Table S1. Representative studies using super-resolution microscopy to study TJ organization and dynamics.

Bold text indicates the cell type, and underlining indicates dynamic events.
--

Super-resolution technique	Proteins imaged	Notes	Citation
Spectral Position Determination Microscopy (SPDM)	Claudin-3-YFP, claudin-5-YFP	Reconstituted TJ strands in HEK 293 cells ; reported resolution ~50 nm.	Kaufmann et al., 2012
Structured Illumination Microscopy (SIM)	Actin probe and myosin probe in cells where ZO-1 or afadin were knocked down	Examined junction <u>remodeling</u> and actin connections to the junction especially at tricellular junctions under elevated contractility in MDCK II cells .	Choi et al., 2016
STochastic Optical Reconstruction Microscopy (STORM)	fixed and stained for claudin-18 and ZO-1	Investigated TJ protein interactions in alveolar epithelial cells .	Koval et al., 2016
Structured Illumination Microscopy (SIM)	tagged (GFP, SNAP tag, Halo tag) claudins, ZO-1, and occludin; actin probe	Reconstituted TJ strands in fibroblast cells ; used SNAP- and Halo-tagged proteins for pulse-chase analysis to determine where newly synthesized TJ proteins <u>dynamically</u> incorporated into strands.	Van Itallie et al., 2017; Van Itallie et al., 2019
Structured Illumination Microscopy (SIM)	Myc-ZO-1-HA	Expressed ZO-1 epitope tagged on either end in EpH4 epithelial cells and showed that ZO-1 exhibits tension- dependent <u>conformational changes</u> .	Spadero et al., 2017
STochastic Optical Reconstruction Microscopy (STORM)	Fixed and stained for claudin-1, claudin-5 or ZO-1	Investigated TJ incorporation and morphology in murine brain microvascular endothelial cells when connexin 43 was perturbed (Johnson et al.), or when Claudin-1 was elevated or targeted with a specific peptide (Sladojevic et al.).	Johnson et al., 2018; Sladojevic et al., 2019

Bold text indicates the cell type, underlined text indicates dynamic events.

KOVAL, M., MOLINA, S., a SCHLINGMANN, B. 2016. Use of Super-resolution Immunofluorescence Microscopy to Analyze Tight Junction Protein Interactions in situ. *Microscopy and Microanalysis, 22*(S3), 1014-1015.

JOHNSON, A. M., ROACH, J. P., HU, A., STAMATOVIC, S. M., ZOCHOWSKI, M. R., KEEP, R. F. & ANDJELKOVIC, A. V. 2018. Connexin 43 gap junctions contribute to brain endothelial barrier hyperpermeability in familial cerebral cavernous malformations type III by modulating tight junction structure. *FASEB J*, 32, 2615-2629.

SLADOJEVIC, N., STAMATOVIC, S. M., JOHNSON, A. M., CHOI, J., HU, A., DITHMER, S., BLASIG, I. E., KEEP, R. F. & ANDJELKOVIC, A. V. 2019. Claudin-1-Dependent Destabilization of the Blood-Brain Barrier in Chronic Stroke. *J Neurosci.* 39, 743-757.