Supplementary Information

Supplementary Note 1. Sequence alignment of gp120s from structures of the indicated complexes demonstrates similarities and differences in interactions.

E51-sCD4-BG505 CCR5-sCD4-gp120 17b-sCD4-8ANC195-BG505 21c-sCD4-8ANC195-B41 E51-sCD4-BG505 CCR5-sCD4-gp120 17b-sCD4-8ANC195-BG505 21c-sCD4-8ANC195-B41	$\begin{array}{c} \alpha 0 & \beta 0 \\ \\ \label{eq:relation} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$
E51-sCD4-BG505 CCR5-sCD4-gp120 17b-sCD4-8ANC195-BG505 21c-sCD4-8ANC195-B41	V1V2 DDMRGELKNCSFNMTTEIRDKKQKVYSLFYRLDVVQINENQGNRSNNSNKEYRLINCNTS GIDKGEIKNCSFNTTTSVKDKEKKEYALFYNLDVVQIGNDNTSYRLTSCNTS DDMRGELKNCSFNMTTEIRDKKQKVYSLFYRLDVVQINENQGNRSNNSNKEYRLINCNTS KMETGEMKNCSFNVTTSIRDKIKKEYALFYKLDVVPLENKN-NINNTNITNYRLINCNTS I 164
E51-sCD4-BG505 CCR5-sCD4-gp120 17b-sCD4-8ANC195-BG505 21c-sCD4-8ANC195-B41	$\frac{\beta 3}{\textbf{AIT}OACPKVSFEPIPIHYCAPAGFAILKCKDKKFNGTGPCPSVSTVQCTHGIKPVVSTQL} VITQACPKVTFEPIPIHYCTPAGYAILKCNGKKFNGTGPCTNVSTVQCTHGIKPVVSTQL AITQACPKVSFEPIPIHYCAPAGFAILKCKDKKFNGTGPCPSVSTVQCTHGIKPVVSTQL VITQACPKVSFEPIPIHYCAPAGFAILKCNSKTFNGSGPCTNVSTVQCTHGIRPVVSTQL I 202$
E51-sCD4-BG505 CCR5-sCD4-gp120 17b-sCD4-8ANC195-BG505 21c-sCD4-8ANC195-B41	V3 LLNGSLAEEEVMIRSENITNNAKNILVQFNTPVQINCTRPNNNTRKSIRIGPGQAFYATG LLNGSLAEEDIVIRSENITNNAKTIIVQLKDPVDINCTRPNNTRKSIHIGPGRAFYATG LLNGSLAEEEVMIRSENITNNAKNILVQFNTPVQINCTRPNNNTRKSIRIGPGQAFYATG LLNGSLAEEEIVIRSENITDNAKTIIVQLNEAVEINCTRPNNNTRKSIHIGPGRAFYATG 1 261 300
E51-sCD4-BG505 CCR5-sCD4-gp120 17b-sCD4-8ANC195-BG505 21c-sCD4-8ANC195-B41	V3 CD4bs loop DIIGDIEQAHCNVSKATWNETLGKVVKQLRKHFGNNTIIRFANSSGGDLEVTTHSENCGG DIIGDIEQAHCNLSRAQWNDTLSKIVTKLREQFENKT-IKFQPPSGGDPEIVFHSENCGG DIIGDIEQAHCNVSKATWNETLGKVVKQLRKHFGNNTIIRFANSSGGDLEVTTHSENCGG DIIGNIEQAHCNISKARWNETLGQIVAKLEEQFPNKT-IIFNHSSGGDPEIVTHSENCGG 1 327 369
E51-sCD4-BG505 CCR5-sCD4-gp120 17b-sCD4-8ANC195-BG505 21c-sCD4-8ANC195-B41	V4 <u>B20</u> <u>B21</u> EFFYCNTSGLFNSTWISNTSVQGSNSTGSNDSITLPCRIKQIINMWQRIGQAMYAPPIQG EFFYCNTTQLFNSTWINNTEGTSNTTGNDTITLPCRIKQIVNMWQEVGKAMYAPPIQG EFFYCNTSGLFNSTWISNTSVQGSNSTGSNDSITLPCRIKQIINMWQRVGKAMYAPPIQG EFFYCNTTPLFNSTWNNTRTDDYPTGGEQNITLQCRIKQIINMWQGVGKAMYAPPIRG 1 381 421 432
E51-sCD4-BG505 CCR5-sCD4-gp120 17b-sCD4-8ANC195-BG505 21c-sCD4-8ANC195-B41	VIRCVSNITGLILTRDGGSTN-STTETFRPGGGDMRDNWRSELYKYKVVKIEPLGVAPTR KIKCSSNITGLLLTRDGGNNEMNTTEIFRPGGGDMRDNWRSELYKYKVVKIEPLGVAPTR VIRCVSNITGLILTRDGGSTN-STTETFRPGGGDMRDNWRSELYKYKVVKIEPLGVAPTR QIRCSSNITGLLLTRDGGRDQ-NGTETFRPGGGNMRDNWRSELYKYKVVKIEPLGVAPTR 442
E51-sCD4-BG505 CCR5-sCD4-gp120 17b-sCD4-8ANC195-BG505 21c-sCD4-8ANC195-B41	CKRRVVG X = residues contacted by Fabs or CCR5 CKRRVVG = residues contacted by sulfated tyrosines CKRRV = disordered regions

Supplementary Tables

Trimer state	Trimer type	Ligand(s)	Method	PDB	Resolution (Å)	Distance(s) between V3 (His330) (Å)	Distance(s) between V1V2 (Pro124) (Å)	Distance(s) between CD4bs (Asp368) (Å)
Closed	BG505 SOSIP.664	8ANC195	X-ray	5CJX	3.6	68	14	54
Closed	BG505 SOSIP.664	PGT122, 35O22	X-ray	4TVP	3.5	69	15	55
Closed	BG505 SOSIP.664	PGT122	X-ray	4NCO	4.7	70	14	56
Closed	BG505 SOSIP.664	3H+109L 35O22	X-ray	5CEZ	3	69	14	56
Closed	BG505 SOSIP.664	IOMA, 35022	X-ray	5T3Z	3.5	69	14	54
Closed	JR-FL Env∆CT	PGT151	cryo- EM	5FUU	4.2	69	16	56
Partially open	BG505 SOSIP.664	sCD4, 17b 8ANC195	cryo- EM	6CM3	3.5	76	67	79
Partially open	B41 SOSIP.664	sCD4, 21c 8ANC195	cryo- EM	6EDU	4.1	73	69	79
Open	B41 SOSIP.664	sCD4, 17b	cryo- EM	5VN8	3.6	73	79	84
Open (Class I)	BG505 SOSIP.664	sCD4, E51	cryo- EM	6U0L	3.3	75, 80, 70	67, 75, 70	79, 85, 78
Open (Class II)	BG505 SOSIP.664	sCD4, E51	cryo- EM	6U0N	3.5	81, 73, 70	76, 77, 70	85, 83, 79

Supplementary Table 1. Distance comparisons in Env trimer structures. Structures are grouped into four conformational states: closed (unliganded and bound to Fabs), partially open (bound to 8ANC195, sCD4, and either 17b or 21c), and open (bound to sCD4 and 17b), and the open class I and class II E51-sCD4-BG505 complexes (this study). The PDB identifier is given for each structure. PDB coordinates for gp120 subunits within a trimer were used to measure distances on adjacent protomers between V3 base residue His330_{gp120}, V1V2 base residue Pro124_{gp120}, and the CD4 binding site residue Asp368_{gp120}.

Supplementary Table 2. PDB entries for structures presented in Extended Data Figure 5 and their corresponding references.

PDB	Reference
6CM3	Wang, H., Barnes, C.O., Yang, Z., Nussenzweig, M.C. & Bjorkman, P.J. Partially Open HIV-1
	Envelope Structures Exhibit Conformational Changes Relevant for Coreceptor Binding and
	Fusion. Cell Host Microbe 24, 579-592 e4 (2018)
5VN3	Ozorowski, G. et al. Open and closed structures reveal allostery and pliability in the HIV-1
	envelope spike. <i>Nature</i> 547 , 360-363 (2017)
4TVP	Pancera, M. et al. Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature
	514 , 455-61 (2014)
4ZMJ	Kwon, Y.D. et al. Crystal structure, conformational fixation and entry-related interactions of
	mature ligand-free HIV-1 Env. Nat Struct Mol Biol 22, 522-31 (2015)
5FYJ	Stewart-Jones, G.B.E. et al. Trimeric HIV-1-Env Structures Define Glycan Shields from Clades
	A, B, and G. <i>Cell</i> 165 , 813-26 (2016)
5FYK	Stewart-Jones, G.B.E. et al. Trimeric HIV-1-Env Structures Define Glycan Shields from Clades
	A, B, and G. <i>Cell</i> 165 , 813-26 (2016)
5 EVI	Stewart-Jones, G.B.E. et al. Trimeric HIV-1-Env Structures Define Glycan Shields from Clades
SFTL	A, B, and G. <i>Cell</i> 165 , 813-26 (2016)
БІОЦ	Kong, R. et al. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody.
51011	Science 352 , 828-33 (2016)
5 190	Kong, L. et al. Uncleaved prefusion-optimized gp140 trimers derived from analysis of HIV-1
0009	envelope metastability. Nat Commun 7, 12040 (2016)
5 ISA	Kong, L. et al. Uncleaved prefusion-optimized gp140 trimers derived from analysis of HIV-1
535A	envelope metastability. Nat Commun 7, 12040 (2016)
	Lee, J.H., de Val, N., Lyumkis, D. & Ward, A.B. Model Building and Refinement of a Natively
5ACO	Glycosylated HIV-1 Env Protein by High-Resolution Cryoelectron Microscopy. Structure 23,
	1943-51 (2015)
	Kong, L. et al. Complete epitopes for vaccine design derived from a crystal structure of the
5C7K	broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer.
	Acta Crystallogr D Biol Crystallogr 71 , 2099-108 (2015)
5T27	Gristick, H.B. et al. Natively glycosylated HIV-1 Env structure reveals new mode for antibody
513Z	recognition of the CD4-binding site. Nat Struct Mol Biol 23, 906-915 (2016)
5CEZ	Garces, F. et al. Affinity Maturation of a Potent Family of HIV Antibodies Is Primarily Focused
	on Accommodating or Avoiding Glycans. Immunity 43, 1053-63 (2015)
5CJX	Scharf, L. et al. Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open States
	of HIV-1 Env. <i>Cell</i> 162 , 1379-90 (2015)
5D9Q	Jardine, J.G. et al. Minimally Mutated HIV-1 Broadly Neutralizing Antibodies to Guide

	Reductionist Vaccine Design. PLoS Pathog 12, e1005815 (2016)
5FUU	Lee, J.H., Ozorowski, G. & Ward, A.B. Cryo-EM structure of a native, fully glycosylated,
6MDT	Kumar, S. et al. Capturing the inherent structural dynamics of the HIV-1 envelope glycoprotein
	fusion peptide. Nat Commun 10, 763 (2019).
6NQD	Ananthaswamy, N. et al. A sequestered fusion peptide in the structure of an HIV-1 transmitted
	founder envelope trimer. Nat Commun 10, 873 (2019)
60KP	Schoofs, T. et al. Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the
	HIV Envelope. <i>Immunity</i> 50 , 1513-1529 e9 (2019)
60RO	Barnes, C.O. et al. Structural characterization of a highly-potent V3-glycan broadly neutralizing
	antibody bound to natively-glycosylated HIV-1 envelope. Nat Commun 9, 1251 (2018)
6CH7	Escolano, A. et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and
	macaques. <i>Nature</i> 570, 468-473 (2019)

References

- 1. Zheng, S.Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. *Nat Methods* **14**, 331-332 (2017).
- 2. Zhang, K. Gctf: Real-time CTF determination and correction. *J Struct Biol* **193**, 1-12 (2016).
- 3. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. *Elife* **7** (2018).
- 4. Scheres, S.H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. *J Struct Biol* **180**, 519-30 (2012).