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A Supplementary Information

A.1 HPYV coinfections and interactions

Although our approach can be applied to many systems, we focus here on
genital infections caused by different types of human papillomaviruses
(HPVs) for several reasons. First, multiple infections between HPV types
are common (Fig 1A) and well described thanks to screening for
HPV-induced cancers (Vaccarella et al. 2010, Chaturvedi et al., [2011}
Dickson et al.| [2013]). Second, their prevalences are relatively stable
through time (Alemany et al., |2014). Third, HPV evolutionary rates are
generally slow, which limits within-host evolution and facilitates detection
(Bravo et al., 2010). Fourth, the existence of within-host interactions
between HPV types is strongly debated, especially in the context of
vaccination, given that they may affect a potential parasite evolutionary
response (Murall et al| 2015).

Because of the high prevalence of coinfections and, more generally,
because of the low immunogenicity and low pathogenesis of acute HPV
infections (Alizon et al.; 2017)), some believe HPV between-types
interactions in coinfected hosts to be negligible, which seems consistent
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with some epidemiological data (Chaturvedi et al., [2011). However,
pre-vaccine and vaccine studies have shown that there is limited natural
cross-reactivity between phylogenetically related HPV types and that
vaccines confer partial cross-immunity against non-target types (Herrero,
2009, Wheeler et al., 2012 Beachler et al.|, 2016). This means that there
could be apparent competition mediated by the immune system. At the
cellular level, recent data supports the existence of superinfection, that is
one HPV type excluding the other from the cell (Biryukov & Meyers,
2018)). For some types, virus loads also seem to differ in single and in
coinfections (Xi et al., 2009), which could impact the host transmission
and recovery rates. There is also indirect epidemiological evidence. First,
infection by HPV is known to affect the risk of contracting other infections
(Rousseau et al.; [2001}, Méndez et al.l 2005, Tota et al., [2016]) and to
decrease the recovery rate of another type in coinfection (Trottier et al.,
2008). Second, HPV coinfections may interfere with chronic infection and
cancer. For example, when oncogenic ‘high-risk’ (HR) HPV types coinfect
with non-oncogenic ‘low-risk’ (LR) types, time to diagnosis is longer and
the risk of progression to cancer is lower (Sundstrom et al., 2015).

In summary, there are reasons to hypothesise that HPV types might
interact when coinfecting a host and that these interactions could be large
enough to affect the prevalence of some genotype combinations. Detecting
or ruling out such interactions would also have a strong impact in the field,
especially in the context of vaccination against specific HPV types as they
could mean a risk for type replacement. Importantly, our approach has no
explicit within-host component and is therefore unable to detect a specific
interaction. Instead, what it can detect is the overall effect of all the
potential within-host interactions between genotypes.

A.2 Deriving the master equation for
epidemiological dynamics

We here explicit the notations used in the main text. This is directly based

on earlier work and explained in further details in (Sofonea et al., 2015).

The master equation of between-host dynamics introduced in the main
text is:
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The expression of each matrix are the following:
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Here, 3, 4, is an infection rate. It indicate the rate at which a ‘donor’
host infected by a combination of genotypes d can create an infected host
of combination of genotypes i by infecting a ‘receiver’ host infected by a
combination of gentoypes 7.

04, is a clearance rate, which captures a flow from hosts infected by a
combination of genotypes d towards another class of hosts infected by a
combination of genotypes i.

dqp refers to the Kronecker’s delta, which is 1 if a = b and 0 otherwise.

t(7) and 0 (j) are operators created to transform a set of genotypes into
an integer through a binary code. Indeed, for n different genotypes, there
exist exactly 2™ different host (and inoculum) classes. We use the property
that natural number can be written using the binary numeral system. For
further details, see (Sofonea et al., 2015).

Note that the ® matrix has a nested structure (donor host classes are
nested into receiver host classes) that requires arithmetical calculation on
indices, whence the v and 0 functions.

To further understand these notations, we need to make explicit the
infection rates and recovery rates, as originally developed in (Sofonea et al.)

2015).
A.2.1 Infection rates
Using our binary labelling (Sofonea et al., 2015), the labelled form of the

infection rates is the following
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where

1. [ is the constant transmission factor,




. n; is the rank of the inoculum or host class j,

. n is the number of genotypes,

2n 1

>~ is the sum over all inocula,

p=0

. kIeIEITIL]] (5Cd,k7Cd,k+cp,k_cd,kcp,k) cancels out whenever a genotype belongs
to p but not to d (ensuring that inoculum p can be produced by
donor host d),

. 0i,¢(rp) cancels out whenever host class r does not turn into host
class ¢ when infected by inoculum class p,

n
. ] is the product over all genotypes (nested in the inocula),
k=1
. (2¢p — 1+ (1 — ¢px) na) is the product over all genotypes of d
depending on the presence or absence in p.

A.2.2 Recovery rates

Contrarily to the transmission process, the recovery events occur at
different rates depending on the genotype involved (see the main text).
Assuming that genotypes can only be cleared one at a time, the labelled
form of the recovery rates is the following

Hd,i = (1 — 5d,i> Zdj"idvjéi,qb(o,cd’j(d—2j—1))’

j=1

where

1. (1 —4,;) cancels out if the recovery event is trivial (the recovering

class is already the output),

n
. y_is the sum over all genotypes,
j=1

. d; is the recovery rate of genotype j,

. Kq,; is the modifier on d; depending on the other genotypes present

in class d (in this study, it is always 1 if j is a HR genotype, and it

can be equal to k; if j is a LR genotype and there is a HR genotype
in class d),

(5i7 0(0,ca,5(d—21-1)) cancels out whenever host class d does not turn into
host class ¢ when losing genotype j.
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Fig S1. Prior distributions for all the parameters. The same priors
are used to generate target datasets and training datasets.
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and summary statistics, 100 runs were performed.
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