
Resource
Trans-omics Impact of Thy
moproteasome in Cortical
Thymic Epithelial Cells
Graphical Abstract
Highlights
d Enlarged thymus in K5D1 mice produces immunocompetent

and self-tolerant T cells

d Enlarged thymus in K5D1 mice enables proteomic analysis of

cTECs and mTECs

d Trans-omics profiles identify signature molecules that

characterize cTECs and mTECs

d b5t deficiency specifically affects proteasomal subunit

composition in cTECs
Ohigashi et al., 2019, Cell Reports 29, 2901–2916
November 26, 2019
https://doi.org/10.1016/j.celrep.2019.10.079
Authors

Izumi Ohigashi, Yu Tanaka,

Kenta Kondo, ..., Toyomasa Katagiri,

Hidetaka Kosako, Yousuke Takahama

Correspondence
yousuke.takahama@nih.gov

In Brief

Ohigashi et al. show that the use of cyclin

D1-transgenic mice allows quantitative

proteomic analysis of cortical and

medullary thymic epithelial cells (TECs).

Results provide a trans-omics platform

for further exploration of TEC biology and

reveal the specific impact of the

thymoproteasome on proteasome

subunit composition in cortical TECs.

mailto:yousuke.takahama@nih.gov
https://doi.org/10.1016/j.celrep.2019.10.079
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2019.10.079&domain=pdf


Cell Reports

Resource
Trans-omics Impact of Thymoproteasome
in Cortical Thymic Epithelial Cells
Izumi Ohigashi,1,9 Yu Tanaka,2,9 Kenta Kondo,2 Sayumi Fujimori,1 Hiroyuki Kondo,1 Amy C. Palin,2 Victoria Hoffmann,3

Mina Kozai,1 Yosuke Matsushita,4 Shinsuke Uda,5 Ryo Motosugi,6 Jun Hamazaki,6 Hiroyuki Kubota,5 Shigeo Murata,6

Keiji Tanaka,7 Toyomasa Katagiri,4 Hidetaka Kosako,8 and Yousuke Takahama2,10,*
1Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
2Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
3Division of Veterinary Resources, Office of Research Services, NIH, Bethesda, MD 20892, USA
4Division of Genome Medicine, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
5Division of Integrated Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
6Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
7Tokyo Metropolitan Institute for Medical Science, Tokyo 156-8506, Japan
8Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, University of Tokushima,

Tokushima 770-8503, Japan
9These authors contributed equally
10Lead Contact

*Correspondence: yousuke.takahama@nih.gov

https://doi.org/10.1016/j.celrep.2019.10.079
SUMMARY

The thymic function to produce self-protective and
self-tolerant T cells is chiefly mediated by cortical
thymic epithelial cells (cTECs) and medullary TECs
(mTECs). Recent studies including single-cell tran-
scriptomic analyses have highlighted a rich diversity
in functional mTEC subpopulations. Because of their
limited cellularity, however, the biochemical charac-
terization of TECs, including the proteomic profiling
of cTECs and mTECs, has remained unestablished.
Utilizing genetically modified mice that carry
enlarged but functional thymuses, here we show a
combination of proteomic and transcriptomic pro-
files for cTECs and mTECs, which identified signa-
ture molecules that characterize a developmental
and functional contrast between cTECs and mTECs.
Our results reveal a highly specific impact of the thy-
moproteasome on proteasome subunit composition
in cTECs and provide an integrated trans-omics plat-
form for further exploration of thymus biology.
INTRODUCTION

The thymus is a pharyngeal epithelial organ that produces

T cells, which play a central role in the immune system to protect

our bodies from infectious agents and transformed malig-

nancies. The T-cell-producing function of the thymus is chiefly

mediated by thymic epithelial cells (TECs) and their subpopula-

tions (Boehm 2008; Blackburn and Manley, 2004; Rodewald,

2008). Cortical TECs (cTECs)—which structurally constitute the

thymic cortex—induce the differentiation of hematopoietic pro-

genitor cells to the T-lymphoid lineage and promote the positive

selection of functionally competent T cells, whereas medullary
This is an open access article under the CC BY-N
TECs (mTECs)—which primarily form the medullary region of

the thymus—attract positively selected T cells from the cortex

and install self-tolerance in positively selected T cells by deleting

self-reactive T cells and promoting the generation of regulatory

T cells (Anderson and Takahama, 2012; Derbinski and Kyewski,

2010; Takahama et al., 2017).

Unbiased transcriptomic analysis has powerfully advanced

our understanding of the biology of TECs. Global gene expres-

sion analysis has identified promiscuous gene expression in

mTECs (Anderson et al., 2002; Derbinski et al., 2005; Sansom

et al., 2014; Miller et al., 2018), and single-cell RNA sequencing

analysis has revealed an enormous diversity in mTEC subpopu-

lations, including the recently described thymic tuft cells (Mere-

dith et al., 2015; Bornstein et al., 2018). In addition to transcrip-

tomic analysis, proteomic analysis is an unbiased and powerful

approach to gain insight into the molecular basis for cellular

development and functions. Proteomic profiling of cTECs and

mTECs is particularly interesting because these self-antigen-

presenting cells possess distinct machinery of protein process-

ing and peptide presentation to coordinately shape the immuno-

competent and self-tolerant TCR repertoire in T cells (Anderson

and Takahama, 2012; Klein et al., 2014; Kondo et al., 2019). In

contrast to transcriptomic analysis, however, proteomic analysis

has not been established in TECs and their subpopulations. This

is in part due to the necessity of a large number of cells for mass

spectrometric proteomic analysis (i.e., typically >53 105 cells in

one run), despite the limited availability of mouse TEC cellularity

(e.g., typically <5 3 103 cTECs sorted from one mouse) and the

loss of functionally relevant molecules in the monolayer propa-

gation of TEC lines.

In the present study, we utilized a genetically modified mouse

that carries an enlarged thymus to overcome the limited avail-

ability of TECs for proteomic analysis. The keratin 5 promoter-

driven epithelial cell-specific expression of cyclin D1 causes

epidermal proliferation and severe thymic hyperplasia (Robles

et al., 1996). The cyclin D1 expression in keratin 5-expressing
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Figure 1. K5D1 Thymus Produces Functionally Competent and Self-Tolerant T Cells

(A) Flow cytometric analysis of TECs from B6 and K5D1 mice. Plots on the left show the number (means and SEMs, n = 5) of CD45�EpCAM+PI� viable TECs. Dot

plots on the right show UEA1 and Ly51 expression profiles of CD45�EpCAM+PI� viable TECs.

(B) Flow cytometric analysis of thymocytes from B6 and K5D1 mice. Plots on the left show the number (means and SEMs, n = 5) of total thymocytes. Dot plots on

the right show CD4 and CD8 expression (left) and TCRb and TCRd expression (right) in PI� viable thymocytes.

(C) Immunofluorescence analysis of thymic sections from K5D1 mice. Top: b5t (green), UEA1 reactivity (blue), and Aire (magenta). Bottom: CD4 (green), CD8

(blue), and UEA1 reactivity (red). Representative data from three independent experiments are shown. Scale bars, 100 mm.

(D) Flow cytometric analysis of thymocytes from K5D1-b5t+/� heterozygous (Het) and K5D1-b5t�/� knockout (KO) mice. Plots show cell number (means and

SEMs, n = 3) of CD4+CD8�TCRbhigh and CD4�CD8+TCRbhigh thymocytes.

(E) Flow cytometric analysis of spleen cells from B6 and K5D1 mice. Dot plots on the left show CD4 and CD8 expression in TCRbhigh PI� viable cells. Plots on the

right show cell number (means and SEMs, n = 5) of CD4+CD8�TCRbhigh and CD4�CD8+ TCRbhigh cells.

(legend continued on next page)
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TECprogenitors causes amassive enlargement of the thymus by

increasing the cellularity of TECs (Klug et al., 2000). Importantly,

the enlarged thymus maintains the corticomedullary structure

and the capability to produce T cells (Robles et al., 1996; Klug

et al., 2000; Bolner, 2015). We show that cTECs and mTECs in

the enlarged thymuses of these mice are massively expanded

in cellularity yet are functionally potent in supporting the devel-

opment and selection of immunocompetent and self-tolerant

T cells. RNA sequencing analysis verifies the developmental fi-

delity and functional potency of cTECs and mTECs isolated

from keratin 5 promoter-driven cyclin D1-transgenic mice. By

performing mass-spectrometry-based quantitative proteomic

analysis of cTECs and mTECs in these mice, and in combination

with RNA sequencing analysis of these cells, our integrated

multi-layer omics data identify signature molecules that charac-

terize a developmental and functional contrast between cTECs

and mTECs.

By using the multi-layer omics (i.e., trans-omics) approach for

the analysis of isolated TEC subpopulations, we further exam-

ined the proteomic as well as transcriptomic profiles of cTECs

from b5t-deficient mice. b5t is a cTEC-specific component of

the thymoproteasome, which is essential for the optimal produc-

tion of immunocompetent CD8+ T cells (Murata et al., 2007; Nitta

et al., 2010; Xing et al., 2013; Takada et al., 2015). It is speculated

that MHC class-I-associated self-peptides produced in a cTEC-

specific manner by b5t-containing thymoproteasome govern the

positive selection of CD8+ T cells in the thymic cortex (Murata

et al., 2007, 2018; Sasaki et al., 2015). However, it is still unclear

how b5t contributes to the optimization of CD8+ T-cell develop-

ment. Specifically, it is uncertain whether b5t alters the proteome

and/or the transcriptome of cTECs to pervasively affect cellular

functions of cTECs, in addition to providing the proteasomal

uniqueness in the production of MHC class-I-associated unique

self-peptides. Our trans-omics analysis reveals a highly specific

impact of b5t on proteasomal subunit composition in cTECs,

rather than a pervasive effect on cTEC functions, supporting

the possibility that a b5t-containing thymoproteasome governs

CD8+ T-cell development through the proteasomal production

of MHC class-I-associated unique self-peptides in cTECs.

RESULTS

Hyperplastic Thymuses in Keratin 5 Promoter-Driven
Cyclin D1-Transgenic Mice Are Capable of Producing
andSelecting Functionally Competent and Self-Tolerant
T Cells
It was reported that the thymuses in keratin 5 promoter-driven

cyclin D1-transgenic (K5D1) mice were severely hyperplastic

while maintaining the corticomedullary structure and the T-cell-

producing capability (Robles et al., 1996; Klug et al., 2000; Bol-

ner, 2015). We found that the enlarged thymuses in K5D1 mice
(F) Allogenic response of spleen T cells from B6 and K5D1 mice. Cell Trace Viole

plots on the left show CTV fluorescence and CD25 expression in TCRbhigh viable

show the frequency (means and SEMs, n = 6) of CTVlow CD25high cells in TCRbh

indicate frequency of cells within indicated area.

(G) Hematoxylin- and eosin-stained sections of eyes and salivary glands from indi

matched manner. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant.
contained approximately 80- to 100-fold larger numbers of

TECs compared with the thymuses in age-matched control B6

mice (Figure 1A). The flow cytometric profiles of Ly51+ UEA1�

cTECs and Ly51� UEA1+ mTECs in K5D1 thymuses were similar

to those in B6 thymuses (Figures 1A and S1A). Accordingly,

thymocyte cellularity in K5D1 mice increased to approximately

30- to 50-fold of that in B6 mice, without apparent alterations

in CD4/CD8 and TCRb/TCRd profiles (Figure 1B). Similar to B6

thymuses, the cortical regions in the enlarged K5D1 thymuses

were enriched with b5t+ cTECs and CD4/CD8 double-positive

thymocytes, and the K5D1 thymic medullas contained Aire+

mTECs as well as CD4/CD8 single-positive thymocytes (Fig-

ure 1C). The b5t+ cTECs in K5D1 mice were functionally potent

to optimize CD8+ T-cell production because CD4�CD8+

TCRbhigh thymocytes were significantly reduced in cellularity in

b5t�/� K5D1 mice, in comparison with b5t+/� K5D1 mice (Fig-

ure 1D). The thymic hyperplasia in K5D1 mice coincided with

an approximately 2- to 3-fold increase in the cellularity of

T cells in the spleen (Figure 1E). Those spleen T cells were func-

tionally competent to proliferate in response to allogeneic stimu-

lator cells, but they were self-tolerant because they were unre-

sponsive to syngeneic stimulator cells (Figure 1F). The

deficiency in Aire, which controls a variety of mTEC functions

including the ectopic expression of organ-specific self-antigens

(Mathis and Benoist, 2009), in K5D1 mice resulted in the inflam-

mation in various tissues, including the retinas and the salivary

glands (Figure 1G), indicating that Aire+ mTECs play a role in

the establishment of self-tolerance in T cells in K5D1 mice.

These results indicate that the hyperplastic thymic microenvi-

ronments, including the massively increased cellularities of

cTECs andmTECs, in K5D1mice are functionally capable of pro-

ducing and selecting immunocompetent and self-tolerant

T cells. These results also suggest that the thymuses in K5D1

mice could be a useful source of cTECs andmTECs for biochem-

ical analysis, including proteomic analysis that requires relatively

large-scale cell preparation.

Isolation of cTECs and mTECs from K5D1 Mice
We then isolated cTECs and mTECs from an enlarged K5D1

thymus for transcriptomic and proteomic analyses. According

to the most widely used method for TEC purification (Gray

et al., 2006; Sansom et al., 2014; Meredith et al., 2015; Miller

et al., 2018; Bornstein et al., 2018; Anderson et al., 1993; Sakata

et al., 2018), the K5D1 thymus and control B6 thymus were enzy-

matically digested, and cTECs and mTECs were purified simul-

taneously using magnetic enrichment followed by flow cytomet-

ric cell sorting. In comparison with the previous results (Sakata

et al., 2018), cTECs and mTECs distributed similarly (Figures

S1B–S1D) and were isolated in an equivalent efficiency (Fig-

ure S1E) between K5D1 and B6 thymuses. Microscopic inspec-

tion of the highly purified cTECs and mTECs (Figures 2A and S2)
t (CTV)-labeled splenocytes were cultured with stimulator cells for 6 days. Dot

cells from K5D1 mice cultured with indicated stimulator cells. Plots on the right
igh viable cells from B6 mice (left) and K5D1 mice (right). Numbers in dot plots

cated mice. Bars, 100 mm. Mice were analyzed at 10 to 20 weeks old in an age-
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Figure 2. Isolated cTECs but not mTECs

Contain Thymic Nurse Cells

(A) Flow cytometric analysis of enzyme-digested total

thymic cells (top), CD45�EpCAM+UEA1�Ly51+ iso-

lated cTECs (middle), and CD45�EpCAM+

UEA1+Ly51� isolated mTECs (bottom) from B6 and

K5D1 mice. Shown are profiles of EpCAM and

CD45+PI expression in total cells (left) and UEA1

reactivity and Ly51 expression in PI�CD45�EpCAM+

viable cells (right). Numbers in dot plots indicate

frequency of cells within indicated area.

(B) Confocal microscopic analysis of isolated cTECs

and mTECs. Cells were fixed, permeabilized, and

stained for CD45. Shown on the left are representa-

tive images of CD45+ thymocytes (green) in Ly51+

cTECs (top) and UEA1+ mTECs (bottom) isolated

from B6 mice (left) and K5D1 mice (right). Left plots

show the frequency of thymocyte-containing cTECs

(top) and mTECs (bottom) in total cTECs andmTECs,

respectively. Numbers show average frequencies.

Right plots show the number of thymocytes in

thymocyte-containing cTEC (top) and mTEC

(bottom). Numbers show average thymocyte

numbers. Means and SEMs from 10 to 20 images in

two independent experiments are shown.

(C) Fluorometric measurement of RNA amount

(means and SEMs, n = 3) per 53 103 flow-cytometry-

isolated CD4+CD8+ (DP) thymocytes, cTECs, and

mTECs from K5D1 mice. Numbers (pg) show

deduced average RNA amount per cell.

(D) Fluorometric measurement of protein amount

(means and SEMs, n = 3) per 1 3 105 flow-cy-

tometry-isolated CD4+CD8+ (DP) thymocytes,

cTECs, and mTECs from K5D1 mice. Numbers

(pg) show deduced average protein amount per

cell.
revealed that 15% and 22% of cTECs isolated from the B6 and

K5D1 thymuses, respectively, were multicellular complexes, in

which the cTECs enclosed four to eight CD4+CD8+ thymocytes

(Figure 2B). These multicellular cTEC-thymocyte complexes,

previously described as thymic nurse cells (TNCs), resulted

from persistent interactions between a fraction of cTECs and

long-lived CD4+CD8+ thymocytes (Wekerle and Ketelsen,

1980; Kyewski and Kaplan, 1982; Nakagawa et al., 2012). The

CD4+CD8+ thymocytes in the TNC complexes were completely

enclosed within large cTECs (Wekerle and Ketelsen, 1980;

Kyewski and Kaplan, 1982; Nakagawa et al., 2012) and therefore
2904 Cell Reports 29, 2901–2916, November 26, 2019
were inevitably co-purified with cTECs that

were purified on the basis of cell-surface

molecules. Unlike cTECs, however,

mTECs did not form multicellular com-

plexes with thymocytes (Figure 2B).

Consequently, we estimated the contri-

bution of TNC-enclosed CD4+CD8+

thymocytes in RNA and protein samples

prepared from cTECs. Fluorometric mea-

surements indicated that 21.3 ± 2.5 ng

(n = 3) and 5.1 ± 0.4 ng (n = 3) of RNAs

could be extracted from 5 3 103 flow-cy-

tometry-purified cTECs and CD4+CD8+
thymocytes, respectively (Figure 2C), which deduced 4.3 ± 0.5

pg and 1.0 ± 0.1 pg of RNAs from one cTEC and one

CD4+CD8+ thymocyte, respectively (Figure 2C). Because the

isolated cTECs from either K5D1 or B6 mice included 15% to

22% of TNC complexes containing four to eight CD4+CD8+ thy-

mocytes (Figure 2B), we estimated from simple calculation (RNA

amount per one CD4+CD8+ thymocyte 3 the number of

CD4+CD8+ thymocytes per one TNC 3 the frequency of TNCs

per total cTECs / RNA amount measured in one cTEC) that

73% to 80% of RNAs extracted from the isolated cTECs were

indeed derived from cTECs, and the rest (20% to 27%) of those



RNAs were actually derived from TNC-enclosed CD4+CD8+ thy-

mocytes (Figure 2C). From similar fluorometric measurements of

the amounts of proteins extracted from isolated cTECs and

CD4+CD8+ thymocytes, we deduced that 95% to 97% of pro-

teins extracted from the isolated cTECs were derived from

cTECs, and the rest (3% to 5%) of those proteins from the iso-

lated cTECs were derived from TNC-enclosed CD4+CD8+ thy-

mocytes (Figure 2D). The difference in the contribution of

CD4+CD8+ thymocytes to RNA compared to protein correlated

with the difference in fold change in protein amount and RNA

amount between large cTECs and small CD4+CD8+ thymocytes

(Figure 2D).

These results demonstrate that we can isolate cTECs and

mTECs at a high purity from K5D1 mice. However, current tech-

nologies for TEC purification inevitably include TNC complexes

in the isolated cTECs. In both K5D1 and B6 cTECs, it was esti-

mated that 20% to 27% of RNA and 3% to 5% of proteins ex-

tracted from the isolated cTECs were actually derived from

TNC-enclosed CD4+CD8+ thymocytes. On the contrary, mTECs

did not form those multicellular complexes with thymocytes and

therefore could be isolated free from thymocytes.

RNA Sequencing Analysis of cTECs and mTECs Isolated
from K5D1 Mice
By using the replicates (n = 3) of these highly purified cells (Fig-

ure S2), we next examined the transcriptomic profiles of isolated

cTECs and mTECs from an enlarged K5D1 thymus by RNA

sequencing analysis. All experimental replicates were

sequenced at approximately 2 3 107 reads for 1.5 to 2 3 104

genes per sample (Figure S3A). The number of genes detected

was larger in mTECs than in cTECs (Figure S3B), in agreement

with previously reported results (Sansom et al., 2014) and likely

reflecting promiscuous gene expression in mTECs (Anderson

et al., 2002; Derbinski et al., 2005; Sansom et al., 2014). Unsu-

pervised hierarchical cluster analysis validated the experimental

replicates, all of which were closely clustered with each other

(Figure 3A). We found that the global profiles of gene expression

were highly distinct between cTECs and mTECs (Figure 3A), in

agreement with previous reports (Sansom et al., 2014; Heng

et al., 2008; Immunological Genome Project, http://www.

immgen.org). Importantly, those profiles were very similar be-

tween K5D1 and B6 cells (Figure 3A). Principal component anal-

ysis confirmed differences in gene expression profiles between

cTECs and mTECs and the similarities between K5D1 and B6

cells (Figure 3B). The correlation plot of the fold changes be-

tween mTEC signals and cTEC signals further pointed to the

sharp contrast between cTECs and mTECs and the strong sim-

ilarity between K5D1 and B6 cells in the gene expression profiles

(Figure 3C). Comparable distribution in the mTEC/cTEC fold

changes among individual samples further highlighted the simi-

larity in global gene expression between K5D1 and B6 cells

(Figure S3C).

The minor difference in mTEC genes between K5D1 and B6

mice, which was detected in the secondary principal compo-

nents (Figure 3B), was primarily due to the overexpressed

Ccnd1, encoding cyclin D1, and other cell-cycle-associated

genes, including Ccnb1 (encoding cyclin B1), Ccna2 (cyclin

A2), and Fbxo5 (F-box protein 5), more strongly expressed in
K5D1 mTECs than in B6 mTECs (Figure 3D). Gene Ontology

enrichment analysis confirmed that differentially expressed

genes between B6 mTECs and K5D1 mTECs were involved in

the cell cycle, mitotic nuclear division, and cell division (Fig-

ure 3D). Ccnd1 was also overexpressed in cTECs in K5D1

mice, but the overexpression of the other cell-cycle-associated

genes was not clearly highlighted in K5D1 cTECs (Figure 3E),

possibly because the keratin 5 promoter-driven gene expression

is less pronounced in cTECs than in mTECs and cTEC/mTEC-bi-

potent TEC progenitors (Klug et al., 1998) and because cTECs

are less proliferative than mTECs (Gray et al., 2006). Instead,

the Gene Ontology enrichment analysis revealed that the minor

difference in cTEC genes between K5D1 andB6mice (Figure 3B)

predominantly resulted from the difference in the expression of

adaptive immune-cell-associated genes, including Rag2

(RAG2), Zap70 (ZAP70), and Cd8a (CD8a), which were detected

more in B6 cTECs than in K5D1 cTECs (Figure 3E); this coincides

with the slightly higher frequency of CD4+CD8+ thymocytes en-

closed in isolated B6 TNCs (eight thymocytes in 15% cTECs)

than in isolated K5D1 cTECs (four thymocytes in 22% cTECs)

(Figure 2B).

The expression profiles of genes that were associated with the

unique functions of cTECs (e.g., Ctsl [cathepsin L], Dll4 [DLL4],

Psmb11 [b5t], and Prss16 [TSSP]) and mTECs (e.g., Xcl1

[XCL1], Ccl21a [CCL21Ser], Tnfrsf11a [RANK], Tnfrsf11b

[OPG], and Aire [AIRE]) were markedly different between cTECs

and mTECs but were indistinguishable between the cells pre-

pared from K5D1 mice and those from B6 mice (Figure 3F).

The genes that were highly detected in mTECs over cTECs

included Aire-dependent and Aire-independent promiscuously

expressed genes, encoding tissue-restricted self-antigens

(Figure 3G).

These results indicate that the global profiles of gene expres-

sion in cTECs and mTECs isolated from K5D1 mice are very

similar to those from B6 mice, except for the overexpressed cy-

clin D1 and the consequent expression of cell-cycle-associated

genes. Our results also reconfirm the previously described sharp

contrast in gene expression profiles between cTECs and

mTECs. The genes detected in isolated cTECs inevitably include

TNC-enclosed CD4+CD8+ thymocyte-derived genes, which

were also detected in isolated cTECs in previous reports

(Sansom et al., 2014; Immunological Genome Project, http://

www.immgen.org).

Proteomic and Trans-omics Analyses of cTECs and
mTECs
Because the use of K5D1 mice allowed us to readily collect >105

cTECs and >105 mTECs per mouse (Figure 1), and because the

functional and transcriptomic profiles of cTECs and mTECs iso-

lated from K5D1 mice were highly similar to those from B6 mice

(Figures 1 and 3), we next performed mass-spectrometry-based

quantitative proteomic analysis of cTECs and mTECs isolated

from K5D1 mice. Proteins extracted from isolated cTECs and

mTECs were digested with trypsin, and the peptides were

labeled with tandem mass tags (TMTs). A high-confidence anal-

ysis at 1% false discovery rate (FDR) of liquid chromatography-

tandem mass spectrometric (LC-MS/MS) profiles identified and

quantified 5,753 protein species from cTECs and mTECs
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Figure 3. RNA Sequencing Analysis of cTECs and mTECs

(A) Unsupervised hierarchical cluster analysis and heatmap for detected genes in cTECs and mTECs (n = 3) isolated from B6 mice and K5D1 mice.

(B) Principal component (PC) analysis of RNA sequencing data of indicated cell populations.

(C) Correlation plot analysis of the transcriptome according to log2 fold change (mTECs/cTECs) between B6 and K5D1 TECs.

(D and E) Enrichment analysis of the ontology for genes that are differently expressed (RPKM > 1, log2 fold change > 1 or < �1, Q < 0.05) between B6 and K5D1

TECs. Bars show the adjusted p values of top 5 categories enriched in mTECs (D) and cTECs (E). Numbers in parentheses indicate the number of categorized

genes.

(F) Unsupervised hierarchical cluster analysis and heatmap of genes that are associated with the unique functions of cTECs and mTECs.

(G) Unsupervised hierarchical cluster analysis and heatmap of Aire-dependent (top) and Aire-independent (bottom) promiscuously expressed genes. pGE,

promiscuous gene expression.
isolated from K5D1 mice (Table S1). We found a sharp contrast

between cTECs andmTECs in their proteomic profiles, including

the cTEC-specific detection of cathepsin L, b5t, and TSSP pro-

teins, which characterize functions unique to cTECs, and the

mTEC-specific detection of cathepsin S, AIRE, and CD40 pro-

teins, which characterize mTEC functions (Figure 4A).
2906 Cell Reports 29, 2901–2916, November 26, 2019
In agreement with our findings that 3% to 5% of proteins ex-

tracted from isolated cTECs were derived from TNC-enclosed

CD4+CD8+ thymocytes, whereas 20% to 27% of RNAs ex-

tracted from isolated cTECs originated from TNC-enclosed

CD4+CD8+ thymocytes (Figure 2), the proteomic profiles of

cTECs were not as much affected by the co-isolated



Figure 4. Proteomic and Trans-omics Analyses of cTECs and

mTECs

(A) Volcano plot analysis of TMT-based quantitative proteomes for cTECs and

mTECs. Detected proteins are plotted as log2 fold changes (K5D1 cTECs/

K5D1 mTECs) versus �log10 Q values. Black horizontal line in the plot shows

the Q value of 0.05.

(B and C) Correlation plot analysis of trans-omics profiles for cTECs and

mTECs. Log2 fold changes of proteins differently (Q < 0.05) expressed be-

tween K5D1 cTECs and K5D1 mTECs are plotted against transcriptomic log2

fold changes between K5D1 cTECs and K5D1 mTECs (B) and B6 cTECs and
CD4+CD8+ thymocyte-derived proteins as were the transcrip-

tomic profiles of cTECs (Figure S4A).

The top five proteins most abundantly detected in all TECs

were kynureninase, cathepsin H, glutathione S-transferase a2,

loricrin, and hornerin, all of which were relatively more abundant

in mTECs than in cTECs (Table S1). The top five proteins most

highly abundant in cTECs were b5t, indolethylamine N-methyl-

transferase, parvin b, NAD(P)H quinone dehydrogenase 1, and

CD83 (Table S1).

Among the 27 promiscuously expressed tissue-restricted self-

antigen genes detected in mTECs (Figure 3G), only two protein

products were detected in mTECs in the proteomic analysis:

Aire-dependent Hbb-y and Aire-independent Fabp9 (Table S1).

The rest of these genes did not produce a detectable amount

of proteins (Table S1).

This quantitative proteomic analysis identified 308 proteins

that were significantly (Q < 0.05) more abundant in mTECs

than in cTECs, and the combined multi-layer analysis with tran-

scriptomic data revealed that 202 of those 308 molecules also

showed significantly (Q < 0.05) higher mRNA expression in

mTECs than in cTECs (Figure 4B). These molecules included nu-

clear proteins important for mTEC development, such as AIRE,

relB, and NFkB2, as well as the recently described thymic tuft

cell-associated proteins, such as DCLK1, Avil, and Trpm5

(Table S2). The rest of the molecules (308 – 202 = 106 proteins)

that had significantly (Q < 0.05) higher protein expression, but

not mRNA expression, in mTECs compared to cTECs included

proteins with previously unknown roles in mTECs, although no

clear enrichment was detected in the ontology for any biological

process or cellular localization (Table S3).

On the contrary, among 232 molecules that were significantly

(Q < 0.05) more abundant in cTECs than in mTECs, 199 proteins

showed a significantly higher abundance in mRNA transcripts in

cTECs than in mTECs (Figure 4B), which included proteolytic

proteins important for cTEC functions, such as b5t, TSSP, and

cathepsin L (Table S2). The rest of the molecules (232 – 199 =

33 proteins) that had significantly (Q < 0.05) higher protein

expression, but not mRNA expression, in cTECs than in mTECs

contained proteins with previously unknown roles in cTECs,

without the enrichment of molecules in certain biological pro-

cesses or cellular localization (Table S3).

In parallel, the combined multi-layer analysis of proteomic

data from K5D1 TECs and transcriptomic data from B6 TECs

revealed that 207 of the 308 molecules that had significantly

(Q < 0.05) higher protein expression in mTECs than in cTECs in

K5D1mice showed significantly (Q < 0.05) higher mRNA expres-

sion in mTECs than cTECs in B6 mice, whereas 187 of the 232

molecules that had significantly (Q < 0.05) higher protein expres-

sion in cTECs than in mTECs in K5D1 mice showed significantly

(Q < 0.05) higher mRNA expression in cTECs than in mTECs in
B6 mTECs (C). Among the 308 molecules that are significantly (Q < 0.05) more

abundant in mTECs than in cTECs in proteomic analysis, 202 (B) and 207 (C)

molecules (red symbols) are more highly detected in mTECs than in cTECs in

transcriptomic data. Among the 232 molecules that are significantly (Q < 0.05)

more abundant in cTECs than mTECs in proteomic analysis, 199 (B) and 187

(C) molecules (blue symbols) aremore highly detected in cTECs than inmTECs

in transcriptomic data.
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B6 mice (Figure 4C). More than 90% (90.5% for cTECs and

92.3% for mTECs) of the molecules overlapped between the

trans-omics plots using K5D1 transcriptomic profiles and the

plots using B6 transcriptomic profiles (Figures 4B and 4C), re-

confirming the relevance of proteomic and trans-omic profiles

obtained from K5D1 TECs.

We also analyzed the molecules that were differentially de-

tected in mRNAs but not proteins between cTECs and mTECs.

We noticed that 2,989 molecules, which were significantly

(Q < 0.05) more abundant in mTECs than cTECs in RNA

sequencing analysis but were not detected in proteomic anal-

ysis, were highly enriched with the molecules with extracellular

localization, including cytokines and chemokines such as

CCL21Ser, XCL1, and IL25 (Figure S4B; Table S4). This likely re-

flects the removal of those secretory proteins from mTECs dur-

ing single-cell preparation digested out of the thymus for prote-

omic and transcriptomic analyses. We also detected 1,070 kinds

ofmRNA transcripts that were significantly (Q < 0.05)more abun-

dant in cTECs than inmTECs in RNA sequencing analysis but not

in proteomic analysis (Table S4). The molecules that were de-

tected abundantly only in either cTECs or mTECs in mRNAs,

but not proteins, contained molecules with previously unknown

roles in TECs, without showing highly biased enrichment in the

ontology (Figure S4B; Table S4).

Thus, the combined proteomic and transcriptomic analyses

(i.e., trans-omics analysis) identified a total of 401 molecules

(202molecules abundant inmTECs and 199molecules in cTECs)

whose mRNA and protein expression levels are significantly

different between cTECs and mTECs. The results also identified

many functionally unknown molecules that were detected in

either cTEC or mTECs and were with discordant mRNA and pro-

tein abundance. The list of these molecules offers a useful

resource for further exploring the biology of cTECs and mTECs.

RNA Sequencing Analysis of cTECs Isolated from b5t-
Deficient K5D1 Mice
We then examined the transcriptomic and proteomic profiles of

cTECs isolated from b5t-deficient K5D1mice. The global profiles

of gene expression in RNA sequencing analysis were highly

similar between b5t�/� and b5t+/+ cTECs isolated from either

K5D1 or B6 cells (Figure S5A). The principal component analysis

(Figure 5A) and the fold-change correlation analysis (Figure 5B)

confirmed the high similarity between b5t�/� and b5t+/+ cTECs

isolated from either K5D1 or B6 cells. The minor difference be-

tween b5t�/� and b5t+/+ cTECs detected in the principal compo-

nent analysis (Figure 5A) was primarily due to the difference in

the expression of Psmb11, encoding b5t (Figure 5B). The differ-

ence in Psmb11 expression was robust in the RPKM (reads per

kilobase of transcript, per million mapped reads) values of the

RNA sequencing analysis and clearly confirmed by qRT-PCR

analysis (Figure 5C). Unlike Psmb11, all other genes that were

found to be prominently different in the RNA sequencing analysis

between b5t�/� and b5t+/+ cTECs from either K5D1 or B6 mice

were very low in the RPKM abundance, and the qRT-PCR anal-

ysis failed to reproduce the expression difference in most of

those less abundant genes (Figure 5C). However, we noticed

that the qRT-PCR analysis reproduced the differential expres-

sion in the functionally unknown gene Gm2004 at a significantly
2908 Cell Reports 29, 2901–2916, November 26, 2019
(p < 0.05) higher amount in b5t�/� cTECs than in b5t+/+ cTECs

(Figure 5C).

A recent study of RNA sequencing analysis reported that

cTECs in b5t�/�mice had slightly (25% to 50%) reduced expres-

sion of cTEC genes, such as Enpep, Ly75, Ctsl, Prss16, Cxcl12,

Ccl25, and Dll4, and interpreted that these reductions could

reflect the acquisition of mTEC-like features by b5t�/� cTECs

(Apavaloaei et al., 2019). However, none of the reported reduc-

tions in cTEC gene expression were reproduced in our data

from RNA sequencing analysis or qRT-PCR measurement (Fig-

ures 5D and S5B). Some of the cTEC-associated transcripts,

including Ctsl and Ccl25, were even slightly elevated in b5t�/�

cTECs in qRT-PCR analysis (Figures 5D and S5B). In addition,

unlike their description (Apavaloaei et al., 2019), b5t�/� cTECs

showed neither the elevated expression of cell-adhesion-related

genes—including Itgam, Fndc1, Col3a1, Cdh13, and Cldn4 (Fig-

ures 5D and S5B)—nor the increased abundance in b-catenin

proteins (Figure 5E). Furthermore, despite their description (Apa-

valoaei et al., 2019), our analysis of thymocytes from B6 b5t�/�

mice showed neither an increase in the number of MHC class

Ihigh CD69low TCRbhigh CCR7high CD4+CD8- thymocytes (i.e.,

M2 CD4SP mature thymocytes) (Figures 5F and S5C) nor an in-

crease in the expression of oxidative stress genes, including

Hspa1a, Hspa1b, Fos, Jun, Gadd45a, Rhob, and Nr4a2, in

TCRbhigh CD4+CD8� mature thymocytes (Figure S5D).

These results indicate that the gene expression profiles of

cTECs are highly similar between b5t-deficient mice and control

mice in B6 background. The pervasive effects reported in cTECs

and CD4+CD8� thymocytes in b5t-deficient mice (Apavaloaei

et al., 2019) are not reproduced in our b5t-deficient mice with

B6 background and therefore cannot be generalized as a conse-

quence of b5t deficiency. Their results could have been derived

from the use ofmicewith amixed genetic background, the use of

cTECs without clarifying the purity, and/or the focus on the small

difference detected by RNA sequencing analysis without confir-

mation by quantitative mRNA measurement (Apavaloaei et al.,

2019).

To further evaluate the impact of loss of cell-type-specific b5

subunits onto TECs, we also performed the RNA sequencing

analysis of mTECs and cTECs from b5i-deficient mice. The re-

sults showed similarities in gene expression profiles between

TECs from B6-b5i-deficient mice and those from control B6

mice, indicating that the loss of b5i does not pervasively affect

basic gene expression profiles in either mTECs or cTECs

(Figure S6).

Alteration in Proteasome Components in cTECs in b5t-
Deficient Mice
By the TMT-based quantitative proteomic analysis, we further

examined cTECs isolated from b5t-deficient K5D1 mice and

control K5D1 mice. We noticed that the proteomic profiles of

cTECs were highly similar between b5t-deficient mice and con-

trol K5D1 mice (Figure 6A), in contrast to the marked difference

detected in a parallel analysis between cTECs and mTECs (Fig-

ure 4A). Even though the analysis at the same stringency (Q <

0.05) as the analysis of cTECs and mTECs (Figure 4A) pointed

to no significantly different molecules between b5t-deficient

and control cTECs (Figure 6A), a relatively modest (Q < 0.4) but



Figure 5. RNA Sequencing Analysis of

cTECs Isolated from b5t-Deficient Mice

(A) Principal component (PC) analysis of RNA

sequencing data of indicated cell populations.

b5tKO, b5t-knockout.

(B) Correlation plot analysis of transcriptome ac-

cording to log2 fold change (b5tKO cTECs/control

cTECs) between B6 and K5D1 TECs. Red lines

indicate �5 and 5 of log2 fold change.

(C) qPCR analysis of mRNA expression levels

(means and SEMs, n = 3) of indicated genes

relative to Gapdh levels in cTECs isolated from B6

and B6-b5tKOmice. Numbers at the bottom of the

plots show average RPKM values and log2 fold

change values (B6 cTECs/B6-b5tKO cTECs) of

RNA sequencing data.

(D) qPCR analysis of mRNA expression levels

(means and SEMs, n = 5 to 7) of indicated genes

relative to Gapdh levels in B6 and B6-b5tKO

cTECs. Numbers at the bottom of the plots show

average RPKM values of RNA sequencing data.

(E) Flow cytometric analysis of b-catenin expres-

sion in cTECs. Histograms show b-catenin

expression in B6-b5tHet cTECs (blue line) and B6-

b5tKO cTECs (red line). Shaded area and black

line represent the fluorescence in the absence of

anti-b-catenin antibody in B6-b5tHet cTECs and

B6-b5tKO cTECs, respectively. Plots on the right

show relative fluorescence intensity index (means

and SEMs, n = 3) of the fluorescence histograms.

(F) Flow cytometric analysis of semi-mature and

mature thymocytes from B6-b5tHet and B6-b5tKO

mice. Plots show cell numbers (means and SEMs,

n = 4) ofMHCclass IlowCD69high TCRbhighCCR7high

(semi-mature, SM), MHC class Ihigh CD69high

TCRbhigh CCR7high (mature 1, M1), and MHC class

Ihigh CD69low TCRbhigh CCR7high (mature 2, M2)

subpopulations within CD4+CD8� thymocytes (left;

4SM, 4M1, and 4M2) and CD4�CD8+ thymocytes

(right; 8SM, 8M1, and 8M2).

*p < 0.05; ***p < 0.001; n.s., not significant; n.d., not

detected.
clear reduction in the abundance of b5t protein was detected in

b5t-deficient cTECs (Figure 6A), in which b5t protein was

completely absent (Murata et al., 2007; Ripen et al., 2011). The

modest difference in the amount of b5t protein was most likely

due to the well-known underestimation of the quantitative differ-

ence in the TMT-labeling strategy for proteomic analysis (Ting

et al., 2011, described in detail in the STAR Methods). Nonethe-

less, our results revealed that among the quantified 5,753 pro-

teins, b5t was the protein that had by far the largest difference

in amount between b5t�/� and b5t+/+ cTECs (Figure 6A).

The ontology analysis for TMT-identified proteins that were

differently (Q < 0.4) quantified between b5t-deficient and control

cTECs revealed a highly specific alteration in proteasome com-

ponents in b5t-deficient cTECs (Figure 6B). Among the 20S core

particle components of the proteasomes, all seven a-ring com-

ponents (a1–a7), all four non-catalytic b-ring components

(b3, b4, b6, and b7), and all three thymoproteasome catalytic
components (b1i, b2i, and b5t) were reduced in b5t-deficient

cTECs (Figure 6C). In contrast, b5t-deficient cTECs showed a

modest elevation of b5i and b5 expression (Figure 6C), which

likely reflected the compensation for the loss of b5t to form the

proteasome complexes, as previously reported (Murata et al.,

2007, 2018; Nitta et al., 2010). All ATPase components (Rpt1–

6) and non-ATPase components (Rpn1–13) of 19S regulatory

particle components were also reduced in b5t-deficient cTECs

(Figure 6D). It was also noted that unlike all other components

of core and regulatory proteasomal particles, b2 showed no sig-

nificant (Q > 0.9) differences in amount between b5t�/� and

b5t+/+ cTECs (Figure 6C).

Label-free quantitative proteomic analysis (Figure 6E;

Table S5) verified that in addition to the loss of b5t proteins,

the majority of proteasome components were reduced in

b5t-deficient cTECs. LC-MS/MS-based label-free quantifica-

tion utilized the missing value imputation, which enabled the
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Figure 6. Alteration in Proteasome Components in cTECs in b5t-Deficient Mice

(A) Volcano plot analysis of proteomes for K5D1-b5tKO cTECs and K5D1 cTECs. Detected proteins are plotted as log2 fold changes (K5D1-b5tKO cTECs/K5D1

cTECs) versus �log10 Q values. Black horizontal line in the plot shows the Q value of 0.05.

(B) Enrichment analysis of the ontology for proteins differently (Q < 0.4) expressed between K5D1 cTECs and K5D1-b5tKO cTECs. Bars show the adjusted

p values of top 5 categories. Numbers in parentheses indicate the number of categorized proteins.

(C and D) Volcano plots for 20S proteasome components (C) and regulatory particle proteasome components (D). Plotted are log2 fold changes (K5D1-b5tKO

cTECs/K5D1 cTECs) versus �log10 Q values for individual components.

(E) Label-free proteomic analysis of protein abundance of cTECs isolated from K5D1 and K5D1-b5tKOmice. Plotted are log2 fold changes (K5D1-b5tKO cTECs/

K5D1 cTECs) of 20S proteasome components (left) and regulatory particle proteasome components (right) in two independent measurements.

(F) Immunoblot analysis of b5t, a6, a7, b3, Rpn1, andRpn13 proteins in cTECs andmTECs isolated fromK5D1mice andK5D1-b5tKOmice. b-actin was examined

as loading control.

(legend continued on next page)
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fold-change comparison of small amounts of proteins among

multiple samples (Berg et al., 2019). We noticed that 10 out of

11 b5t-derived peptide signals were completely absent prior

to the imputation in the label-free MS analysis of b5t-knockout

cTEC samples (Table S6), reconfirming the absolute absence of

actual b5t protein in b5t-deficient cTECs and suggesting that

the only positively detected peptide signal actually represented

a coincidentally detected false-positive signal unrelated to b5t.

In agreement with the MS measurements, immunoblot anal-

ysis demonstrated the loss in b5t subunit and the reduction in

non-catalytic proteasome components (a6, a7, b3, Rpn1, and

Rpn13) in cTECs from b5t-deficient mice (Figure 6F). Additional

immunoblot analysis of the catalytic proteasome components

reconfirmed the reduction in b1, b1i, and b2i; no apparent alter-

ation in b2; and the increase in b5 and b5i in b5t-deficient cTECs

(Figure 6G). Flow cytometric analysis further showed the com-

plete absence of b5t and the approximately 40% reduction of

a6 in cTECs from b5t-deficient mice in B6 background

(Figure 6H).

To further verify the alteration in the amounts of b5 and b5i

in cTECs from b5t-deficient mice, we synthesized b5, b5i, and

b5t proteins in bacteria and determined their sensitivities for

the absolute quantification of these proteins in immunoblot

analysis (Figure 6I). Measurements of the absolute amounts

of b5, b5i, and b5t proteins in equivalent amounts of TEC ly-

sates isolated from K5D1 mice revealed that unlike b5t+/+

cTECs, which predominantly expressed the b5t subunit, the

loss of b5t in b5t�/� cTECs was accompanied by the abun-

dant expression of both b5 and b5i proteins (Figure 6J). In

addition to the 2-fold increase in the absolute amount of b5i

in b5t-deficient cTECs, the amount of b5 protein increased

markedly, at approximately 5-fold in b5t�/� cTECs (Figure 6J).

The predominant detection of b5i rather than b5 in b5t-defi-

cient cTECs in a previous study (Nitta et al., 2010; also shown

in Figure 6G) was likely due to the lower sensitivity of b5 than

b5i by the antibody-mediated detection in the immunoblot

analysis (Figure 6I).

These results indicate that the quantitative proteomic profiles

of cTECs are highly similar between b5t�/� and b5t+/+ mice.

However, the majority of proteasome components, including

the 20S core particle components and the 19S regulatory parti-

cle components, are modestly but specifically reduced in the

amount in cTECs as a consequence of a genetic loss of b5t.

On the contrary, b5i and b5 are elevated in amount to potentially

compensate the loss of b5t to maintain proteasome complexes

in b5t-deficient cTECs.
(G) Immunoblot analysis of b5t, b5i, b5, b2i, b1i, b2, and b1 proteins in cTECs and

as loading control. Numbers show relative amounts of the signals normalized wi

(H) Histograms show the flow cytometric detection of b5t (top) and a6 (middle) alon

cTECs and mTECs from B6 mice (black line) and B6-b5tKO mice (red line). Num

right show the relative fluorescence intensity indexes (RFI; means and SEMs, n

(comparison between B6 and KO groups).

(I) Coomassie Brilliant Blue stained SDS-PAGE gels showing the production and p

of purified proteins were determined by a fluorometer and normalized to protein p

proteins (middle). Standard curves between the amounts of purified b5t-His, b

immunoblot signals on the y axis (bottom).

(J) Immunoblot analysis of b5t, b5i, and b5 proteins in indicated amounts (mg) of the

The amounts of indicated proteins (n = 3) were deduced according to the standa
No Constitutive Stress Response in cTECs in
b5t-Deficient Mice
Our results indicate that b5t-deficient cTECs have modestly

reduced amounts of most proteasome components. It was

demonstrated that a deficiency in proteasomes would ignite a

stress response in cells (Bush et al., 1997; Mathew et al.,

1998). We finally examined whether the modest reduction in

the amounts of many proteasome components detected in

b5t-deficient cTECs would impair proteasome activity and sub-

sequently trigger stress responses in cTECs. We found that the

proteasome activity detected by a cell-permeable triple-leucine

substrate-based fluorescent probe (Figure S7A) was not signifi-

cantly altered in b5t-deficient cTECs, indicating that control and

b5t-deficient cTECs were comparable in the chymotrypsin-like

proteolytic activity of the proteasomes (Figure 7A). The absence

of alteration in proteasome activity despite the reduction in the

amount might be due in part to the compensatory incorporation

of b5i into the proteasomes in b5t-deficient cTECs (Figure 6),

which could lead to the expression of b5i-containing immuno-

proteasomes having higher chymotrypsin-like activity than b5t-

containing thymoproteasomes (Murata et al., 2007; Sasaki

et al., 2015).

In agreement with the lack of reduction in proteasome activ-

ity, we detected no accumulation of ubiquitinated proteins in

b5t-deficient cTECs (Figures 7B and S7B), suggesting that

ubiquitinated proteins were degraded in b5t-deficient cTECs.

Accordingly, we detected no elevation of Sqstm1 mRNAs en-

coding the stress-responsive signaling adaptor protein p62

(Sánchez-Martı́n et al., 2019) in b5t-deficient cTECs isolated

from B6 background mice (Figure 7C). We also detected no

elevation of Nrf1 mRNAs in b5t-deficient cTECs (Figure 7D), a

gene encoding a transcription factor that plays an essential

role in the restoration of proteasome subunit genes during pro-

teasome impairment (Koizumi et al., 2018). In addition, ontology

analysis of proteomic profiles confirmed no manifestation of

endoplasmic reticulum stress response in b5t-deficient cTECs

(Figure 7E).

It is well appreciated that autophagy is constitutively active in

cTECs evenwithout nutritional deprivation and contributes to the

optimization of self-antigen processing for inducing T-cell selec-

tion (Nedjic et al., 2008). It was therefore interesting to examine

whether the loss of b5t would trigger signals to augment the

constitutive autophagy in cTECs. However, we detected the

comparable formation of LC3-containing autophagosomes in

cTECs between B6-b5t-deficient mice and control B6 mice (Fig-

ure 7F). Proteins associatedwith the ontology of autophagywere
mTECs isolated from K5D1mice and K5D1-b5tKOmice. b-actin was examined

th those of actin.

g with the background signals detected by isotype control reagents (bottom) in

bers in histograms show the mean fluorescence intensity (MFI). Plots on the

= 4) of b5t (top) and a6 (bottom) expression. ***p < 0.001; n.s. not significant

urification of b5t-His, b5i-His, and b5-His proteins (top). The absolute amounts

urity. Immunoblot analysis of indicated amounts of b5t-His, b5i-His, and b5-His

5i-His, and b5-His proteins on the x axis and the integrated density of the

lysates of cTECs andmTECs isolated fromK5D1mice and K5D1-b5tKOmice.

rd curves shown in (I).
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Figure 7. No Constitutive Stress Response in cTECs in b5t-Deficient Mice

(A) Proteasome activity in b5t-deficient and control cTECs. Histograms show the detection of proteasome activity by cell-permeable triple-leucine substrate-

based fluorescent probe in cTECs andmTECs of B6mice (blue line) and B6-b5tKOmice (red line). Shaded area and black line represent background fluorescence

profiles without the addition of proteasome probe in B6 TECs and B6-b5tKO TECs, respectively. Plots on the right show relative fluorescence intensity index

(means and SEMs, n = 10–11). B6-ctrl indicates B6 and B6-b5tHet mice. n.s., not significant.

(B) Immunoblot analysis of ubiquitin in cTECs and mTECs isolated from K5D1 and K5D1-b5tKO mice. NIH 3T3 cells with or without proteasome inhibitor MG132

treatment were also examined.

(C and D) qPCR analysis of mRNA expression levels (means and SEMs, n = 10) of p62/Sqstm1 (C) and Nrf1 (D) relative to Gapdh in cTECs and mTECs isolated

from B6 and B6-b5tKO mice. n.s., not significant.

(E) Volcano plot analysis of TMT-based quantitative proteomes for K5D1-b5tKO cTECs and K5D1 cTECs, highlighting proteins with the ontology of ER stress

response (yellow symbols). Detected proteins are plotted as log2 fold changes (K5D1-b5tKO cTECs/K5D1 cTECs) versus�log10Q values. Black horizontal line in

the plot shows the Q value of 0.05.

(F) Immunofluorescence analysis of LC3 (red) and b5t-venus (green) in the thymic sections of B6-b5tHet (b5tVenus/+) and B6-b5tKO (b5tVenus/Venus) mice.

Representative data from two independent experiments are shown. Scale bars, 5 mm.

(G) Volcano plot analysis of TMT-based quantitative proteomes for K5D1-b5tKO cTECs and K5D1 cTECs, highlighting proteins with the ontology of autophagy

(yellow symbols). Detected proteins are plotted as log2 fold changes (K5D1-b5tKO cTECs/K5D1 cTECs) versus�log10 Q values. Black horizontal line in the plot

shows the Q value of 0.05.
neither significantly nor coordinately altered in b5t-deficient

cTECs (Figure 7G).

In agreement with previous results showing the comparable

expression of surface MHC-I molecules in cTECs from b5t-defi-

cient mice of B6 background (Nitta et al., 2010) and the compa-

rable decay in surfaceMHC-I molecules in embryonic fibroblasts

that expressed b5t or b5i (Sasaki et al., 2015), we found that
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MHC-I expression and its decay in the presence of brefeldin A,

representing the stability ofMHC-I expression, were comparable

between K5D1 cTECs and B6 cTECs in the absence or presence

of b5t (Figure S7C).

These results indicate that despite the modest reduction in the

amounts of many proteasome components, b5t-deficient cTECs

are neither reduced in proteasomal chymotrypsin-like activity



nor accumulated with ubiquitinated proteins. Consequently, the

genetic loss of b5t neither triggers stress signals nor alters auto-

phagy in cTECs.

DISCUSSION

The present results demonstrate that the enlarged thymuses in

K5D1 mice are functionally potent in the production and selec-

tion of immunocompetent and self-tolerant T cells and so pro-

vide a useful source for the preparation of thymic cells, including

TEC subpopulations for biochemical analysis including proteo-

mic analysis, which requires a relatively large number of cells.

In contrast to normal mice, fromwhich fewer than 53 103 cTECs

and approximately 104 mTECs can be isolated per mouse (Gray

et al., 2006; Sakata et al., 2018), K5D1 mice readily enable the

isolation of more than 105 cTECs and more than 105 mTECs

from one mouse, which would enable practical sample prepara-

tion for mass-spectrometry-based quantitative proteomic anal-

ysis of cTECs and mTECs. The results described in this study

reveal previously unknown quantitative profiles of unbiased pro-

teomes in freshly isolated cTECs and mTECs. In combination

with transcriptomic analysis, our trans-omics analysis identifies

signature molecules that functionally and developmentally char-

acterize a sharp contrast between cTECs and mTECs.

The thymuses in K5D1 mice maintain the corticomedullary

structure and the T-cell-producing capability (Robles et al.,

1996; Klug et al., 2000; Bolner, 2015). Our results show that

the flow cytometric profiles of cTECs and mTECs, as well as

the CD4/CD8 and TCRb/TCRd profiles of thymocytes, are similar

between K5D1 thymuses and B6 thymuses. Accordingly, similar

to B6 thymuses, the cortical regions in the enlarged K5D1 thy-

muses are enriched with b5t+ cTECs and CD4/CD8 double-pos-

itive thymocytes, and the K5D1 thymic medullas contain Aire+

mTECs and CD4/CD8 single-positive thymocytes. Our results

further show that b5t+ cTECs in K5D1 mice are functionally

potent to optimize the CD8+ T-cell production, and Aire+ mTECs

in K5D1mice are essential for the establishment of self-tolerance

in T cells. Indeed, peripheral T cells generated in K5D1 mice are

functionally competent and self-tolerant. Thus, the hyperplastic

thymic microenvironments, including cTECs and mTECs, in

K5D1 mice are functionally capable of producing and selecting

immunocompetent and self-tolerant T cells. Moreover, in com-

parison with previous data (Sakata et al., 2018), our results

show that cTECs and mTECs can be isolated with an equivalent

efficiency between K5D1 and B6 thymuses. Thus, the thymuses

in K5D1 mice are a useful source of cTECs and mTECs for

biochemical analysis, including proteomic analysis that requires

relatively large-scale cell preparation.

Consequently, our trans-omics data (i.e., the combination of

transcriptomic and proteomic data) from cTECs and mTECs

offer a useful resource for further explorations of the biology of

TECs and their subpopulations. The list of the molecules whose

expression levels are significantly different between cTECs and

mTECs coordinately in both transcriptomic and proteomic ana-

lyses can be particularly useful. For example, it was previously

shown that the unique protein degradation machinery by

cathepsin L, TSSP, and b5t in cTECs is important for inducing

positive selection of functionally competent T cells (Murata
et al., 2007; Nakagawa et al., 1998; Gommeaux et al., 2009;

Kondo et al., 2019). Our trans-omics analysis identifies that in

addition to cathepsin L, TSSP, and b5t, cathepsin D and calpain

1 are more abundant in cTECs than in mTECs. On the contrary,

cathepsin C, cathepsin H, and cathepsin Z are expressed more

abundantly in mTECs than cTECs, in addition to the previously

described cathepsin S. These proteases, which are distinctively

expressed in either cTECs or mTECs, may additionally play an

important role in self-antigen processing for the TCR repertoire

formation in T cells.

It is important to point out that cTECs isolated from either

K5D1 or B6 mice contain multicellular TNC complexes that

enclose CD4+CD8+ thymocytes. In comparison with cTECs,

mTECs can be far more easily separated from thymocytes, so

that both transcriptomic and proteomic profiles of mTECs are

essentially free from signals derived from co-purified thymo-

cytes. On the contrary, we have estimated that 20% to 27% of

RNAs and 3% to 5% of proteins extracted from isolated cTECs

originate from TNC-enclosed CD4+CD8+ thymocytes. Conse-

quently, the transcriptomic profiles of cTECs are considerably

affected by the co-purified CD4+CD8+ thymocytes, in agreement

with the transcriptomic data of cTECs reported by other groups

(Sansom et al., 2014; Immunological Genome Project, http://

www.immgen.org). In contrast, the proteomic profiles of cTECs

are only marginally affected by the proteins extracted from

TNC-enclosed CD4+CD8+ thymocytes, so that our proteomic

and trans-omics profiles of cTECs are largely free from signals

derived from CD4+CD8+ thymocytes.

Our unbiased and quantitative proteomic profiles reveal a high

similarity between cTECs isolated from b5t-deficient mice and

those from control mice. Strikingly, however, our data also reveal

that the majority of proteasome components, including the 20S

core particle components and the 19S regulatory particle com-

ponents, are modestly but specifically reduced in b5t-deficient

cTECs. On the contrary, b5i and b5 are elevated in amount,

potentially to compensate the loss of b5t and maintain protea-

some complexes in b5t-deficient cTECs, as demonstrated previ-

ously (Murata et al., 2007; Nitta et al., 2010). Our RNA

sequencing data show that the majority of proteasome compo-

nents were not significantly altered in mRNA amount in b5t-defi-

cient cTECs. The molecular mechanism for the coordinated

reduction in the majority of proteasome components in b5t-defi-

cient cTECs is unknown. It is known, however, that the b5 sub-

unit acts as an intramolecular chaperone to support proteasome

assembly (Chen andHochstrasser, 1996; Hirano et al., 2008) and

that b5i is incorporated preferentially over b5 into the protea-

some intermediates containing b1i and b2i subunits (Griffin

et al., 1998; Tanaka, 2009). It is possible that b5t is more efficient

than b5i or b5 in assembling with other components to form thy-

moproteasomes, so that the loss of b5t gene expression may

cause an inefficient proteasome assembly and thereby reduce

the number of proteasomes in b5t-deficient cTECs.

Interestingly, our data further show that proteasome activity

detected by a cell-permeable triple-leucine substrate-based

fluorescent probe is not significantly altered in b5t-deficient

cTECs, indicating that control and b5t-knockout cTECs are com-

parable in the chymotrypsin-like proteolytic activity of the pro-

teasomes. We think that the proteasomes in b5t-knockout
Cell Reports 29, 2901–2916, November 26, 2019 2913

http://www.immgen.org
http://www.immgen.org


cTECs are altered in substrate preference and produce altered

MHC-I-associated peptidome, as previously suggested by the

experiments using embryonic fibroblasts (Sasaki et al., 2015).

We speculate that the absence of alteration in triple-leucine sub-

strate-based chymotrypsin-like activity in b5t-deficient cTECs

may be due in part to the compensatory incorporation of b5i

into proteasome complexes in b5t-deficient cTECs, which re-

sults in the expression of b5i-containing proteasomes having

higher chymotrypsin-like activity than the b5t-containing protea-

somes (Murata et al., 2007; Sasaki et al., 2015). Smaller amounts

of proteasomes with higher chymotrypsin-like activity may result

in no significant alteration of chymotrypsin-like activity in b5t-

deficient cTECs. We are amenable to the previous suggestion

that proteasomes in b5t-deficient cTECs are altered in substrate

preference and produce altered MHC-I-associated peptidome.

Indeed, a recent study showed that human thymoproteasomes

and immunoproteasomes differ in cleavage preference quantita-

tively and qualitatively (Kuckelkorn et al., 2019).

We further show that despite the reduction in many protea-

some components, b5t-deficient cTECs do not constitutively

ignite stress responses. It was previously demonstrated that

b5t-deficient cTECs are unable to optimize the production of

functionally potent CD8+ T cells (Murata et al., 2018; Nitta

et al., 2010; Takada et al., 2015). The present results showing

the specific alteration in proteasome components in b5t-defi-

cient cTECs without noticeable alteration in other proteins sup-

port the possibility that b5t in cTECs uniquely affects protea-

some-mediated processing of self-antigen peptides, which are

associated with MHC class I complexes to induce the positive

selection of CD8+ T cells (Murata et al., 2007; Nitta et al., 2010;

Sasaki et al., 2015; Tomaru et al., 2019), rather than pervasively

affecting other biological processes in cTECs for the regulation

of CD8+ T-cell production. It is important in the future to charac-

terize MHC class-I-associated peptides displayed by cTECs in

the presence or absence of b5t.

Our quantitative proteomic profiles also show that the majority

of proteasome components, including the 20S core particle

components and the 19S regulatory particle components, are

significantly more abundant in cTECs than in mTECs. Indeed,

higher proteasome activity is detected in cTECs than in mTECs.

However, neither the accumulation of ubiquitinated proteins nor

the elevation of p62 and Nrf1 mRNAs is detectable even in

mTECs, suggesting that the proteasome activity detected in

mTECs is sufficient for mTECs to maintain cellular homeostasis.

As cTECs are larger in size (Nakagawa et al., 2012) and more

abundant in proteins (this study) than mTECs, cTECs may

require higher proteasome activity than mTECs to maintain

cellular survival and functions.

Finally, our results show that the hyperplastic thymuses in

K5D1 mice are functionally capable of producing and selecting

immunocompetent and self-tolerant T cells. Our results also

show that in comparison with the thymuses in normal B6 mice,

the thymuses in K5D1 mice are massively enlarged with an

approximately 80- to 100-fold larger number of TECs. Accord-

ingly, the cellularity of thymocytes in K5D1 mice increases to

approximately 30- to 50-fold the cellularity in B6mice.We further

note that T cells in the spleens of K5D1 mice are elevated in the

cellularity with a 2- to 3-fold increase. It is clear that the numbers
2914 Cell Reports 29, 2901–2916, November 26, 2019
of both thymocytes and peripheral T cells are elevated propor-

tionally with the increase in TEC cellularity, in agreement with a

previous study of the engraftment of a graded number of thymic

lobes (Berzins et al., 1999). However, the disparity between

massive thymus enlargement and modest T-cell increase in the

periphery suggests the presence of a homeostatic mechanism

that limits peripheral T-cell numbers. These implications may

be important to work seeking to improve the recovery of

T cells in various clinical settings through the reconstitution of

TECs (van den Brink et al., 2004; Chaudhry et al., 2016). It is

possible that the export of mature thymocytes to the circulation

is limited in the enlarged thymus in K5D1 mice, as suggested

previously (Bolner, 2015).

In conclusion, the present study using K5D1mice allowsmass-

spectrometry-based quantitative proteomic analysis of cTECs

and mTECs. Our results reveal a highly specific impact of the thy-

moproteasome on proteasome subunit composition in cTECs.

The reproducible reduction of proteasome components not only

in b5t-deficient K5D1 cTECs, but also in b5t-deficient B6 cTECs,

as well as the high similarity in transcriptomic profiles between

K5D1 TECs and B6 TECs, verifies the usefulness of our proteomic

profiles obtained from K5D1 TECs in studies of the biology of

TECs. Although it is important in the future to reveal proteomic

profiles of TECs in normal mice, the present results offer an inte-

grated trans-omics platform for further explorations of the biology

of TECs and thymic microenvironments.
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Further information and requests for reagents may be directed to and will be fulfilled by the Lead Contact, Yousuke Takahama

(yousuke.takahama@nih.gov). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
C57BL/6 (B6) mice were obtained from SLC Japan and The Jackson Laboratory. BALB/c and DBA/2mice as well as B6-b5i-deficient

mice (Fehling et al., 1994) were obtained from The Jackson Laboratory. Keratin 5 promoter-driven cyclin D1-transgenic (K5D1) mice

(Robles et al., 1996) and b5t-deficient mice (Murata et al., 2007; Ohigashi et al., 2013) were described previously and backcrossed to

B6 background. For most experiments including proteomic analysis, male and female mice were analyzed at 12 to 20 weeks old in an

age-matched and sex-matchedmanner. Mice were housed on a 12-hour light-dark cycle in climate-controlled, pathogen-free barrier

facilities. All mouse experiments were performed with consent from the Animal Experimentation Committee of the University of

Tokushima (T28-58) and from the Animal Care and Use Committee of the National Cancer Institute (ASP 18-431 and EIB-076-2).

Cells
NIH 3T3 cells (male) were grown in Dulbecco’s Modified EagleMedium (Nacalai Tesque), supplemented with 10% fetal bovine serum

(Invitrogen), penicillin (100 I.U./mL) and streptomycin (100 mg/mL) (GIBCO) at 37�C and 5% CO2. Where needed, NIH 3T3 cells were

cultured in the presence of MG132 (100 mM) overnight.

METHOD DETAILS

Thymus section analysis
Thymus tissues were fixed with 4% (g/vol) paraformaldehyde (PFA) and embedded in OCT optimum cutting temperature compound

(Sakura Finetek). Frozen thymuses were sliced into 10-mm-thick sections and stained with antibodies specific for b5t (Murata et al.,

2007; MBL), Aire (Invitrogen, clone 5H12), and LC3B (Cell Signaling Technology, clone D11), followed by AlexaFluor-conjugated

anti-IgG antibodies (Invitrogen). Sections were also stained for the reactivity with UEA1 (Vector Laboratories). For the staining

with antibodies specific for CD4 (Invitrogen, clone RM4-5) and CD8a (Invitrogen, clone 53-6.7) in addition to the staining for the reac-

tivity with UEA1, thymus tissues were embedded, sliced, and fixed with acetone. Images were visualized and analyzed with a TCS

SP8 (Leica) or an ECLIPSE Ti2 (Nikon) confocal laser scanning microscope.

For the measurement of the area of thymic regions, frozen thymuses were sliced into 10-mm-thick sections, fixed with neutral

buffered formalin, stained with hematoxylin and eosin (Muto Pure Chemicals), and imaged under an Eclipse E1000 microscope

(Nikon). The areas of the cortical andmedullary regions in the thymic sections were measured by using Photoshop software (Adobe).

Flow cytometric analysis
For the analysis of thymocytes and spleen cells, cells were multicolor stained for CD4 (BioLegend, clone RM4-5), CD8a (Invitrogen,

clone 5H10), CD25 (BD PharMingen, clone PC61), CD69 (BD PharMingen, clone H1.2F3), H-2Kb MHC class I (Invitrogen, clone AF6-

88.5.5.3), TCRb (BioLegend, clone H57), and TCRd (BD PharMingen, clone GL3). Where indicated, thymocytes were stained for
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CCR7 (Invitrogen, clone 4B12) at 37�C for 30 min before the staining with other antibodies. Multicolor flow cytometry was performed

on FACSVerse, LSR II, LSRFortessa, and LSRFortessa X-20 (BD Biosciences). Flow cytometric data was analyzed using FlowJo.

Single-cell analysis and isolation of TECs
For single-cell analysis and isolation of TECs, minced thymuses were digested with 0.5 unit/mL Liberase TM (Roche) in the presence

of 0.02%DNase I (Roche). Single-cell suspensionswere stained for the expression of EpCAM (CD326, BioLegend, cloneG8.8), CD45

(BioLegend, clone 30-F11), Ly51 (CD249, BioLegend, clone 6C3), and for the reactivity with UEA-1 (Vector Laboratories). For the

intracellular staining of a6, b5t, and b-catenin in TECs, surface-stained cells were fixed with 2% (g/vol) paraformaldehyde, permea-

bilized with 0.05% saponin, and stained with anti-a6 antibody (Murata et al., 2007), anti-b5t antibody (Murata et al., 2007), and anti-

b-catenin antibody (BD Transduction Laboratories, clone 14), followed by AlexaFluor-conjugated anti-IgG antibody (Invitrogen). For

the measurement of proteasome activity in TECs, surface-stained cells were incubated with 1 mM cell-permeable fluorescent pro-

teasome activity probe (Me4BodipyFL-Ahx3Leu3VS, Boston Biochem) at 37�C for 60 min. Where indicated, cells were incubated

at 37�C for 30 min in the presence of 1 mM or 10 mM MG132 prior to the incubation with the proteasome activity probe.

For the measurement of cell-surface expression and its decay of MHC class I molecule H-2Kb (detected by clone AF6-88.5, BD

Biosciences) on TECs, liberase-digested thymic cells were cultured in the presence of 5 mg/ml brefeldin A (Sigma Aldrich) for 2

and 4 hours before multicolor flow cytometric analysis of cell-surface molecules.

For the isolation of TECs, CD45- cells were enriched with magnetic-bead-conjugated anti-CD45 antibody (Miltenyi Biotec) before

multicolor staining for flow cytometric cell sorting. For the isolation of TECs from enlarged K5D1 thymuses, cells were enriched by

Percoll density gradient centrifugation before the magnetic enrichment of CD45- cells. Multicolor flow cytometry and cell sorting of

TECs were performed on FACSVerse and FACSAria II (BD Biosciences).

Immunofluorescence analysis of isolated TECs
cTECs and mTECs were fixed with 4% (g/vol) PFA, permeabilized with 0.05% saponin, and stained with anti-CD45 antibody

(BioLegend, clone 30-F11). Cells were collected on a slide glass by centrifugation at 1,800 rpm for 10 min by using Cytospin 4

(Thermo Fisher). Fluorescence images were analyzed under a TCS SP8 confocal laser scanning microscope (Leica).

Allogeneic T cell response
Spleen cells from 13�15-week-old B6 and K5D1 mice were labeled with 5 mM Cell Trace Violet (Thermo Fisher) at 37�C for 20 min.

Spleen cells from 6- to 7-week-old mice were irradiated at 20 Gy for stimulator cells. Labeled cells (2 3 106) were cultured with

stimulator cells (8 3 106) at 37�C for 6 days. Cell Trace Violet fluorescence in TCRbhigh T cells was measured by flow cytometry.

Fluorometric measurement of RNA and proteins
Total cellular RNA was extracted by using a RNeasy Plus Micro Kit (QIAGEN). For protein extraction, cells were lysed in 150 mL of 6 M

guanidine-HCl containing 100 mM Tris-HCl, pH 8.0 and 2mMDTT. The amounts of RNAs and proteins were measured using a Qubit

RNA HS Assay Kit and a Qubit Protein Assay Kit, respectively, with a Qubit Fluorometer (Thermo Fisher).

RNA sequencing analysis
cDNAs were prepared from 3,000 isolated cells by using SMART-Seq v4 Ultra Low Input RNA Kit, according to the manufacturer’s

protocol (Clontech). Sequencing libraries were generated by using a Nextera XT DNA Library Prep Kit, according to the manufac-

turer’s protocol (Illumina). The concentration of libraries wasmeasured by an ABI PRISM 7500 Real-time PCR system in combination

with a Power SYBR Green PCR Master Mix (Thermo Fisher). Single-end sequencing of cDNA libraries with a read length of 50 was

performed with HiSeq 1500 platform (Illumina). Data were analyzed by using CLC Genomics Workbench 11 (QIAGEN) with default

parameters.

TMT proteomic analysis
Approximately 1 to 33 105 cells (K5D1 cTECs in quadruplicate, K5D1mTECs in triplicate, and K5D1-b5tKO cTECs in triplicate) were

lysed in 150 mL of 6 M guanidine-HCl containing 100mM Tris-HCl, pH 8.0, and 2 mMDTT. The lysates were dissolved by heating and

sonication, followed by centrifugation at 20,000 x g for 15 min at 4�C. The supernatants were reduced in 5 mM DTT at room temper-

ature for 30 min and alkylated in 27.5 mM iodoacetamide at room temperature for 30 min in the dark. Proteins were purified by meth-

anol/chloroform precipitation and solubilized with 25 mL of 0.1% RapiGest SF (Waters) in 50 mM triethylammonium bicarbonate

buffer. After repeated sonication and vortexing, the proteins were digested with 0.5 mg of trypsin/Lys-C mix (Promega) for 16 hr at

37�C. Peptide concentration was determined using Pierce Quantitative Colorimetric Peptide Assay (Thermo Fisher). Approximately

10 mg of peptides for each sample was labeled with 0.2 mg of TMT10-plex reagents (Thermo Fisher) for 1 hr at room temperature.

After the reaction was quenched with hydroxylamine, all the TMT-labeled samples were pooled, acidified with trifluoroacetic acid

(TFA) and fractionated using a Pierce High pH Reversed-phase Peptide Fractionation Kit (Thermo Fisher). Ten fractions were

collected using 5%, 10%, 12.5%, 15%, 17.5%, 20%, 22.5%, 25%, 50%, and 80% acetonitrile (ACN). Each fraction was evaporated

in a SpeedVac concentrator and dissolved in 0.1% TFA.
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LC-MS/MS analysis of the resultant peptides (1 mg each) was performed on an EASY-nLC 1200 UHPLC connected to a Q Exactive

Plus mass spectrometer through a nanoelectrospray ion source (Thermo Fisher). The peptides were separated on a 75 mm inner

diameter 3 150 mm C18 reversed-phase column (Nikkyo Technos) with a linear gradient of 4%–20% ACN for 0–180 min and

20%–32% ACN for 180–220 min, followed by an increase to 80% ACN for 220–230 min. The mass spectrometer was operated in

the data-dependent acquisition mode with a top 15 MS/MSmethod. MS1 spectra were measured at a resolution of 70,000, an auto-

matic gain control (AGC) target of 33 106 and amass range of 375 to 1,400m/z. HCDMS/MS spectra were acquired at a resolution of

35,000, an AGC target of 13 105, an isolation window of 0.4m/z, a maximum injection time of 100 msec and a normalized collision

energy of 32. Dynamic exclusion was set to 30 s. Raw data were directly analyzed against Swiss-Prot database restricted to Mus

musculus using Proteome Discoverer version 2.2 (Thermo Fisher) with Mascot search engine version 2.5 (Matrix Science) for iden-

tification and TMT quantification. The search parameters were (a) trypsin as an enzyme with up to two missed cleavages, (b) precur-

sor mass tolerance of 10 ppm, (c) fragment mass tolerance of 0.02 Da, (d) TMT of lysine and peptide N terminus and carbamidome-

thylation of cysteine as fixed modifications, and (e) acetylation of protein N terminus and oxidation of methionine as variable

modifications. Peptides and proteins were filtered at the false-discovery rate (FDR) of 1% using the percolator node and the protein

FDR validator node, respectively.

Intrinsic to the TMT-MS technology, TMT target ions are frequently accompanied by a small amount of contaminating TMT ions

(Ow et al., 2009; Ting et al., 2011; also described in Thermo Fisher technical information). When the amount of reporter signals

from target ions is large, the contribution of the contaminating ions is negligible. However, when the amount of reporter signals

from target ions is small or even zero, the contaminating ions dominate the signals and thus create bias in the quantification

(Ow et al., 2009; Ting et al., 2011). In the case of TMT-MS measurement of b5t, the reason why a small amount of b5t was detected

in b5t-deficient cTECs isolated from b5t-deficient mice is the detection of contaminating ions. Indeed, the abundant detection of b5t

peptide signals in control cTEC samples created a precursor isolation window for all of the simultaneously analyzed samples,

including cTEC samples from b5t-deficient mice. The precursor isolation window for b5t caused the distorted detection of contam-

inating ions in b5t-deficient cTEC samples.

Label-free proteomic analysis
Proteins were prepared as above (TMT proteomic analysis) and digested with trypsin/Lys-C mix for 16 hr at 37�C. The digests were

desalted using GL-Tip SDB (GL Sciences), and the eluates were evaporated in a SpeedVac concentrator and dissolved in 0.1% TFA.

LC-MS/MS analysis of the resultant peptides (400 ng each) was performed on an EASY-nLC 1200 UHPLC connected to a Q

Exactive Plus mass spectrometer. The peptides were separated with a linear gradient of 4%–28% ACN for 0–150 min followed

by an increase to 80% ACN during 150–170 min. The mass spectrometer was operated in the data-dependent acquisition mode

with the top 10 MS/MS method. MS1 spectra were measured at a resolution of 70,000, an AGC target of 13 106 and a mass range

of 350 to 1,500m/z. HCD MS/MS spectra were acquired at a resolution of 17,500, an AGC target of 5 3 104, an isolation window of

2.0m/z, a maximum injection time of 60 msec and a normalized collision energy of 27. Dynamic exclusion was set to 10 s. Raw data

were directly analyzed against Swiss-Prot database restricted toMus musculus using Proteome Discoverer version 2.2 with Mascot

search engine version 2.5 for identification and label-free precursor ion quantification.

The search parameters were (a) trypsin as an enzymewith up to twomissed cleavages, (b) precursor mass tolerance of 10 ppm, (c)

fragment mass tolerance of 0.02 Da, (d) carbamidomethylation of cysteine as a fixed modification, and (e) acetylation of protein N

terminus and oxidation ofmethionine as variablemodifications. Peptides and proteins were filtered at the FDR of 1%using the perco-

lator node and the protein FDR validator node, respectively. Normalization was performed such that the sum total of abundance

values for each sample over all peptides was the same.

Quantitative RT-PCR analysis
Total cellular RNAwas reverse-transcribed (RT) with PrimeScript Reverse Transcriptase (TaKaRa). Quantitative real-time polymerase

chain reaction (PCR) was performed using SYBR Premix Ex Taq (TaKaRa) and a StepOnePlus Real-Time PCR System or a

QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems). The amplified products were confirmed to be single bands by

gel electrophoresis.

Purification of His-tag proteins
Full-length cDNAs encoding b5, b5i, and b5t were amplified from the tissues obtained from C57BL/6 mice and cloned into pET28a

vector (Novagen). All constructs were verified by sequencing. BL21 (DL3) competent E. coliwere transformed with the plasmids that

encoded the polyhistidine-tagged (His-Tag) b5, b5i, or b5t proteins were induced by 1 mM isopropyl b-d-1-thiogalactopyranoside

(IPTG) at 25�C for overnight, and purified by His Bind Kit according to the manufacturer’s protocol (Novagen).

Immunoblotting
Total cell lysates (2.5, 5, or 10 mg) were separated by electrophoresis on a 12%polyacrylamide gel and transferred onto a PVDFmem-

brane (Millipore). After blocking with Blocking One solution (Nacalai Tesque), the membrane was incubated with primary antibodies
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overnight at room temperature, followed by incubation with HRP-conjugated secondary antibodies. Protein bands on themembrane

were detected with a ChemiDoc Touch Imaging System (Bio-Rad) or a Light Capture II (Atto) after incubation of the membrane with

Clarity Western ECL Substrate (Bio-Rad).

Gene ontology term analysis
Gene ontology for transcriptomic and proteomic data was analyzed by using DAVID Bioinformatics Resources 6.8 (https://david.

ncifcrf.gov).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was carried out using GraphPad Prism 7 software, unless otherwise noted. Statistical significance was assessed

using the two-tailed unpaired Student’s t test with Welch’s correction for unequal variances. Q value was calculated using the mul-

tiple unpaired t test with the false discovery rate approach (Benjamini and Hochberg, 1995). Quantification of proteins detected by

immunoblot analyses was performed by using ImageJ v1.49 software. All values are expressed as means and SEMs, unless other-

wise specified. The n numbers are indicated in figure legends.

DATA AND CODE AVAILABILITY

RNA sequencing data have been deposited in The DNA Data Bank of Japan (DDBJ, https://www.ddbj.nig.ac.jp) with the accession

number DRA008167 andDRA008878.MSproteomics data have been deposited to ProteomeXchange Consortium via jPOST partner

repository (https://repository.jpostdb.org) with the dataset identifiers PXD013132 and PXD013133.
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Figure S1. Distribution and recovery of TECs from K5D1 mice (Related to Figure 1) 
(A) Flow cytometric analysis of TECs from B6 and K5D1 mice. Shown are plots of the frequency (means and SEMs, 
n = 5) of Ly51+ UEA1- cTECs and Ly51- UEA1+ mTECs within CD45-EpCAM+ cells in B6 and K5D1 mice. 
(B) Representative images of thymic sections stained with hematoxylin and eosin. Indicated mice were analyzed at 15 
weeks old. Bar, 1 mm. The medullary regions were highlighted in red. 
(C) Ratios (in logarithmic scale) of the cortex and the medulla in serial coronal sections of snap-frozen right-side 
thymic lobes obtained from 5-week-old B6 mice (left; Sakata, et al. 2018) and from 15-week-old B6 and K5D1 mice 
(right), according to the methods described previously (Sakata, et al. 2018). Blue and red lines represent the average 
ratios in B6 thymus (blue) and K5D1 mice (red).  
(D) Numbers of β5t+ cTECs and Aire+ mTECs within a unit volume in the thymus of 15-week-old K5D1 mice were 
calculated as previously described (Sakata, et al. 2018). Means and SEMs of the numbers from 25 images are shown. 
(E) Numbers of cTECs and mTECs in 15-week-old K5D1 mice were deduced from in situ thymic section analysis 
and flow cytometric analysis. The frequency of cells detected by flow cytometric analysis (i.e., numbers isolated from 
flow cytometric analysis / numbers deduced from in situ thymic section analysis) demonstrates equivalent efficiency 
of TEC isolation between 15-week-old K5D1 mice and 5-week-old B6 mice (Sakata, et al. 2018). 
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Figure S2. Purity of isolated cTECs and mTECs for transcriptomic and proteomic analyses  
(Related to Figure 2) 
Flow cytometric analysis of indicated cells (n = 3) from indicated mice. Numbers indicate frequency of cells within 
indicated areas. 
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Figure S3. Numerical depths and unbiased comparisons of gene expression profiles for RNA sequencing 
analysis of K5D1 TECs and B6 TECs (Related to Figure 3) 
(A) Number of reads (means and SEM, n = 3) and (B) number of detected genes in indicated cell populations. 
(C) Correlation plot analysis of the transcriptome according to log2 fold change (mTECs / cTECs) among individual 
preparations. 
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Figure S4. Trans-omics analysis of cTECs and mTECs (Related to Figure 4) 
(A) Distinct contributions of TNC-enclosed CD4+CD8+ thymocytes in transcriptomic and proteomic analyses. 
Volcano plots of CD4+CD8+ thymocyte-derived molecules (yellow symbols) in RNA sequencing transcriptomic 
analysis (left) and TMT-based proteomic analysis (right). Detected molecules are plotted as log2 fold changes (K5D1 
cTECs / K5D1 mTECs) versus -log10 Q-values. Black horizontal line in the plot shows the Q-value of 0.05. 
(B) Enrichment analysis of the ontology for molecules differently expressed between mTECs and cTECs in 
transcriptomic analysis but not proteomic analysis. Molecules that were significantly different (RPKM > 1, log2 fold 
change > 1 or < -1, Q < 0.05) between K5D1 mTECs and K5D1 cTECs in the transcriptomic analysis, annotated with 
the gene ontology, and not detected in the proteomic analysis (2,989 molecules for mTECs and 1,070 molecules for 
cTECs) were analyzed for the enrichment in the ontology. Bars show the adjusted P-value of top 5 categories enriched 
in either mTECs or cTECs. Numbers in parentheses indicate the number of categorized genes. 
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Figure S5. Transcriptomic analysis of cTECs and thymocytes in b5t-KO mice (Related to Figure 5) 
(A) Unsupervised hierarchical cluster analysis and heatmap of detected genes in indicated cTECs and mTECs (n = 3) 
isolated from B6 mice, K5D1 mice, B6-b5tKO mice, and K5D1-b5tKO mice. 
(B) Quantitative RT-PCR analysis of the gene expression that was recently reported (Apavaloaei, et al., 2019) to be 
either reduced (top) or elevated (bottom) in b5tKO cTECs in comparison with control cTECs. Plotted are the mRNA 
expression levels (means and SEMs, n = 5–7) of indicated genes relative to Gapdh in B6 cTECs and B6-b5tKO cTECs. 
Numbers at the bottom of the plots show average RPKM values in RNA sequencing data.  
(C) Shown are representative plots of propidium iodide (PI) fluorescence and forward scatter (FSC) intensity in total 
thymocytes (top left), CCR7 and TCRb expression in PI- viable thymocytes (top middle), and CD69 and MHC class 
I expression in PI- TCRb high CCR7 high viable thymocytes (top right). Plots in the middle and bottom panels show CD4 
and CD8a expression profiles in MHC class I low CD69 high TCRb high CCR7 high semi-mature stage (SM) thymocytes 
(left), MHC class I high CD69 high TCRb high CCR7 high mature 1 stage (M1) thymocytes (center), and MHC class I high 
CD69 low TCRb high CCR7 high mature 2 stage (M2) thymocytes (right) in B6-b5tHet mice (middle panels) and B6-
b5tKO mice (bottom panels). Numbers indicate frequency of cells within indicated areas.  
(D) Quantitative RT-PCR analysis of gene expression that was recently reported (Apavaloaei, et al., 2019) to be 
elevated in TCRb high CD4+ CD8- thymocytes in b5tKO mice. Plotted are the mRNA expression levels (means and 
SEMs, n = 7) of indicated genes relative to Gapdh in TCRb high CD4+ CD8- thymocytes isolated from B6-b5tHet and 
B6-b5tKO mice. *P < 0.05; **P < 0.01; n.s., not significant. 
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Figure S6. RNA sequencing analysis of cTECs and mTECs isolated from b5i-deficient mice 
(Related to Figure 5) 
(A) Unsupervised hierarchical cluster analysis and heatmap of genes detected in individual TEC samples (n = 3) 
isolated from B6 mice and B6-b5iKO mice. 
(B) Principal component (PC) analysis of RNA sequencing data of indicated cell populations. 
(C) Correlation plot analysis of the transcriptome according to log2 fold change (mTECs/cTECs) between B6 and B6-
b5iKO TECs. 
(D) Correlation plot analysis of the transcriptome according to log2 fold change (B6-b5iKO/B6) between mTECs and 
cTECs. 
(E) Ontology enrichment analysis of genes that are differently expressed (RPKM > 1, log2 fold change > 1 or < -1, Q 
< 0.05) between B6 and B6-b5iKO TECs. Bars show the adjusted P-values of top five categories enriched in mTECs 
(left) and cTECs (right). Numbers in parentheses indicate the number of categorized genes. 
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Figure S7. Characterization of cTECs and mTECs in b5t-deficient mice 
(Related to Figure 7) 
(A) Fluorescence-based proteasome activity in B6 cTECs in the presence of MG132 proteasome inhibitor. Shown are 
plots of relative fluorescence intensity index (means and SEMs, n = 3). **P < 0.01. 
(B) Immunoblot analysis of ubiquitin in cTECs and mTECs isolated from K5D1 and K5D1-b5tKO mice. NIH3T3 
cells with or without proteasome inhibitor MG132 treatment were also examined. Immunoblot for b-actin was 
examined as loading control. 
(C) Cell surface expression and decay of MHC class I molecule H-2Kb expressed by cTECs and mTECs. Shaded 
histograms show H-2Kb expression on cTECs and mTECs in indicated mice, without brefeldin A treatment. Open 
histograms represent control fluorescence in the absence of anti-H-2Kb antibody. Numbers in histograms show the 
mean fluorescence intensities (MFIs) of isotype control antibody (left) and anti-H-2Kb antibody (right). Plots on the 
right show relative fluorescence intensity index (RFI, means and SEMs, n = 4-7) of H-2Kb expression at 2 and 4 hours 
after brefeldin A treatment in comparison with the intensity before the treatment. 
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