Supplemental Data: Related to "Synthesis of DPP and FP Substrate Analogue Inhibitors"

Spectroscopic and Spectrometric Characterization of Compounds

¹H NMR spectrum of **7** in d_6 -DMSO.

³¹P NMR spectrum of **7** in d₆-DMSO.

 13 C NMR of 7 in d₆-DMSO.

¹H NMR of **8**, diastereomer 1 (D1) in CDCl₃.

³¹P NMR of **8**, diastereomer 1 (D1) in CDCl₃.

¹³C NMR of **8**, diastereomer 1 (D1) in CDCl₃.

¹H NMR of 8 (~1:1 mixture of diastereomers 1 and 2) in CDCl₃.

 ^{31}P NMR of 8 (~1:1 mixture of diastereomers 1 and 2) in CDCl_3.

¹H NMR of **9**, diastereomer 1 (D1) in CDCl₃.

³¹P NMR of **9**, diastereomer 1 (D1) in CDCl₃.

¹³C NMR of **9**, diastereomer 1 (D1) in CDCl₃.

¹H NMR of 9, diastereomer 2 (D2) enriched ~5:1 in CDCl₃.

 31 P NMR of **9**, diastereomer 2 (D2) enriched ~5:1 in CDCl₃.

¹³C NMR of **9**, diastereomer 2 (D2) enriched ~5:1 in CDCl₃.

¹H NMR of **10**, diastereomer 1 (D1) in d₆-DMSO.

 31 P NMR of **10**, diastereomer 1 (D1) in d₆-DMSO.

 13 C NMR of **10**, diastereomer 1 (D1) in d₆-DMSO.

¹H NMR of **10**, diastereomer 2 (D2) enriched \sim 3:1 in d₆-DMSO.

 31 P NMR of **10**, diastereomer 2 (D2) enriched ~3:1 in d₆-DMSO.

 ^{13}C NMR of 10, diastereomer 2 (D2) enriched ~3:1 in d_6-DMSO.

¹H NMR of **4**, diastereomer 1 (D1) in d_6 -DMSO.

 ^{31}P NMR of 4, diastereomer 1 (D1) in d₆-DMSO.

 13 C NMR of **4**, diastereomer 1 (D1) in d₆-DMSO.

¹H NMR of **4**, diastereomer 2 (D2) in d_6 -DMSO.

 13 C NMR of **4**, diastereomer 2 (D2) in d₆-DMSO. Unaccounted for 13 C-signals were acquired with a DEPT-135 experiment (see Figure S34).

 ^{13}C DEPT-135 of 4, diastereomer 2 (D2) in d₆-DMSO.

UPLC-HRMS analysis of **4**. (Left) UPLC trace of **4**, diastereomers 1 and 2 (D1 and D2). (Right) Mass spectra of **4**, diastereomers 1 and 2 (D1 and D2).

 ^{31}P NMR of **5**, diastereomer 1 (D1) in d₆-DMSO.

¹H NMR of **5**, diastereomer 2 (D2) in d_6 -DMSO.

 ^{31}P NMR of **5**, diastereomer 2 (D2) in d_6-DMSO.

UPLC-HRMS analysis of **5**. (Left) UPLC trace of **5**, diastereomers 1 and 2 (D1 and D2). (Right) Mass spectra of **5**, diastereomers 1 and 2 (D1 and D2).

³¹P NMR of **12** as a ~1:1 diastereomeric mixture. Characterization by ¹H and ¹⁹F NMR was impeded by dramatic line broadening likely due to multiple charge-states and slow ion-pair exchange.

UPLC-HRMS analysis of **12** (~1:1 diastereomeric mixture). (Left, Bottom) UPLC trace of **12.** (Left, Top) Extracted ion chromatogram (EIC) of **12**, $m/z = 424.107 \pm 0.05$, indicating that the free fluorophosphonate elutes at different retention times, likely due to differences between diastereomers and different protonation-states. (Right) Mass spectrum of **12**.

UPLC-HRMS analysis of **6**. (Left, Bottom) UPLC trace of **6**. (Left, Top) Extracted ion chromatogram (EIC) of **6**, $m/z = 438.1225 \pm 0.009$, indicating elution of **6** at different retention times, likely due to the differences between diastereomers and different protonation-states. (Right) Mass spectrum of **6**.

¹H NMR of racemic 13 in d₆-DMSO.

Figure 38. ³¹P NMR of racemic 13 in d₆-DMSO.

Figure 39. ¹³C NMR of racemic 13 in d₆-DMSO.