Supplement

NAIL-MS reveals the repair of 2-methylthiocytidine by AlkB in E. coli

Valentin F. Reichle¹, Dimitar P. Petrov², Verena Weber¹, Kirsten Jung² and Stefanie Kellner^{1*}

¹ Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany

² Department of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Str. 2-4, 82152 Martinsried, Germany

* Corresponding author: stefanie.kellner@cup.lmu.de

Supplementary Figure 1: Principle concept for the discovery of unknown nucleosides. Bacteria (*E. coli* or *P. aeruginosa*) are fed with stable isotope labeled nutrients in minimal M9 medium supplemented with glucose. The completely carbon-13 (red), nitrogen-15 (blue), sulfur-34 (yellow) or unlabeled (black) tRNAs are isolated and digested to nucleosides. Each RNA digest of isotopically labeled bacteria is analyzed by LC-MS/MS and the total ion count is displayed in the chromatogram. The mass spectra of the chromatographic peaks are isolated and overlayed for the differentially labeled samples. Here, the mass spectra overlay for the new compound ms²C at retention time (RT) 5.2 min is shown.

Supplementary Table 1a: Parameters of Triple Quadrupole method used for the discovery of ms²C. The difference between precursor and product ions is 132 units, the common fragmentation of nucleosides (loss of ribose). The table applies only for unlabeled, nitrogen-15 and sulfur-34 labeled RNA samples.

Precursor Ion	Product Ion	Ret. Time	Delta Ret.	Fragmentor	Collision energy	Cell Accelerator Voltage	Polarity
240	108	10	20	250	40	2	positive
241	109	10	20	250	40	2	positive
242	110	10	20	250	40	2	positive
243	111	10	20	250	40	2	positive
		10	20	250	40	2	positive
		10	20	250	40	2	positive
419	287	10	20	250	40	2	positive
420	288	10	20	250	40	2	positive

Supplementary Table 1b: Parameters of Triple Quadrupole method used for the discovery of ms^2C . The difference between precursor and product ions is 137 units, which reflects the loss of a ${}^{13}C_{5}$ -labeled ribose.

Precursor Ion	Product Ion	Ret. Time	Delta Ret.	Fragmentor	Collision energy	Cell Accelerator Voltage	Polarity
240	103	10	20	250	40	2	positive
241	104	10	20	250	40	2	positive
242	105	10	20	250	40	2	positive
243	106	10	20	250	40	2	positive
		10	20	250	40	2	positive
		10	20	250	40	2	positive
419	282	10	20	250	40	2	positive
420	283	10	20	250	40	2	positive

Supplementary Figure 2: Heatmap of *E. coli* knockout screen and synthetic route of ms²C. **a.** tRNA from the indicated *E. coli* knockout strains was analyzed for the abundance of modified nucleosides. The found abundance is related to the abundance found in wildtype BW25113 strain. Compound 1 is ms²C. Blue: Lower abundance compared to wildtype. Red: Higher abundance compared to the wildtype. **b.** Synthetic pathway and conditions of the synthesis from s²C to ms²C under usage of methyl iodide.

Keio code number	knockout gene	Enzyme	Mod. suppression
BW25113	-	-	-
JW3937-KC	trmA	TrmA	m⁵U
JW0413-KC	thil	Thil	s ⁴ U
JW3626-KC	trmH	TrmH	Gm
JW4129-KC	miaA	MiaA	i ⁶ A
JW0658-KC	miaB	MiaB	ms ² i ⁶ A
JW1338-KC	ttcA/ydaO	TtcA	s ² C
JW1119-KC	mnmA	MnmA	s²U
JW0191-KC	trmO/yaeB	TrmO	m ⁶ t ⁶ A
JW2501-KC	yfgB	RImN	m²A
JW2762-KC	уqсВ	TruC	Psi
JW0396-KC	tgt	TGT	Q
JW2459-KC	tmcA/ypfI	TmcA	ac ⁴ C
JW2559-KC	trmN6/yfiC	TrmN6	m ⁶ A
JW3228-KC	dusB	DusB	D

Supplementary Table 2: *E. coli* knockouts used for RNA modification screening in **Supplementary Figure 2** and **6**. Reference: Keio collection.¹

Collision Cell Precursor Product Delta Ret **Ret Time** Fragmentor Compound **Compound Group** lon lon Time Energy Accelerator Polarity Name (min) (V) (m/z) (m/z) (min) (eV) Voltage (V) С 244 112 1.73 1 175 13 5 Positive υ 1 245 113 2 95 5 5 Positive G 152 3.718 3 95 17 5 Positive 284 136 1 110 21 5 Positive А 268 5.711 s2C 2 5 Positive 260 128 2.5 85 13 142 3 ms2C 274 5.533 85 13 5 Positive s4U 261 129 4.753 1 75 17 5 Positive 1 9 Gm 298 152 5.133 100 5 Positive unlabeled Cm 258 112 3.347 3 180 9 5 Positive 269 137 3.556 1 100 9 5 Positive m2A 1 21 282 150 8.08 125 5 Positive m1G 298 166 5.08 1 105 13 5 Positive t6A 1 9 413 281 7.19 130 5 Positive m7G 298 2 14 166 2.021 105 5 Positive 2 180 20 acp3U 346 214 1.744 5 Positive m5U 1 10 259 127 3.915 145 5 Positive Psi 245 209 1.49 1 90 5 5 Positive 17 i6A 336 204 14.134 1 140 5 Positive C SILIS 256 119 1.73 1 175 13 5 Positive U SILIS 119 1 95 5 5 Positive 256 2 17 G SILIS 299 162 3.718 3 95 5 Positive A SILIS 283 146 5.711 1 110 21 5 Positive s2C SILIS 272 135 2.5 2 85 13 5 Positive ms2C SILIS 150 3 85 13 287 5.533 5 Positive s4U SILIS 272 135 4.753 1 75 17 5 Positive 1 Gm SILIS 314 162 5.133 100 9 5 Positive Cm SILIS 3 9 SILIS 271 119 3.347 180 5 Positive I SILIS 283 146 3.556 1 100 9 5 Positive m2A SILIS 298 161 8.08 1 125 21 5 Positive 1 m1G SILIS 5.08 13 5 Positive 314 177 105 t6A SILIS 434 297 7.19 1 130 9 5 Positive m7G SILIS 314 177 2.021 2 105 14 5 Positive acp3U SILIS 362 225 1.744 2 180 20 5 Positive m5U SILIS 271 134 3.915 1 145 10 5 Positive Psi SILIS 256 220 1.49 1 90 5 5 Positive i6A SILIS 219 14.134 1 140 17 5 Positive 356

Supplementary Table 3: MRM parameters for LC-MS/MS analysis of unlabeled tRNA digests (*E.g.* for isoacceptor purification analysis or knockout library analysis of.

Supplementary Figure 3: 400 MHz ¹H-NMR spectrum of 2-methylthiocytidine in D₂O.

ms²C coinjection with Pseudomonas aeruginosa tRNA

Supplementary Figure 4: Co-injection of synthetic ms²C with digested and isotope labeled *P. aeruginosa* tRNA (grown in the indicated isotope labeled M9 medium). ms²C was co-injected with fully ¹³C labeled tRNA digest (red), with fully ¹⁵N labeled tRNA digest (blue) and with ³⁴S labeled digest (orange). The mass transitions are shown below each chromatogram.

6

Supplementary Table 4: DNA oligonucleotides for tRNA isoacceptor purification. Every sequence starts with a Biotin [Btn]-tag, followed by three adenosines as a spacer before the actual reverse complementary sequence starts.

tRNA isoacceptor	Sequence of the probe (5'-3')
tRNA ^{Arg} ccg:	[Btn]AAAGAGACCTCTGCCTCCGGAGGGCAGCGCTCTATCCAGCTGAGCTA
tRNA ^{Arg} ICG:	[Btn]AAACCGACCGCTCGGTTCGTAGCCGAGTACTCTACCAGCTGAGCTAC
tRNA ^{Arg} ucu:	[Btn]AAAGCGGCCCACGACTTAGAAGGTCGTTGCTCTATCCAACTGAGCTA
tRNA ^{Ser} GCU:	[Btn]AAACCCGGATGCAGCTTTTGACCGCATACTCCCTTAGCAGGGGAGC
tRNA ^{Ser} GGA:	[Btn]AAACCCCGATACGTTGCCGTATACACACTTTCCAGGCGTGCTCCTT
tRNA ^{Ser} UGA:	[Btn]AAATGGCGGAAGCGCAGAGATTCGAACTCTGGAACCCTTTCGGGTCGCCGGTTTCAAG
tRNA ^{Ala} UGC:	[Btn]AAATGGTGGAGCTATGCGGGATCGAACCGCAGACCTCCTGCGTGCA
tRNA ^{Gly} ccc:	[Btn]AAATGGAGCGGGCGAAGGGAATCGAACCCTCGTATAGAGCTTGGGAAGCTCTCGTTCTACCGAACTACGCCCGC
tRNA ^{Lys} mnm5s2UUU:	[Btn]AAATGGTGGGTCGTGCAGGATTCGAACCTGCGACCAATTGATTAAA

Supplementary Table 5: Modified nucleosides and their positions in the respective tRNA sequence of each isoacceptor related to this work. Reference: MODOMICS²

		Modifications and their positions in the respective tRNA sequence															
Modification/ Isoacceptor	s⁴U	Gm	D	s²C	Cm	Inosine	mnm⁵U	m ¹ G	mnm⁵s²U	cmo⁵U	m²A	ms²i ⁶ A	m ⁷ G	acp ³ U	ct⁵A	m⁵U	Psi
Arg CCG	х	x	17, 20A	32	х	x	x	37	x	x	х	x	46	х	х	54	55
Arg ICG	8	x	17, 20A	32	х	34	x	x	x	x	37	x	46	47	x	54	55
Arg UCU	х	x	x	32	х	x	34	х	х	x	х	x	х	х	37	54	40, 55
Ser GCU	8	x	20	32	х	x	x	x	x	x	х	x	х	х	37	54	55
Ser GGA	8	18	20, 20A	х	х	x	x	x	x	x	х	x	х	х	x	54	40, 55
Ser UGA	8	18	20, 20A	х	32	x	x	x	x	34	х	37	х	х	x	54	55
Ala UGC	8	x	17	х	х	x	х	х	х	34	х	х	46	х	х	54	55
Gly CCC	8	x	20	х	х	x	x	x	x	x	х	x	х	х	х	54	55
Lys UUU	х	x	16, 17, 20	х	х	x	x	x	34	x	х	x	46	47	37	54	39, 55

Supplementary Figure 5: Validation of tRNA isoacceptor purification by modified nucleoside analysis. Expected (blue, from MODOMICS) ² and experimentally determined abundance of modified nucleosides per tRNA. *E.coli* was grown in LB medium. From n=3 biol. replicates, error bars reflect standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 6: *E. coli* knockout studies in M9 medium **Left:** ms²C abundance in different *E. coli* RNA modification knockouts during stationary growth phase in M9 media. **Right:** s²C abundance in different *E. coli* RNA modification knockouts during stationary growth phase in M9 media. All experiments are from n=3 biol. replicates and error bars reflect standard deviation. Source data are provided as a Source Data file.

Supplementary Table 6: *E. coli* overexpression strains used for RNA modification screening in **Supplementary Figure 7**. Reference: ASKA library ³

ASKA code number	overexpressed	Enzyme	Modification
AG1 (ME5305)	-	-	-
AG1 (pCA24N-gfp)	-	empty vector	-
JW3228-AP	dusB	DusB	D
JW0396-AP	tgt	Tgt	Q
JW1119-AP	mnmA	MnmA	s ² C
JW0191-AP	tsaA/yaeB	TrmO	m ⁶ t ⁶ A
JW2559-AP	trmN6/yfiC	TrmN6	m ⁶ A

Supplementary Figure 7: ms²C and s²C abundance of *E. coli* knockouts and corresponding overexpression strains which showed low ms²C abundance in M9 media before (Supplementary Figure 6). Here, they were cultured in LB media and harvested in exponential growth phase. As a control, the wildtype strains and the wildtype with the empty overexpressing gene vector are shown as well. The assumption of enzyme dependent ms²C formation could not be confirmed. All experiments are from n=3 biol. replicates and error bars reflect standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 8: *in vitro* incubation assay of s²C with SAM and MMS. SAM: S-adenosylmethionine. MMS: Methyl-methanesulfonate. Grey axes and curve: abundance s²C. Black axes and curve: abundance ms²C. The experiments were done in triplicates and the error bars reflect standard deviation. Source data are provided as a Source Data file.

10

Supplementary Figure 9: Survival assay to determine the LD₅₀ of MMS and Streptozotocin (STZ) for the *E.coli* strain BW25113. Cells were brought to either OD₆₀₀ = 1 (top graphs, error bars reflect the standard deviation of n=3 biol. replicates) or OD₆₀₀ = 0.1 (left bottom graph, error bars reflect the standard deviation of n=6 biol. replicates) and exposed to 200 µM STZ for 30 min. (left top graph) or 20 mM MMS for 60 min. (right top graph and left bottom graph).

n = 3

after 1h of MMS stress

	Compound	Precursor	Product	Dot Time	Delta Ret	Fragmantar	Collision	Cell	
Compound Group	Compound	lon	lon	Ket lime	Time	Fragmentor	Energy	Accelerator	Polarity
	Name	(m/z)	(m/z)	(min)	(min)	(V)	(eV)	Voltage (V)	
	С	244	112	1.73	1	380	40	5	Positive
	U	245	113	1.876	1	380	40	5	Positive
	G	284	152	3.718	3	380	40	5	Positive
	А	268	136	5.711	1	380	40	5	Positive
	ms2C	274	142	5.533	3	380	40	5	Positive
	m1A	282	150	1.745	2	380	10	5	Positive
	m3C	258	126	1.752	1	380	10	5	Positive
	i6A	336	204	14.134	1	380	10	5	Positive
	m7G	298	166	2.021	2	380	10	5	Positive
	m6A	282	150	8.423	1	380	10	5	Positive
	m2G	298	166	5.491	2	380	10	5	Positive
	m3U	259	127	4.696	2	380	10	5	Positive
	m5C	258	126	2.702	2	380	10	5	Positive
eq	m2A	282	150	8.08	1	380	10	5	Positive
pel	Gm	298	152	5.133	1	380	10	5	Positive
nla	m1G	298	166	5.08	1	380	10	5	Positive
3	m5U	259	127	3.915	1	380	10	5	Positive
	ac4c	286	154	5.538	2	380	10	5	Positive
	cmnm5U	332	200	1.586	1	380	10	5	Positive
	l	269	137	3.556	1	380	10	5	Positive
	Cm	258	112	3.347	3	380	10	5	Positive
	m5s2U	275	143	6.172	2	380	10	5	Positive
	Am	282	136	7.257	1	380	10	5	Positive
	Psi	245	209	1.49	1	380	10	5	Positive
	s4U	261	129	4.753	1	380	10	5	Positive
	Um	259	113	4.49	1	380	10	5	Positive
	ms2i6A	382	250	10	20	380	10	5	Positive
	s2C	260	128	2.288	1	380	10	5	Positive
	t6A	413	281	7.553	1	380	10	5	Positive
	mnm5U	288	156	1.491	1	380	10	5	Positive
	ms2C CD3	277	145	5.533	3	380	40	5	Positive
	m1A CD3	285	153	1.745	2	380	10	5	Positive
	m3C CD3	261	129	1.752	1	380	10	5	Positive
	m7G CD3	301	169	2.021	2	380	10	5	Positive
	m6A CD3	285	153	8.423	1	380	10	5	Positive
	m2G CD3	301	169	5.491	2	380	10	5	Positive
-	m3U CD3	262	130	4.696	2	380	10	5	Positive
elec	m5C CD3	261	129	2.702	2	380	10	5	Positive
lab	m2A CD3	285	153	8.08	1	380	10	5	Positive
D3	Gm CD3	301	152	5.133	1	380	10	5	Positive
ΰ	m1G CD3	301	169	5.08	1	380	10	5	Positive
	m5U CD3	262	130	3.915	1	380	10	5	Positive
	Cm CD3	261	112	3.347	3	380	10	5	Positive
	m5s20 CD3	2/8	146	6.1/2	2	380	10	5	Positive
	Am CD3	285	136	/.25/	1	380	10	5	Positive
	Um CD3	262	113	4.49	1	380	10	5	Positive
	ms216A CD3	385	253	10	20	380	10	5	Positive

Supplementary Table 7: MRM parameters for RNA methylome discrimination assay.

	C SILIS	256	119	1.73	1	380	40	5	Positive
	U SILIS	256	119	1.876	1	380	40	5	Positive
	G SILIS	299	162	3.718	3	380	40	5	Positive
	A SILIS	283	146	5.711	1	380	40	5	Positive
	ms2C SILIS	287	150	5.533	3	380	40	5	Positive
	m1A SILIS	298	161	1.745	2	380	10	5	Positive
	m3C SILIS	271	134	1.752	1	380	10	5	Positive
	i6A SILIS	356	219	14.134	1	380	10	5	Positive
	m7G SILIS	314	177	2.021	2	380	10	5	Positive
	m6A SILIS	298	161	8.423	1	380	10	5	Positive
	m2G SILIS	312	175	5.491	2	380	10	5	Positive
	m3U SILIS	271	134	4.696	2	380	10	5	Positive
	m5C SILIS	271	134	2.702	2	380	10	5	Positive
	m2A SILIS	298	161	8.08	1	380	10	5	Positive
SI-	Gm SILIS	314	162	5.133	1	380	10	5	Positive
SIII	m1G SILIS	314	177	5.08	1	380	10	5	Positive
	m5U SILIS	271	134	3.915	1	380	10	5	Positive
	ac4c SILIS	300	163	5.538	2	380	10	5	Positive
	cmnm5U SILI	347	210	1.586	1	380	10	5	Positive
	I SILIS	283	146	3.556	1	380	10	5	Positive
	Cm SILIS	271	119	3.347	3	380	10	5	Positive
	m5s2U SILIS	287	150	6.172	2	380	10	5	Positive
	Am SILIS	298	146	7.257	1	380	10	5	Positive
	Psi SILIS	256	220	1.49	1	380	10	5	Positive
	s4U SILIS	272	135	4.753	1	380	10	5	Positive
	Um SILIS	271	119	4.49	1	380	10	5	Positive
	ms2i6A SILIS	403	266	10	20	380	10	5	Positive
	s2C SILIS	272	135	2.288	1	380	10	5	Positive
	t6A SILIS	434	297	7.553	1	380	10	5	Positive
	mnm5U SILIS	302	165	1.491	1	380	10	5	Positive

Supplementary Figure 10: $m^{3}C$ abundance in *E. coli* tRNA after incubation with Streptozotocin (200 μ M) for 30 min. The signal for $m^{3}C$ in the unstressed samples were below the limit of quantification (LOQ). The experiments were done in biological triplicates and the error bars reflect standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 11: Absolute abundance of tRNA modifications in *E. coli* after exposure to 20mM MMS. The dark grey bar shows the modification abundance of an unstressed sample whereas the light grey bar shows the modification abundance after one hour of 20mM MMS stress. From n=3 biol. replicates, error bars reflect standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 12: NAIL-MS discrimination assay to determine origin of ms²C *in vivo*. SAM dependent ms²C per C in % of tRNA from unstressed bacteria (enz.) and 20 mM MMS stressed bacteria (enz. stressed). On the right, the amount of directly methylated ms2C per C in % from 20 mM MMS stressed bacteria is shown. From n=3 biol. replicates, error bars reflect standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 13: Modified nucleoside abundance in comparative NAIL-MS experiment for tRNA SerGCU, ArgCCG, ArgICG and ArgUCU. *E. coli* in the negative control (without MMS) were grown in ¹³C medium (grey bars, ¹³C negative) and the 20mM MMS exposed bacteria in non-labeled (blue bars, n.l. MMS) media. The different samples were unified and the tRNA isoacceptors were co-purified in a comparative NAIL-MS experiment as detailed in the text. All experiments are from n=3 biol. replicates and error bars reflect standard deviation. Source data are provided as a Source Data file. The validation of the comparative NAIL-MS experiment is shown in **Supplementary Figure 14**.

Supplementary Figure 14: Validation experiment of the comparative NAIL-MS experiment The validation is performed by mixing unstressed *E. coli* from unlabeled media and unstressed *E. coli* from carbon-13 labeled media during harvesting. The tRNA and the tRNA isoacceptors from the two *E. coli* cultures are co-purified. The modified nucleosides per tRNA from the unlabeled bacteria (grey bars) and the labeled bacteria (black bars) are of equal abundance. Thus, the validation is considered a success (Reichle *et al.*, Methods, 2018) ⁴. From n=3 biol. replicates, error bars reflect standard deviation. Source data are provided as a Source Data file.

Supplementary Table 8: Limit of precision of the comparative NAIL-MS validation shown in **Supplementary Figure 14**. Abbreviation n.d. = not determined All experiments are from n=3 biol. replicates and error bars reflect standard deviation. Source data are provided as a Source Data file.

		upper fol	d change	5	lower fold change				standard deviation			
	Ser GCU	Arg CCG	Arg ICG	Arg UCU	Ser GCU	Arg CCG	Arg ICG	Arg UCU	Ser GCU	Arg CCG	Arg ICG	Arg UCU
s2C	1.04162	1.0275	1.1907	1.05574	0.95838	0.97249	0.8093	0.94426	0.08482	0.14137	0.1429	0.16303
ms2C	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
t6A	1.66802	n.d.	n.d.	1.59955	0.33198	n.d.	n.d.	0.40045	0.31097	n.d.	n.d.	0.41107
Inosine	n.d.	n.d.	1.1135	n.d.	n.d.	n.d.	0.8865	n.d.	n.d.	n.d.	0.1089	n.d.
m1G	n.d.	1.0808	n.d.	n.d.	n.d.	0.91916	n.d.	n.d.	n.d.	0.15722	n.d.	n.d.
m2A	n.d.	n.d.	1.2105	n.d.	n.d.	n.d.	0.7895	n.d.	n.d.	n.d.	0.1114	n.d.
m7G	n.d.	1.1128	1.1776	n.d.	n.d.	0.88715	0.8224	n.d.	n.d.	0.12952	0.1311	n.d.
m1A	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

Compound Group	Compound	Precursor	Product	Ret Time	Delta Ret Time	Fragmentor	Collision Energy	Cell Accelerator	Polarity
compound Group	Name	(m/z)	(m/z)	(min)	(min)	(V)	(eV)	Voltage (V)	rolaitty
	С	244	112	1.73	1	175	13	5	Positive
abeled	U	245	113	2	2	95	5	5	Positive
	G	284	152	3.718	3	95	17	5	Positive
	А	268	136	5.711	1	110	21	5	Positive
	ms2C	274	142	5.533	3	85	13	5	Positive
bele	s2C	260	128	2.288	2	85	13	5	Positive
nlak	m1A	282	150	1.745	2	110	21	5	Positive
5	m7G	298	166	2.021	2	105	14	5	Positive
	m2A	282	150	8.08	1	125	21	5	Positive
	I	269	137	3.556	1	100	9	5	Positive
	t6A	413	281	7	1	130	9	5	Positive
	m1G	298	166	5.08	1	105	13	5	Positive
	C 13C	253	116	1.73	1	175	13	5	Positive
	U 13C	254	117	2	2	95	5	5	Positive
	G 13C	294	157	3.718	3	95	17	5	Positive
	A 13C	278	141	5.711	1	110	21	5	Positive
iC labeled	ms2C 13C	284	147	5.533	3	85	13	5	Positive
	s2C 13C	269	132	2.288	2	85	13	5	Positive
	m1A 13C	293	156	1.745	2	110	21	5	Positive
13	m7G 13C	309	172	2.021	2	105	14	5	Positive
	m2A 13C	293	156	8.08	1	125	21	5	Positive
	I 13C	279	142	3.556	1	100	9	5	Positive
	t6A 13C	428	291	7	1	130	9	5	Positive
	m1G 13C	309	172	5.08	1	105	13	5	Positive
	C SILIS	256	119	1.73	1	175	13	5	Positive
	U SILIS	256	119	2	2	95	5	5	Positive
	G SILIS	299	162	3.718	3	95	17	5	Positive
	A SILIS	283	146	5.711	1	110	21	5	Positive
	ms2C SILIS	287	150	5.533	3	85	13	5	Positive
SI	s2C SILIS	272	135	2.288	2	85	13	5	Positive
SII	m1A SILIS	298	161	1.745	2	110	21	5	Positive
Ø	m7G SILIS	314	177	2.021	2	105	14	5	Positive
	m2A SILIS	298	161	8.08	1	125	21	5	Positive
	I SILIS	283	146	3.556	1	100	9	5	Positive
	t6A SILIS	434	297	7	1	130	9	5	Positive
	m1G SILIS	314	177	5.08	1	105	13	5	Positive

Supplementary Table 9: MRM parameters for comparative NAIL-MS analysis.

CGGAATTCCGCATGAGCAAAGGAGAAGAACTTTTCACTGGAG
CGGAATTCCGCATGAGTAAAGGAGAAGAACTTTTCACTGGAG
CGGAATTCCGCATGAGCCCAGCTGCACCTAGCGCTAGCGCAGCAAGCGCACCTAGCGCAGCTA
GCAAAGGAGAAGAACTTTTCACTGGAG
CGGAATTCCGCATGAGTCCAGCTGCACCTAGTGCTAGTGCAGCAAGTGCACCTAGTGCAGCTAG
TAAAGGAGAAGAACTTTTCACTGGAG
CGGAATTCCGCATGTCCAAAGGAGAAGAACTTTTCACTGGAG
CGGAATTCCGCATGTCCCCAGCTGCACCTTCCGCTTCCGCAGCATCCGCACCTTCCGCAGCTTCC
AAAGGAGAAGAACTTTTCACTGGAG
GCTCTAGACTTATTTGTAGAGCTCATCCATGCCATGTG

Supplementary Table 10: Primers used for the generation of sfGFP constructs used in this study

Full sfgfp sequence:

Supplementary Figure 15: Effects of 20 mM or 3 mM MMS stress on sfGFP synthesis in *E. coli* BW25113 cells. Results of single-cell fluorescence microscopy of *E. coli* cells producing sfGFP form the arabinose inducible plasmid pBAD24. Fluorescence was measured 1h or 5h after induction with 0.2% arabinose of non-stressed cells or cells pre-exposed to 20mM or 3 mM MMS stress for 1h. As a control cells were incubated in absence of MMS and arabinose. Black line represents the mean value. Source data are provided as a Source Data file.

Supplementary Figure 16: RNA dilution curve for total RNA. Comparison of the proportional decrease of original tRNA in comparison to freshly transcribed tRNA during the pulse chase NAIL-MS experiment. The ratio of original (unlabeled canonicals determined by LC-MS) to newly transcribed tRNA (nitrogen-15 labeled canonicals determined by LC-MS) is shown in % original tRNA. blue: from MMS stressed bacteria, grey: from unstressed control bacteria. Mean of n=3 biol. replicates. Source data are provided as a Source Data file.

Supplementary Figure 17: Abundance of s²C (blue) and ms²C (grey) in tRNA^{Arg}_{ICG} (top) and tRNA^{Ser}_{GCU} (bottom) present during the 20 mM MMS exposure. The bar diagrams show the abundance of the modified nucleosides in original tRNA from a pulse-chase NAIL-MS experiment after 1 h of MMS exposure, and after 2 and 4 hours of recovery. MOCK indicates tRNA from unstressed bacteria. On the right side, the ratio of original to newly transcribed tRNA is shown in % original tRNA. grey: from MMS stressed bacteria, black: from unstressed control bacteria. The isoacceptors were purified from n=3 biol. replicates and error bars reflect standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 18: Absolute abundance of m¹A and m³C in wildtype and $\Delta alkB \ E. \ coli$. Here, the abundance of m¹A and m³C in original tRNA (distinguished from new transcripts by pulse-chase NAIL-MS as described in **Figure 4a**) in wildtype (wt, light blue) and AlkB deficient *E. coli* ($\Delta alkB$, grey) is shown. The bacteria are exposed to 20 mM MMS and harvested directly after the stress (1 h) and after 2 and 4 hours of recovery (3 h, 5 h). All experiments are from n=3 biol. replicates and error bars reflect standard deviation. The statistics were done with student t-test (equal distribution, two-sided): * p < 0.05. Source data are provided as a Source Data file.

Supplementary Figure 19: Survival assay to determine the lethality of 3mM MMS for the *E.coli* $\Delta alkB$ strain Cells were brought to an OD of 1 (error bars reflect the standard deviation of n=3 biol. replicates) and exposed to 3 mM MMS for 60 min.

Compound Group	Compound Name	Precursor Ion (m/z)	Product Ion (m/z)	Ret Time (min)	Delta Ret Time (min)	Fragmentor (V)	Collision Energy (eV)	Cell Accelerator Voltage (V)	Polarity
	С	244	112	1.73	1	175	13	5	Positive
	U	245	113	2	2	95	5	5	Positive
	G	284	152	3.718	3	95	17	5	Positive
_	A	268	136	5.711	1	110	21	5	Positive
ina	ms2C	274	142	5.533	3	85	13	5	Positive
orig	s2C	260	128	2.288	2	85	13	5	Positive
) p	m1A	282	150	1.745	2	110	21	5	Positive
ele	m3C	258	126	1.752	2	88	14	5	Positive
lab	I	269	137	3.272	2	100	9	5	Positive
'n	m5U	259	127	3.61	2	145	10	5	Positive
	m2A	282	150	7.85	3	120	20	5	Positive
	m7G	298	166	2.7	2	105	14	5	Positive
	t6A	413	281	6.923	2	130	9	5	Positive
	C 15N	247	115	1.73	1	175	13	5	Positive
	U 15N	247	115	1.876	2	95	5	5	Positive
(M:	G 15N	289	157	3.718	3	95	17	5	Positive
(ne	A 15N	273	141	5.711	1	110	21	5	Positive
led	ms2C 34S_CD3_15N	282	150	5.533	3	85	13	5	Positive
abe	s2C 34S_15N	265	133	2.288	2	85	13	5	Positive
S la	m1A 15N_CD3	290	158	1.745	2	110	21	5	Positive
/34	m3C 15N_CD3	264	132	1.752	2	88	14	5	Positive
D3	I 15N	273	141	3.272	2	100	9	5	Positive
D/N	m5U 15N_CD3	264	132	3.61	2	145	10	5	Positive
15	m2A 15N_CD3	290	158	7.85	3	120	20	5	Positive
	m7G 15N_CD3	306	174	2.7	2	105	14	5	Positive
	t6A 15N	419	287	6.923	2	130	9	5	Positive
34S labeled	ms2C 34S	276	144	5.533	3	85	13	5	Positive
(turnover)	s2C 34S	262	130	2.288	2	85	13	5	Positive
	C SILIS	256	119	1.73	1	175	13	5	Positive
	U SILIS	256	119	1.876	2	95	5	5	Positive
	G SILIS	299	162	3.718	3	95	17	5	Positive
	A SILIS	283	146	5.711	1	110	21	5	Positive
	ms2C SILIS	287	150	5.533	3	85	13	5	Positive
	s2C SILIS	272	135	2.288	2	85	13	5	Positive
	m1A SILIS	298	161	1.745	2	110	21	5	Positive
v	m3C SILIS	271	134	1.752	2	88	14	5	Positive

3.272

3.61

7.85

2.7

6.923

5 Positive

5 Positive

5 Positive

5 Positive

5 Positive

Supplementary Table 11: MRM parameters for pulse chase NAIL-MS experiments.

I SILIS

m5U SILIS

m2A SILIS

m7G SILIS

t6A SILIS

Supplementary Figure 20: Absolute abundance of ms²C, m¹A and m³C at different MMS concentrations in WT and $\Delta alkB \ E. \ coli$. The experimental set up as described in **Figure 4a** was used to investigate the stress behavior at lower MMS concentrations (3mM and 0.5 mM). The bacteria are exposed to MMS and are harvested directly after the stress (1 h) and after 2 and 4 hours of recovery (3 h, 5 h). All experiments are from n=3 biol. replicates and error bars reflect standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 21: Pulse chase control experiment with unstressed *E. coli* WT compared to unstressed $\Delta alkB$ knockout cells. ms²C was not observed to accumulate in the $\Delta alkB$ knockout. The experimental set up is shown in **Figure 4a** in the manuscript. Experiments were done in biological triplicates and error bars reflect standard deviation. Source data are provided as a Source Data file.

Supplementary Table 12: Formula for absolute quantification of unmodified and modified nucleosides from LC-MS/MS signals (area) of a NAIL-MS Pulse Chase experiment and subsequent reference of the modifications to the respective canonicals. As an example, here we chose 2-thiocytidine which was referenced to its canonical nucleoside, cytidine.

	s ² C (fmol)	C (fmol)	Normalization
(1)	area s2C (unlabeled)	area C (unlabeled)	s2C (original)
original	$rRFN s2C \times area s2C (SILIS)$	$rRFNC \times areaC(SILIS)$	C (original)
(2)	area s2C (34S, 15N, CD3)	area C (15N)	s2C (new)
new	rRFN s2C × area s2C (SILIS)	$rRFNC \times areaC(SILIS)$	C (new)

ms²C in unstressed dynamic NAIL-MS

Supplementary References

- 1 Baba, T. *et al.* Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. *Molecular systems biology* **2**, 2006.0008, doi:10.1038/msb4100050 (2006).
- 2 Boccaletto, P. *et al.* MODOMICS: a database of RNA modification pathways. 2017 update. *Nucleic acids research* **46**, D303-d307, doi:10.1093/nar/gkx1030 (2018).
- 3 Kitagawa, M. *et al.* Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. *DNA research : an international journal for rapid publication of reports on genes and genomes* **12**, 291-299, doi:10.1093/dnares/dsi012 (2005).
- 4 Reichle, V. F. *et al.* Surpassing limits of static RNA modification analysis with dynamic NAIL-MS. *Methods (San Diego, Calif.)* **156**, 91-101, doi:10.1016/j.ymeth.2018.10.025 (2019).