evaluate the thermodynamic stability of sequences
folded freely versus constrained by the consensus structure.
Evofold uses phylo-SCFGs to evaluate a conservation model
for local structures against a competing nonstructural conser-
vation model. R-scape quantifies the statistical significance
of base-pair covariations as evidence of structure conserva-
tion, under the null hypothesis that alighment column pairs
are evolved independently.

RNAz was invoked (option -locarnate) with the default 50%
cutoff for SVM-class probability to annotate the clusters. Evo-
fold was also run with the default parameters over the cluster
alignments and supplied with the corresponding hg38-100way
UCSC’s phylogenetic tree [56]. Clusters that were predicted by
Evofold to contain at least one conserved structure with more
than three base-pairs were annotated as Evofold hits. R-scape
was also applied with the default parameters (i.e. G-test statis-
tics -GTp), clusters with at least two significant covariations
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were annotated. Clusters are constrained to have a depth of
at least 50 sequences. Alignments with spurious consensus
structure or no conservation were excluded, using a structure
conservation index (SCI) filter of one percent [64]. Clusters an-
notated by at least one of the three methods are designated as
locally conserved structure candidates.

The clustering was benchmarked similarly to our previous
work [65], such that the Rfam family where each input RNA
belongs to is considered as the truth reference class. The per-
formance is measured using the adjusted Rand index (ARI) [66]
clustering quality metric, which is defined as:

Rand Index - E[Rand Index]
1 - E[Rand Index]

Adjusted Rand Index =

The Rand Index [67] measures the fraction of the entry pairs
that are related in the same way in both the predicted clustering
and the reference assignment. E[ Rand Index] is the expected
Rand Index (for extended details please refer to [65]). The ad-
justed Rand index is the corrected-for-chance variation of the
Rand Index with a maximum value of one. A better agreement
between the predicted clustering and the reference assignment
leads to a higher ARI value.

Rfam-cliques benchmark. ~We evaluated GraphClust2 using
known RNA families from the Rfam database [46]. The Rfam
sequences were obtained from the Rfam-cliques benchmark in-
troduced in our previous work [65]. The Rfam-cliques bench-
mark contains sets of RNA families at different sequence iden-
tity levels and allows for benchmarking a tool for the cases of
low and high sequence identities (Rfam-cliques-low and Rfam-
cliques-high). Each variation contains a collection of human
members of the Rfam families together with homologs in the
other species. As we wanted to evaluate the performance in
a simulated scenario of genome-wide screening, we selected
the human paralogs from the benchmarks and measured (us-
ing the adjusted Rand index metric) how well GraphClust1 and
the new pipeline GraphClust2 correctly cluster members of the
families together.

In comparison to GraphClusti, GraphClust2 provides alter-
native approaches for the identification of the secondary struc-
tures. Using similar configurations as in GraphClust1 [19], i.e.
RNAshapes for structure prediction and bit score for CM search
hits, the clustering performance of GraphClust2 is similar or
better due to the integration of upgraded tools. However, the al-
ternative configuration of RNAfold for structure prediction and
E-value for CM search hits consequently improves the perfor-
mance (ARI from 0.641 to 0.715 for Rfam-cliques-high, further
details in Supplementary Table S1).

SHAPE-assisted clustering improves the performance. In the previ-
ous benchmark, the clustering relies on the free energy models
for secondary structure prediction. A predicted structure some-
times deviates from the real functional structure due to the cel-
lular context and folding dynamics. In this case, the structure
probing SHAPE data associated with the real functional struc-
ture is expected to improve the quality of structure prediction,
which in turn should improve the clustering. We wanted to
investigate how an improvement in the structure prediction
quality at the early clustering steps influences the final cluster-
ing results. To draw a conclusion, however, extensive SHAPE

data would be needed for a set of labeled homologous ncRNAs,
ideally with different sequence identity and under similar ex-
perimental settings. Currently, such collection of data, espe-
cially over multiple organisms, is still unavailable. However, as
the structure probing is turning into a standard and common
procedure, data of such nature is expected to become available
soon.

One solution to the mentioned data scarceness is provided
in the literature [48], by simulating the experimental gener-
ation of a SHAPE profile from the real functional structure.
Here, starting from a set of manually curated reference struc-
tures, the idea is to simulate SHAPE profiles that reflect the
known reference structures. We used the benchmark from
ProbeAlign [47] (see Material and Methods for details). Fig-
ure 2 shows the effect of incorporating simulated SHAPE data
on clustering by guiding the structure prediction. As can be
seen, the incorporation of SHAPE data has improved the clus-
tering performance. Notably, an improvement can be achieved
in fewer rounds of clustering iterations.

To validate the GraphClust2’s scalability and linearity claims,
we used a millions-sequence biological dataset. GraphClust2 is
implemented with a comprehensive support for parallel com-
putation using the Galaxy framework. The MinHash-based
clustering step is the only step where the entities are evalu-
ated altogether to identify the dense neighborhoods as clus-
ters. Thanks to the MinHash technique, this step has only a
linear complexity (see methods and supplementary section S1).
To empirically validate this, we clustered a large metatran-
scriptomic dataset of a marine sample from [68]. After merg-
ing the paired-end reads, the metatranscriptome contained
3,594,198 sequences with an average length 250 bases. To fil-
ter highly similar sequences, we performed sequence-based
pre-clustering with CD-HIT set at a 90% similarity thresh-
old. This produced about 913,000 sequences with a total of
195 million bases. GraphClust2 identified several large clusters
of sizes larger than one hundred in one round. Translation-
complex-related RNAs (tRNA, LSU and 5s rRNAs) were among
the dominating ncRNA classes, matching the expectation due
to the high expression levels of the families. Please refer to the
supplementary Table S2 for further details. Clustering the en-
tire 3.6 million sequences took less than a day on the European
Galaxy server. To check the runtime growth over number of
inputs, we measured the wall-clock runtime for sub-samples
of various sizes on the European Galaxy server. GraphClust2
robustly scaled with a linear trend over the size of the input
(Supplementary Figure S1).

As shown in the previous section, we expect structure prob-
ing information to improve the clustering. Information about
the structure formations in vivo can be obtained from struc-
ture probing (SP) techniques. By determining the nucleotide-
resolution base reactivities, where positions with high reac-
tivity indicate unbound bases. Recently, high-throughput se-
quencing has enabled SP to be applied in a genome-wide man-
ner, thus providing structure probing reactivities of an en-
tire transcriptome [69]. In this way, large amount of SP data
can be obtained. Despite the availability of genomic-wide SP
data, its application for transcriptome-wide structure analysis
is promising [70] but has remained largely underutilized.

Enhanced ncRNA annotation with in vivo SP data. We thus evalu-
ated how the task of clustering and annotation of ncRNAs can



benefit from such type of genome-wide probing experiments.
For this, we compared clusterings of Arabidopsis thaliana ncR-
NAs with and without considering the DMS-seq data by Ding et
al. [49] (see Materials and Methods). Due to the relatively high
sequence similarity of the annotated paralogous ncRNAs of Ara-
bidopsis thaliana, the Adjusted Rand Index is high even when no
SP data is considered (-DMS-seq mode ARI 0.88). Nonethe-
less, the quality metric is slightly improved by incorporating
the SP data (+DMS-seq mode ARI 0.91). We further manually
inspected the quality of the produced clusters. Figure 3 shows
the enhanced results for identifying ncRNA classes by using
GraphClust2 with in vivo probing data. In the +DMS-seq mode
(Figure 3B), all detected clusters are pure RNA classes, while
the -DMS-seq mode (Figure 3A) produces mixed-up clusters
for Group II Introns family plus snoRNA, miRNA and U-snRNA
classes. For example, as it can be seen in Figure 3C, the SP data
improves the structure prediction by predicting a conserved
stem for two of the Group Il Introns only in the +DMS-seq mode,
which leads to one pure cluster for the family.

RNA-seq experiments from biological conditions often result
in differentially expressed transcripts, which are studied for
functionality and regulatory features. A differential expression
hints at putative regulatory effects. An orthogonal source of in-
formation for the functional importance of a transcript is phy-
logenetic conservation patterns. For long non-coding RNAs,
however, sequence conservation is usually low, imposing lim-
itations on the sequence level conservation analysis. This fact
has been one motivating reason for a collection of recent stud-
ies to explore the conservation and functionality of IncRNAs
at the secondary structure level [71, 72, 73]. A majority of
the studies have been focusing on identifying widely spanned
structures, postulating the existence of a to-be-discovered sin-
gle global structure. However, some of the reported conserva-
tions have been challenged for lacking trustworthy base-pair
covariations in the alignments [30].

Looking for locally conserved secondary structures in IncR-
NAs is alluring for several reasons. First, with an increase in
the base pair span length the prediction quality decreases [31],
which implies that global structure prediction for long RNAs
tends to be inaccurate. Second, the structure of a transcribed
RNA structure is influenced by RNA-binding proteins in vivo,
and thus a predicted global structure likely deviates from the
real functional structure. Third, in many cases and similar to
the untranslated regions in mRNAs, only a locally conserved
structural motif is expected to suffice to perform a function,
independent of the precise global structure. We thus revert
to a frequently used strategy in the RNA field, namely to look
for locally conserved structural motifs. We wanted to evaluate
whether we can use GraphClust2 for this purpose.

It should be noted that distinguishing conserved structures
from background genomic sequence similarity using base-pair
conservation signals is a challenging task. Genome-wide
screening studies over genomic alignments require adjusted
thresholds for statistical significance discovery and report up
to 22% [4] false discovery rates that can be even higher [74].
Despite this and due to the persistent expansion of genomic
data, the depth and quality of genomic alignments are continu-
ally increasing. Currently, there is a lack of off-the-shelf tools
for comprehensively analyzing locally conserved structural el-
ements of a specific locus. Here based on GraphClust2, we
propose a data extraction and structure conservation detection
methodology (as detailed in the Materials and Methods) that
can readily be used for desired loci and genomic alignments to
identify candidates with locally conserved structure potentials.

An advantage of this clustering approach over traditional
screening methods is its ability as an unsupervised learning
method, for not imposing explicit presumption on the depth
or number of predicted motifs. This makes it possible to find
the locally conserved structures also in the regions where a sub-
set of species do not have a conserved structure. Furthermore,
this approach does not require a precise co-location of the con-
served elements within the transcript, in contrast to traditional
alignment-based screening approaches. A further advantage
is the availability of the solution in the Galaxy framework, as
it provides a rich collection of assets for interactive data col-
lection and analysis of genomic data. We used the 100way
vertebrate alignments to extract the orthologous genomic re-
gions for each of the studied RNAs in human and other ver-
tebrates. Each of the orthologous sequences is split into win-
dows, which are then clustered by GraphClust2. The alignment
of each cluster has been further annotated with some of best
practice complementary methods in assessing covariation pat-
terns and structure conservation potentials, namely RNAz, Evo-
fold and R-scape (see Material and Methods for details). In the
following section, some example studies are presented.

We investigated clustering of orthologous genomic regions of
FTL mRNA and four well-studied IncRNAs, using the approach
described before. The selected IncRNAs have been previously
reported for having loss-of-function phenotypes [75, 76].
In Figures 4A-D and S3 the locations of locally conserved
candidates are displayed. These locations are automatically
generated by GraphClust2 from clusters with conserved
structures (candidate motifs track). The track is automatically
annotated and filtered using the computed metrics of Evofold,
RNAz and R-scape tools (see methods and Figure 4 top-right
legend). For these studied IncRNAs, an additional track (manu-
ally curated subset) is provided. The track is the selection subset
of candidate motifs track which are manually further screened
and selected by stringent expert criteria. The intention was
to identify confident conserved elements that can be used
e.g. for mutational experiments. The clusters were manually
curated in a qualitative manner by inspecting the alignments,
their consensus structures as well as the conservation metrics.
Only the highly reliable structural alignments which posed a
good level of covariation and were not deemed to be alignment
artifacts were selected. The main filtering out criteria were:
singleton compensatory mutations; avoidable column shifts
producing artificial mutations; absence of any region with a
basic level of sequence conservation; and similar frequencies
of variations in both unpaired and compensatory mutated
paired regions. Below we describe the observations from these
IncRNAS’ conservation analyses.

FTL: The cis-acting Iron Response Element (IRE) is a conserved
structured element, that is located on the 5'UTR of FTL (ferritin
light chain) and several other genes. Mutations that disrupt
the hairpin structure of IRE cause disease phenotypes by
changing the binding affinity of a regulatory Iron Response
Protein [77, 78]. As a proof of concept, we applied GraphClust2
to discover structural motifs in the homologous regions of the
FTL mRNA. The IRE element was identified as one of the three
clusters detected by Evofold (Figure 4A).

NEAT:: The NEAT1 analysis suggests very limited but also very
reliable structure conservation at the 3' end of the transcript
that is consensually detected by the three evaluated tools.



MALAT1: MALAT1 has relatively a higher level of sequence con-
servation among the four studied IncRNAs. A higher number
of clusters were predicted with a couple of reliable candidates
that lean towards the 3' side of the transcript.

To examine how many of the detected motifs are expected
to be false positive predictions, we ran the pipeline on ten
shufflings of the MALAT1 100way alignment. For the shuffled
background, we used Multiperm to preserve the gap struc-
ture, local conservation structure patterns and the relative
dinucleotide frequencies of the MALAT1 alignment [60]. On
average 16.7 candidates were reported for the shuffled genomic
alignments, in comparison to the 23 candidates reported for
the genomic alignment (Figure 4F). In the predicted candi-
dates set from background, none was commonly annotated
by the three methods. For the applied alignment depths and
thresholds, Evofold had a considerably higher discovery rate
than R-scape and RNAz. In total out of 10 shuffles 167, 9 and
0 clusters were predicted to have a conserved structure by
Evofold, R-scape and RNAz respectively.

HOTAIR: The predicted candidates for HOTAIR are all located on
the intronic regions of the precursor IncRNA. Clustering from
the second exon, through skipping the first exon and intron,
did not change this observation. A dense number of candidates
can be noticed on the first intron that is overlapping with
the promoter region of HOXC11 on the opposite strand. Most
notably is the candidate cluster HOTAIR-C29, which is highly
enriched in G-U wobble base pairs (Figure 4E). In contrast
to Watson-Crick GC and AU base pairings, the GU reverse
complement AC is not a canonical base pair [79]. Therefore,
this structure can only be formed on the antisense RNA and
not on the HOXC11’s sense strand.

XIST: The XIST candidates are mainly located on the repeat re-
gions and are paralog-like (Figure S3 ). The manual evalua-
tion of the cluster structural alignments was inconclusive. In
the mixture of paralog-like and homolog-like sequences of the
cluster alignments, it was not possible to conclude whether the
structural variations are merely artifacts of sequence repetition
or compensatory mutations of hypothetical structure conserva-
tion.

SLBP eCLIP. A well-characterized example of an RBP with spe-
cific structural preferences is SLBP (Histone Stem-Loop-Binding
Protein). We clustered target sites of human SLBP using the
publicly available eCLIP data [61]. The largest cluster with a
defined consensus structure bears statistically significant base-
pair covariations. The structure matches the SLBP’s Rfam fam-
ily "histone 3'UTR stem-loop" (RF00032). Using the family CM to
identify SLBPs on the eCLIP data, we were able to predict ex-
actly the same stem loop structure with the same level of base-
pair-covariation (Figure 5A). GraphClust2 and Rfam’s CM hits
have more than 95% overlap. These correspondences demon-
strate that GraphClust2 can identify the consensus structure
element from CLIP data with a high sensitivity.

The stem-loop structure of the eCLIP data has a lower
covariation-level than Rfam’s seed alignment (Figure 5 A vs.
B). This is because the Rfam data is phylogenetically diverse
(RF00032 seed: 28 species) while eCLIP data is only for Human
(eCLIP: K562 cell-line). We checked how GraphClust2 would
perform if the eCLIP data from diverse organisms were avail-
able. To simulate an eCLIP data with high covariation level, we
mixed up the 46 seed sequences of RF00032 family with 2954
shuffled sequences to obtain 3000 sequences such that SLBP
is convoluted with 98.5% background. The sequences from

the full RF00032 set were shuffled to obtain the background
of same length and nucleotide content distribution. As can
be seen in Figure 5B, GraphClust2 successfully managed to
cluster the family entries as one cluster. Here, the cluster
has the same stem-loop in the consensus secondary structure
with the same covariation level as Rfam’s reference structure.

Scalable clustering identifies novel CDE-like elements in Roquin-1
PAR-CLIP data. Roquin-1 is a protein with conserved double-
stranded RNA binding domains that binds to a constitutive de-
cay element (CDE) in TNF-alpha 3'UTR and several other mR-
NAs [80, 81]. Roquin-1 promotes mRNA decay and plays an
essential role in the post-transcriptional regulation of the im-
mune system [82]. We clustered the binding sites of the pub-
licly available Roquin-1 PAR-CLIP data [63] with GraphClust2.
Clustering identified structured elements in three dominant
clusters with defined consensus structures. Figure 5C shows
the alignments and consensus structures of the three clusters.
The consensus structures are similar to the previously reported
CDE and CDE-like elements [83].

It should be noted that the union of Roquin-1’s CDE-like
motifs have a lower enrichment score based on the PAR-CLIP
ranks, in comparison to the SLBP motif based on the eCLIP
ranks (Figures 5D,E and S4 ). For example, only 6 of CDE-
like motifs are within the top 100 PAR-CLIP binding sites.
Therefore, only the clustering of a broader set of binding
targets, with a permissive score threshold, allows identifying
the CDE-like elements reliably. We hypothesize that two
reasons contribute to the observed distinction. Firstly, eCLIP
is an improved protocol with a size-matched input to capture
background RNAs of the CLIP protocol [61]. On the other
hand, PAR-CLIP is known to have relatively higher false
positive rates [84]. Secondly, the ROQ domain of Roquin-1
has two RNA binding sites, one that specifically recognizes
CDE-like stem-loops and one that binds to double-stranded
RNAs [83, 85]. This would likely broaden the Roquin-1 binding
specificity beyond CDE-like stem-loops.

BCOR 3'UTR is a prominent conserved target of Roquin-1. We per-
formed a follow-up conservation study over the identified CDE-
like motifs from the clustering of Roquin-1 binding sites (Fig-
ure 6A). By investigating RNAalifold consensus structure pre-
dictions for Multiz alignments of the top 10 binding sites of the
conserved candidates, the BCOR’s CDE-like motif was observed
to have a highly reliable consensus structure with supporting
levels of compensatory mutations. Interestingly the reported
CLIP binding site region contains two conserved stem-loops
(Figure 6B,C). The shorter stem-loop has a double-sided base-
pair covariation and the longer stem-loop contains bulges
and compensatory one-sided mutations (Figure 6D,E). Down-
stream of this site, further binding sites with lower affinities
can be seen, where one contains another CDE-like motif. So in
total BCOR’s 3'UTR contains three CDE-like motifs (Figure 6F).
BCOR has been shown to be a corepressor of BCL6 which is a
major sequence-specific transcription repressor. BCL6 expres-
sion is tightly regulated and induced by cytokines signaling like
Interleukins IL4/7/21 [86, 87]. Overall these results propose
BCOR to be a functionally important target of Roquin-1 and as-
sert the role of Roquin-1 in regulating follicular helper T cells
differentiation and immune homeostasis pathways [81].

We have presented a method for structural clustering of RNA
sequences with a web-based interface within the Galaxy frame-
work. The linear-time alignment-free methodology of Graph-
Clust2, accompanied by cluster refinement and extension using



RNA comparative methods and structure probing data, were
shown to improve the detection of ncRNA families and struc-
turally conserved elements. We have demonstrated on real-life
and complex application scenarios that GraphClust2 provides
an accessible and scalable way to perform RNA structure anal-
ysis and discovery.

GraphClust2 provides an integrative solution, which can
start from raw HTS and genomic data and ends with predicted
motifs with extensive visualizations and evaluation metrics.
The users can benefit from the vast variety of the bioinformat-
ics tools integrated by the Galaxy community and extend these
applications in various ways. Thus, it will be for the first time
possible to start from putative ncRNAs in transcriptomic RNA-
seq studies and immediately cluster the identified transcripts
for annotation purposes in a coherent manner.

+ Project name: GraphClust2

+ Project repository: https://github.com/BackofenLab/
GraphClust-2

+ Project home page: https://graphclust.usegalaxy.eu

+ Galaxy tools repository:
galaxytools/tools/GraphClust/

- Operating system(s): Unix (Platform independent with
Docker)

+ GraphClust2 Docker image: https://hub.docker.com/r/
backofenlab/docker-galaxy-graphclust

« License: GNU GPL-v3

- RRID: SCR_ 017286

https://github.com/bgruening/

The data presented here that illustrates our work is avail-
able from Zenodo [88] and all steps taken for data anal-
ysis are accessible via a collection of Galaxy histories
from the project homepage at the European Galaxy server
(https://graphclust.usegalaxy.eu).

ARI: adjusted Rand index; CDE: constitutive decay element;
CLIP: cross-linking immunoprecipitation; CM: covariance
model; DMS: dimethyl sulfate; HPC: high-performance com-
puting; HTS: high-throughput sequencing; IncRNA: long non-
coding RNA; MAF: Multiz alignment format; mRNA: messen-
ger RNA; ncRNA: non-coding RNA; RBP: RNA binding protein;
SCFG: stochastic context-free grammar; SHAPE: selective 2’-
hydroxyl acylation analyzed by primer extension; SP: Structure
probing;
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Figure 2. Clustering quality performance over Rfam-based ProbeAlign benchmark dataset and the associated simulated SHAPE data. For comparison, GraphClust2
and GraphClust1 performances are also shown. Incorporating the simulated SHAPE data assists in the clustering performance. (A) ARI clustering quality metric
for 1-3 rounds of iterative clustering. ARI of the clusterings did not have noticeable improvements after three rounds. (B) Similar to (A) but for uniformly sized
families, such that precisely ten sequences are randomly extracted per family.
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Figure 4. Locally conserved structured elements predicted in FTL mRNA and IncRNAs NEAT1, MALAT1 and HOTAIR. (A-D) Locations of the predicted clusters
relative to the transcript on the human genome. The clusters under the manually curated subset track, labeled as validated, have passed a qualitative manual
screening to exclude unreliable structural alignments (see Results and Discussion). (E) Consensus secondary structure for some of the clusters with reliable
sequence-structure alignments. Secondary structures are visualized with R2R [89], statistically significant covariation are computed by R-scape and manually
overlaid on the R2R visualizations. The alignments are visualized in the Supplementary Figures S6-S11.(F) Comparison between the number of predicted candidate
motifs of MALAT1 versus ten times Multiperm’s preservative shufflings of the same genomic alignment.
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is likely due to the specificity of Roquin-1 that has multiple RNA binding domains and false positive biases of the PAR-CLIP protocol. Scalable clustering assists
in overcoming these biases to identify the CDE-like elements. Structures are visualized by R-scape, the color for significant base-pair covariations are adapted to
match the legend in Figure 4E. Enrichments are plotted with the Limma R package [91].
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