

Supporting Information

Artemisinin–(Iso)quinoline Hybrids by C–H Activation and Click Chemistry: Combating Multidrug-Resistant Malaria

Aysun Çapcı, Mélanie M. Lorion, Hui Wang, Nina Simon, Maria Leidenberger, Mariana C. Borges Silva, Diogo R. M. Moreira, Yongping Zhu, Yuqing Meng, Jia Yun Chen, Yew Mun Lee, Oliver Friedrich, Barbara Kappes, Jigang Wang,* Lutz Ackermann,* and Svetlana B. Tsogoeva*

anie_201907224_sm_miscellaneous_information.pdf

Table of Contents

- 1. General information
- 2. Synthesis and characterization of compounds
- 3. Stability experiments
- 4. Biological methods
- 5. ¹H and ¹³C NMR spectra and mass spectra of the compounds
- 6. NMR spectra of the compounds after stability tests
- 7. Filtering PAINS elements among hybrid compounds 1 17

8. References

1. General information

All reactions were performed in distilled and dried or HPLC grade solvents under N₂. The reagents supplied from commercial sources were used without further purification. TLC chromatography was performed on precoated aluminium silica gel SIL G/UV254 plates (Macherey-Nagel & Co.) and the detection occurred via fluorescence quenching, development in a molybdato phosphate solution (10% in EtOH). The compounds were purified via column chromatography and the hybrid compounds were reprecipitated from CH₂Cl₂ in *n*-hexane to obtain a pure compound for elemental analysis and further biological tests. All compounds were dried in high-vacuum (10⁻³ mbar). ¹H NMR and ¹³C NMR spectra were recorded at room temperature on a Bruker Avance or JEOL JNM GX 400 spectrometer operating at 300, 400 or 600 MHz, 75, 100 or 125 MHz. All chemical shifts are given in the ppm-scale and refer to the nondeuterized proportion of the solvent. ESI, APPI and MALDI mass spectra were recorded on a Bruker Daltonik maXis 4G or Bruker Daltonik micrOTOF II focus. Elemental analysis (C, H, N) were carried out with an Euro EA 3000 (EuroVector) machine and an Elementar vario MICRO cube machine and calculated values confirm a purity of > 95% for the all biologically tested compounds. Artesunic acid and dihydroartemisinin were purchased from ABCR (Karlsruhe, Germany) and TCI (Deutschland GmbH). 4,7-dichloroquinoline was purchased from Sigma Aldrich (Germany). Experimental details and the spectra of the hybrids and their precursors can be found following in the supporting information.

2. Synthesis and characterization of compounds

The general synthesis route of compounds 18 and 19 via Cobalt–Catalyzed C–H/N–O Functionalization:

Scheme S1. General presentation of precursor synthesis.

A suspension of *O*-acetyl oxime (0.50 mmol, 1.00 equiv), alkyne (0.75 mmol, 1.50 equiv), $Cp*CoI_2(CO)$ (0.05 mmol, 10 mol %), $AgSbF_6$ (0.1 mmol, 20 mol %) and NaOAc (0.1 mmol, 20 mol %) in DCE (0.25 M) was stirred at 120 °C for 1 h under air. After cooling to ambient temperature, the solvent was evaporated in vacuo and the remaining residue was purified by column chromatography on silica gel to afford the desired products **18/19**.¹

Compound 18: The general procedure for compound **18** was followed using (*E*)-1-(4-bromophenyl) ethanone *O*-acetyl oxime (128 mg, 0.50 mmol) and diphenylacetylene (134 mg, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: $30/1 \rightarrow 20/1 \rightarrow 10/1$)

yielded compound **18** (150 mg, 80%) as a slightly yellow solid.

¹H NMR (300 MHz, CDCl₃) δ : 8.08 (dd, J = 8.9, 0.5 Hz, 1H), 7.83 (dd, J = 2.0, 0.5 Hz, 1H), 7.69 (dd, J = 8.9, 2.0 Hz, 1H), 7.39 – 7.34 (m, 5H), 7.24 – 7.18 (m, 5H), 3.07 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ : 157.8, 150.6, 140.6, 137.4, 136.8, 131.3, 130.2, 130.0, 128.4, 128.4, 128.3, 127.7, 127.5, 127.3, 127.2, 125.0, 124.6, 22.7. MS (ESI) m/z (relative intensity) 376 (100) [M+H]⁺ (⁸¹Br), 374 (100) [M+H⁺] (⁷⁹Br). HRMS (ESI+) m/z calculated for C₂₂H₁₇BrN [M+H]⁺ (⁷⁹Br): 374.0539, found: 374.0534. Elemental analysis; calculated for C₂₂H₁₆BrN: C: 70.60 H: 4.31 N: 3.74 found: C: 70.17 H: 4.35 N: 3.77.

Compound 19: The general procedure for compound **19** was followed using (*E*)-1-(4-bromophenyl) ethanone *O*-acetyl oxime (128 mg, 0.50 mmol) and dec-5-yne (104 mg, 0.75 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: $40/1 \rightarrow 20/1$) yielded compound **19** (142 mg, 85%) as a yellow solid. M.p. = 48-50 °C.

¹H NMR (600 MHz, CDCl₃) δ : 8.07 (d, J = 1.9 Hz, 1H), 7.91 (d, J = 8.9 Hz, 1H), 7.57 (dd, J = 8.9, 1.9 Hz, 1H), 2.92 – 2.87 (m, 4H), 2.86 (s, 3H), 1.72 – 1.67 (m, 2H), 1.60 – 1.53 (m, 2H), 1.52 – 1.48 (m, 2H), 1.47 – 1.43 (m, 2H), 0.99 (t, J = 7.3 Hz, 3H), 0.95 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ : 155.5, 153.1, 136.7, 128.6, 127.8, 125.9, 125.3, 124.4, 124.3, 35.3, 33.1, 32.7, 27.4, 23.2, 23.1, 22.4, 14., 14.0. MS (ESI) m/z (relative intensity) 336 (100) [M+H]⁺ (⁸¹Br), 334 (100) [M+H]⁺ (⁷⁹Br). HRMS (ESI+) m/z calculated for C₁₈H₂₅BrN [M+H]⁺ (⁷⁹Br): 334.1165, found: 334.1160.

The general synthesis route of compounds 20 and 21: A suspension of 18 or 19 (1.0 equiv.), trimethylsilylacetylene (1.9 equiv.), $PdCl_2(PPh_3)_2$ (1.0 mol %), CuI (5.0 mol %) in NEt₃ (0.1 M) was stirred at 50 °C for 2 h under N₂. After cooling to ambient temperature, the solvent was evaporated *in vacuo*. The residue was dissolved in EtOAc, filtered through a plug of celite and concentrated *in vacuo*. The remaining solid was dissolved in MeOH (0.1 M). K₂CO₃ (2.0 equiv.) was added and the resulting suspension was stirred at 25 °C for 1 h. The solvent was evaporated *in vacuo* and the remaining residue was purified by column chromatography on silica gel to afford the desired products 20 or 21.

Scheme S2. General presentation of precursor synthesis.

Compound 20: 6-Bromo-1-methyl-3,4-diphenylisoquinoline (**18**) (580 mg, 1.55 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 10/1) yielded compound **20** (440 mg, 89%) as a pale-yellow solid. M.p. = 200-202 °C.

¹H NMR (300 MHz, CDCl₃) δ : 8.13 (dd, J = 8.6, 0.7 Hz, 1H), 7.81 (dd, J = 1.6, 0.7 Hz, 1H), 7.61 (dd, J = 8.6, 1.6 Hz, 1H), 7.38 – 7.30 (m, 5H), 7.22 – 7.15 (m, 5H), 3.15 (s, 1H), 3.05 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ : 157.5, 150.2, 140.6, 136.9, 135.6, 131.2, 130.3, 130.1, 129.1, 128.7, 128.2, 127.5, 127.2, 127.0, 125.6, 125.3, 123.6, 83.4, 79.3, 22.8. MS (ESI) m/z (relative intensity) 320 (100) [M+H]⁺. HRMS (ESI+) m/z calculated for C₂₄H₁₈N [M+H]⁺: 320.1434, found: 320.1431.

Compound 21: 6-Bromo-3,4-dibutyl-1-methylisoquinoline (**19**) (457 mg, 1.30 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 10/1) yielded compound **21** (345 mg, 95%) as a pale-yellow solid. M.p. = 84–86 °C.

¹H NMR (500 MHz, CDCl₃) δ : 8.09 (d, J = 1.5 Hz, 1H), 7.99 (d, J = 8.6 Hz, 1H), 7.51 (dd, J = 8.6, 1.5 Hz, 1H), 3.21 (s, 1H), 2.96 – 2.89 (m, 4H), 2.86 (s, 3H), 1.72 – 1.67 (m, 2H), 1.60 – 1.55 (m, 2H), 1.52 – 1.41 (m, 4H), 0.99 (t, J = 7.3 Hz, 3H), 0.95 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ : 155.5, 152.8, 134.9, 127.9, 127.8, 126.2, 125.9, 125.2, 123.0, 83.8, 78.7, 35.2, 33.1, 32.8, 27.3, 23.2, 23.1, 22.3, 14.1, 14.0. MS (ESI) m/z (relative intensity) 280 (100) [M+H]⁺. HRMS (ESI+) m/z calculated for C₂₀H₂₆N [M+H]⁺: 280.2060, found: 280.2055.

The general synthesis route of hybrid 1-3: A solution of compound 20 or 21 (1.0 equiv.), compound 22 (1.2 equiv.), CuSO₄ (5.0 mol %) and sodium (L)-ascorbate (10 mol %) in a 1/1 mixture of CH₂Cl₂/H₂O was stirred under nitrogen at 25 °C for 16 h. The solvent was evaporated *in vacuo* and the remaining residue was purified by column chromatography on silica gel and HPLC yielded 1 and 2.

Compound 22: First step: At 0 °C, 2-bromoethanol (0.43 mL, 6 mmol, 1.0 equiv.) was added dropwise to a solution of artesunic acid (**35**) (3.0 g, 7.8 mmol, 1.3 equiv.), DCC (1.6g, 7.8 mmol, 1.3 equiv.) and DMAP (360 mg, 3 mmol, 50 mol %) in CH₂Cl₂ (20 mL). The reaction mixture was stirred at 25 °C for 16 h and extracted with CH₂Cl₂. Purification by column chromatography (EtOAc/*n*-hexane:

4/1) afforded the product (2.54 g, 86%) as a white solid. M.p. = 84-86 °C.

¹H NMR (300 MHz, CDCl₃) δ : 5.79 (d, J = 9.9 Hz, 1H), 5.42 (s, 1H), 4.39 (t, J = 6.2 Hz, 2H), 3.50 (t, J = 6.2 Hz, 2H), 2.76 – 2.64 (m, 4H), 2.61 – 2.52 (m, 1H), 2.42 – 2.31 (m 1H), 2.07 – 1.97 (m, 1H), 1.94 – 1.83 (m, 1H), 1.81 – 1.67 (m, 2H), 1.65 – 1.57 (m, 1H), 1.55 – 1.45 (m, 1H), 1.43 (s, 3H), 1.40 – 1.25 (m, 3H), 1.08 – 0.99 (m, 1H), 0.95 (d, J = 5.9 Hz, 3H), 0.85 (d, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ : 171.6, 170.9, 104.7, 92.4, 91.4, 80.2, 63.4, 51.4, 45.4, 37.2, 36.1, 33.9, 31.9, 29.1, 28.8, 28.5, 26.1, 24.9, 21.8, 20.3, 12.6.

Second step: NaN₃ (1.0 g, 15.5 mmol, 3.0 equiv.) was added portion wise to a solution of the product which was obtained in the first step (2.54 g, 5.18 mmol, 1.0 equiv.), and NaI (39 mg, 0.26 mmol, 5.0 mol %) in DMF (20 mL). The reaction mixture was stirred at 60°C for 16 h and extracted with CH_2Cl_2 . The organic layer was dried over Na_2SO_4

and evaporated *in vacuo* to afford product **22** (2.28 g, 97%) as a yellow oil.

¹H NMR (300 MHz, CDCl₃) δ : 5.80 (d, J = 9.9 Hz, 1H), 5.43 (s, 1H), 4.28 – 4.24 (m, 2H), 3.50 – 3.47 (m, 2H), 2.81 – 2.67 (m, 4H), 2.66 – 2.55 (m, 1H), 2.43 – 2.22 (m, 1H), 2.15 – 1.99 (m, 2H), 1.94 – 1.86 (m, 1H), 1.81 – 1.70 (m, 2H), 1.68 – 1.59 (m, 1H), 1.56 – 1.48 (m, 1H), 1.45 (s, 3H), 1.43 – 1.26 (m, 2H), 1.13 – 1.03 (m, 1H), 0.96 (d, J = 5.9 Hz, 3H), 0.87 (d, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ : 171.6, 170.9, 104.4, 92.1, 91.4, 80.1, 63.1, 51.5, 49.7, 49.2, 37.3, 36.2, 34.1, 31.9, 29.1, 28.8, 26.0, 24.6, 22.0, 20.2, 12.1. MS (ESI) *m/z* (relative intensity): 929 (66) [2M+Na⁺], 476 (100) [M+Na]⁺. HRMS (ESI+) *m/z* calculated for C₂₁H₃₁N₃O₈Na [M+Na⁺]: 476.2003, found: 476.1993.

Hybrid 1: The general procedure hybrid **1** was followed using **21** (139 mg, 0.50 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 3/2) and HPLC yielded hybrid **1** (80 mg, 22%) as a slightly yellow oil.

¹H NMR (300 MHz, CDCl₃) δ : 8.59 (d, J = 1.5 Hz, 1H),

8.26 (s, 1H), 8.14 (d, J = 8.7 Hz, 1H), 8.03 (dd, J = 8.7, 1.5 Hz, 1H), 5.67 (d, J = 9.9 Hz, 1H), 5.16 (s, 1H), 4.83 – 4.70 (m, 2H), 4.62 – 4.54 (m, 2H), 3.18 – 3.04 (m, 2H), 2.98 – 2.90 (m, 5H), 2.77 – 2.67 (m, 4H), 2.57 – 2.48 (m, 1H), 2.39 – 2.27 (m, 1H), 2.03 – 1.92 (m, 1H), 1.87 – 1.62 (m, 6H), 1.61 – 1.43 (m, 7H), 1.35 (s, 3H), 1.23 – 1.14 (m, 1H), 1.05 – 1.00 (m, 6H), 0.91 – 0.81 (m, 6H), 0.74 (d, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ : 171.3, 171.2, 155.3, 152.6, 147.5, 135.8, 131.5, 126.8, 125.5, 123.5, 122.2, 120.0, 104.4, 92.4, 91.4, 80.0, 63.2, 51.4, 49.1, 45.0, 37.0, 36.2, 35.4, 35.3, 34.0, 33.3, 32.9, 31.6, 29.5, 29.2, 29.1, 27.3, 25.8,

24.5, 23.2, 22.3, 21.7, 20.0, 14.1, 14.0, 11.9. MS (ESI) m/z (relative intensity) 755 (18) [M+Na]⁺, 733 (100) [M+H]⁺. HRMS (ESI+) m/z calculated for C₄₁H₅₇N₄O₈ [M+H]⁺: 733.4171, found: 733.4164. Elemental analysis; calculated for C₄₁H₅₆N₄O₈: C: 67.19 H: 7.70 N: 7.64 found: C: 66.85 H: 7.55 N: 7.43.

Hybrid 2: The general procedure hybrid **2** was followed using **20** (154 mg, 0.50 mmol). Purification by column chromatography on silica gel (*n*-hexane/EtOAc: 3/2) and HPLC yielded hybrid **2** (100 mg, 26%) as a slightly yellow oil.

¹H NMR (300 MHz, CDCl₃) δ : 8.28 (d, J = 9.1 Hz, 1H), 8.17 (dd, J = 9.1, 1.7 Hz, 1H), 8.17 (d, J = 1.7 Hz, 1H), 8.02 (s, 1H), 7.38 – 7.29 (m, 6H), 7.24 – 7.15 (m, 4H), 5.68 (d, J = 9.9 Hz, 1H), 5.28 (s, 1H), 4.68 – 4.65 (m, 2H), 4.56 – 4.48 (m, 2H), 3.09 (s, 3H), 2.70 – 2.63 (m, 4H), 2.59 – 2.47 (m, 1H), 2.39 – 2.28 (m, 1H), 2.04 – 1.95 (m, 1H), 1.90 – 1.81 (m, 1H), 1.72 – 1.52 (m, 3H), 1.46 – 1.38 (m, 1H), 1.34 (s, 3H), 1.28 – 1.03 (m, 4H), 0.91 (d, J = 5.9 Hz, 3H), 0.78 (d, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ : 171.3, 171.1, 157.5, 150.2, 147.2, 141.0, 137.3, 136.3, 132.1, 131.5, 130.3, 129.4, 128.4, 127.6, 127.2, 126.9, 126.3, 125.7, 124.8, 122.5, 122.2, 104.4, 92.4, 91.4, 80.2, 62.9, 51.4, 49.1, 45.1, 37.2, 36.2, 34.0, 31.7, 29.2, 28.9, 25.8, 24.5, 22.7, 21.9, 20.2, 12.0. MS (ESI) m/z (relative intensity) 795 (8) [M+Na]⁺, 773 (100) [M+H]⁺. HRMS (ESI+) m/z calculated for C4₅H4₉N₄O₈ [M+H]⁺: 773.3545, found: 773.3544. Elemental analysis; calculated for C4₅H4₈N₄O₈: C: 69.93 H: 6.26 N: 7.25 found: C: 70.17 H: 6.31 N: 7.18.

Hybrid 3: Hybrid 3 was observed as by-product of hybrid 2.

¹H NMR (300 MHz, CDCl₃) δ : 8.28 (d, J = 8.7 Hz, 1H), 8.17 (dd, J = 8.7, 1.7 Hz, 1H), 8.10 (d, J = 1.7 Hz, 1H), 8.05 (s, 1H), 7.90 (s, 1H), 7.42 – 7.32 (m, 5H), 7.28 – 7.17 (m, 5H), 6.94 (d, J = 5.1 Hz, 1H), 4.69 – 4.62 (m,

2H), 4.56 – 4.48 (m, 2H), 3.09 (s, 3H), 2.71 – 2.56 (m, 4H), 2.54 – 2.47 (m, 1H), 2.39 – 2.28 (m, 2H), 2.23 – 2.16 (m, 1H), 2.10 (s, 3H), 2.07 – 1.96 (m, 2H), 1.90 – 1.70 (m, 3H), 1.59 – 1.42 (m, 4H), 1.06 (d, J = 5.9 Hz, 3H), 1.03 (d, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ : 211.9, 209.1, 171.4, 170.6, 159.3, 157.6, 150.2, 147.4, 140.9, 137.4, 136.3, 131.9, 131.5, 130.2, 129.3, 128.3, 127.6, 127.2, 126.9, 126.5, 125.7, 124.6, 122.5, 121.5, 91.7, 62.9, 57.0, 51.8, 49.1, 41.1, 40.7, 36.5, 34.6, 31.0, 29.9, 28.8, 28.5, 22.7, 20.5, 20.0, 11.5. MS (ESI) *m/z* (relative intensity) 795 (7) [M+Na⁺], 773 (100) [M+H]⁺. HRMS (ESI+) *m/z* calculated for C₄₅H₄₈N₄O₈: C: 69.93 H: 6.26 N: 7.25 found: C: 70.27 H: 6.49 N: 7.27.

Synthesis and characterization of 7-chloroquinoline derivatives and related hybrids:

All 7-chloroquinoline derivatives (27, 33, 34, and 36), except compound 37, were prepared according to literature procedure.^{2,3} Spectral data of these known 7-chloroquinoline derivatives match literature values.

Scheme S3. General presentation of precursor synthesis. a) 34; Ethanediol, *t*-BuOK/*t*-BuOH, 80 °C, 18h, 33; Ethanolamine, Et₃N, 120 °C, 2h b) 36; 1,2-Diaminoethane, 80 °C-135 °C c) 37; 5-chloropent-1-yne, K_2CO_3 , 130 °C d) 37; NaN₃, DMF, 100°C, 3h.

Elemental Analysis of 7-chloroquinoline derivatives:

Compound 33: Elemental analysis; calculated for $C_{11}H_{11}CIN_2O$ C: 59.33 H: 4.98 N: 12.58 Found: C: 58.86 H: 4.93 N: 12.57.

Compound 36: Elemental analysis; calculated for $C_{11}H_{12}ClN_3$ C: 59.60 H: 5.46 N: 18.96 Found: C: 59.57 H: 5.40 N: 18.74.

Compound 37: Elemental analysis; calculated for $C_{16}H_{18}ClN_3$ C: 66.78 H: 6.30 N: 14.60 Found: C: 66.47 H: 6.31 N: 14.37.

Compound 27: Elemental analysis; calculated for C₉H₅ClN₄ C: 52.83 H: 2.46 N: 27.38 Found: C: 52.85 H: 2.62 N: 27.40.

Compound 37: Compound **36** was dissolved in acetonitrile, 5-chloropent-1-yne and K_2CO_3 were added. The reaction mixture was refluxed at 130 °C for overnight. After filtration, the solvent and the crude product was purified via column chromatography (SiO₂, CH₂Cl₂/MeOH 8:2) 18%, white powder.

¹H NMR (300 MHz, CDCl₃) δ : 5.51 (m, 2H), 5.73 (t, J = 2.6 Hz, 1H), 6.09 (td, J = 6.9, 2.7 Hz, 2H), 6.61 (t, J = 7.0 Hz, 2H), 6.84 (t, J = 7.0 Hz, 2H), 7.15 (t, J = 7.0 Hz, 2H), 10.10 (d, J = 5.5 Hz, 1H), 11.09 (dd, J = 8.9, 2.2 Hz, 1H), 11.59 (d, J = 8.9 Hz, 1H), 11.65 (d, J = 2.1 Hz, 1H), 12.20 (d, J = 5.5 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ : 16.36, 28.52, 42.01, 47.47, 48.00, 69.07, 83.80, 99.26, 117.46, 121.58, 125.47, 128.53, 135.10, 148.94, 150.15, 151.91 ppm. HRMS (ESI+) m/z calculated for C₁₆H₁₉ClN₃ [M+H]⁺: 288.1262; found: 288.1264. Elemental analysis; calculated for C₁₆H₁₈ClN₃ C: 66.78 H: 6.30 N: 14.60 Found: C: 66.47 H: 6.31 N: 14.37.

The general synthesis route of compounds 23-26. To a solution of artesunic acid (**35**), EDCI and DMAP in CH₂Cl₂ at 0 °C, alcohol derivatives were added. The reaction mixture was warm up to room temperature and stirred 18-20 h, was then quenched with water. The mixture was extracted with CH₂Cl₂, dried over Na₂SO₄, and concentrated *in vacuo*. The crude compound was purified by column chromatography (SiO₂, Hexane/EtOAc) to give a colorless oil.

Scheme S4. General presentation of ester-linked artesunic acid- alkyne synthesis.

Compound 23: Artesunic acid (150 mg, 0.39 mmol, 1 equiv.), propargyl alcohol (45.45 μ L, 0.78 mmol, 2 equiv.), CH₂Cl₂ (9 mL), EDCI (150 mg, 0.96 mmol, 1 equiv.), *N*,*N*-Diisopropylethylamine (15 μ l, 0.2 10⁻³ mmol). Column chromatography conditions: Hexane/EtOAc 7/3, R_f: 0.62. Yield: 97%.

¹H NMR (300 MHz, CDCl₃) δ : 0.80 (d, J = 7.1 Hz, 3H), 0.91 (d, J = 5.8 Hz, 3H), 0.99 (m, 1H), 1.16 – 1.36 (m, 4H), 1.38 (s, 3H), 1.44 – 1.76 (m, 4H), 1.82 – 1.89 (m, 1H), 1.97 – 2.02 (m, 1H), 2.28 – 2.38 (m, 1H), 2.44 – 2.45 (m, 1H), 2.48 – 2.58 (m, 1H), 2.60 – 2.74 (m, 4H), 4.59 – 4.71 (m, 2H), 5.39 (s, 1H), 5.77 (d, J = 9.8, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 12.13, 20.30, 22.06, 24.65, 26.02, 28.72, 29.11, 31.86, 34.15, 36.28, 37.34, 45.30, 51.61, 52.30, 75.14, 77.54, 80.17, 91.57, 92.31, 104.54, 171.00, 171.41 ppm.

Compound 24: Artesunic acid (150 mg, 0.39 mmol, 1 equiv.), 3butyn-1-ol (120 μ L, 0.78 mmol, 55 mg, 4 equiv.), CH₂Cl₂ (6 mL), EDCI (150 mg, 0.96 mmol, 2.5 equiv.), DMAP (48 mg, 0.39 mmol, 1 equiv.). Column chromatography conditions: Hexane/EtOAc 7/3, R_f: 0.56. Yield: 88%.

¹H NMR (300 MHz, CDCl₃) δ : 0.81 (d, J = 7.1 Hz, 3H), 0.92 (d, J = 5.8 Hz, 3H), 0.98 – 1.02 (m, 1H), 1.26 – 1.32 (m, 3H), 1.38 (s, 3H), 1.44 – 1.89 (m, 4H), 1.89 – 1.95 (m, 1H), 1.97 – 2.00 (m, 2H), 2.33 (td, J = 13.9, 3.9 Hz, 1H), 2.46 – 2.72 (m, 7H), 4.15 (t, J = 6.9, 2H), 5.39 (s, 1H), 5.75 (d, J = 9.8, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ : 12.08, 14.24, 18.94, 21.08, 22.02, 24.62, 25.98, 28.82, 29.19, 31.83, 34.12, 36.25, 37.29, 45.26, 51.59, 62.39, 70.08, 80.13, 91.52, 92.20, 104.47, 171.06, 171.84 ppm. HRMS (ESI+) m/z calculated for C₂₃H₃₂NaO₈ [M+Na]⁺: 459.19891; found: 459.19894.

Compound 25: Artesunic acid (150 mg, 0.39 mmol, 1 equiv.), 4pentyn-1-ol (144 μ L, 1.56 mmol, 131 mg, 4 equiv.), CH₂Cl₂ (6 mL), EDCI (150 mg, 0.96 mmol, 2.5 equiv.), DMAP (48 mg, 0.39 mmol, 1 equiv.). Column chromatography conditions: Hexane/EtOAc 7/3, R_f: 0.62. Yield: 92%.

¹H NMR (300 MHz, CDCl₃) δ : 0.81 (d, J = 7.1 Hz, 3H), 0.92 (d, J = 5.8 Hz, 3H), 1.00 (d, J = 9.6 Hz, 1H), 1.18 – 1.25 (m, 2H), 1.27 – 1.33 (m, 2H), 1.40 (s, 3H), 1.55 – 1.87 (m, 6H), 1.93 – 1.95 (t, 1H), 2.01 (s, 1H), 2.23 – 2.47 (m, 3H), 2.47 – 2.73 (m, 5H), 4.14 – 4.19 (t, 2H), 5.40 (s, 1H), 5.74 – 5.77 (d, J = 9.9, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 12.09, 15.21, 20.26, 22.03, 24.62, 25.99, 27.51, 28.88, 29.23, 31.83, 34.12, 36.25, 37.30, 45.27, 51.59, 63.28, 69.10, 80.14, 83.04, 91.53, 92.19, 104.48, 171.13, 172.04 ppm. HRMS (ESI+) m/z calculated for C₂₄H₃₄NaO₈ [M+Na]⁺: 473.2148; found: 473.2146.

Compound 26: Artesunic acid (150 mg, 0.39 mmol, 1 equiv.), 5hexyn-1-ol (87 μ L, 0.78 mmol, 77 mg, 2 equiv.), CH₂Cl₂ (6 mL), EDCI (150 mg, 0.96 mmol, 2.5 equiv.), DMAP (48 mg, 0.39 mmol, 1 equiv.). Column chromatography conditions: Hexane/EtOAc 7/3, R_f: 0.73. Yield: 99%.

¹H NMR (300 MHz, CDCl₃) δ : 0.77 (d, J = 7.1 Hz, 3H), 0.88 (d, J = 5.8 Hz, 3H), 0.95 – 0.99 (m, 1H), 1.17 – 1.28 (m, 3H), 1.34 (s, 3H), 1.46 – 1.72 (m, 8H), 1.78 – 1.97 (m, 3H), 2.14 (td, J = 6.9, 2.6 Hz, 2H), 2.28 (td, J = 14.1, 3.7 Hz, 1H) 2.41 – 2.67 (m, 5H), 4.03 (t, J = 6.4 Hz, 2H), 5.35 (s, 1H), 5.70 (d, J = 9.8, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 171.94, 170.97, 104.28, 92.01, 91.34, 83.72, 79.96, 68.78, 64.06, 51.43, 45.11, 37.12, 36.10, 33.98, 31.68, 29.08, 28.75, 27.46, 25.82, 24.73, 24.48, 21.86, 20.13, 17.90, 11.94.ppm. HRMS (ESI+) m/z calculated for C₂₅H₃₆NaO₈ [M+H]⁺: 487.2303; found: 487.2302.

The general synthesis route of hybrids 4-7: The alkyne derived artesunic acid (160 mg, 0.379 mmol, 1 equiv.) and 4-azido-7-chloroquinoline (27) (155 mg, 0.758 mmol, 2 equiv.) were dissolved in CH_2Cl_2 (7.5 mL). The solution of $CuSO_4 \cdot 5H_2O$ (19 mg, 0.0758 mmol, 20 mol %) and L-ascorbic acid (30 mg, 0.152 mmol, 40 mol %) in H_2O (7.5 mL) was then added to the reaction mixture. After stirring overnight, the crude was extracted with CH_2Cl_2 , dried over Na₂SO₄, and concentrated *in vacuo*. The product was isolated via column chromatography (SiO₂, Hexane/EtOAc: 1/1).

Hybrid 4: Compound **23** (160 mg, 0.379 mmol,1 equiv.), 4-azido-7chloroquinoline (**27**) (155 mg, 0.758 mmol, 2 equiv.), CH₂Cl₂ (7.5 mL), CuSO₄·5H₂O (19 mg, 0.0758, 20 mol %), L-ascorbic acid (30 mg, 0.152 mmol, 40 mol %), H₂O (7.5 mL). Yield: 52%.

¹H NMR (300 MHz, CDCl₃) δ : 0.78 (d, J = 7.1 Hz, 3H), 0.92 (d, J = 5.4 Hz, 3H), 1.12 – 1.16 (m, 4H), 1.29 (s, 3H), 1.49 – 1.67 (m, 4H), 1.80 – 1.94 (m, 2H), 2.23 – 2.33 (m, 1H), 2.43 – 2.55 (m, 1H), 2.68 –

2.77 (m, 4H), 5.04 (s, 1H), 5.35 – 5.48 (m, 2H), 5.62 (d, J = 9.9 Hz, 1H), 7.53 (d, J = 4.6 Hz, 1H), 7.60 (dd, J = 9.1 Hz, 1H), 8.00 (d, J = 9.1, 1H), 8.19 (s, 1H), 8.22 (d, J = 2.1 Hz, 1H), 9.05 (d, J = 4.6 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 12.14, 20.25, 22.00, 24.57, 25.91,

29.00, 29.25, 31.77, 34.10, 36.20, 37.32, 45.15, 51.49, 57.99, 80.07, 91.41, 92.39, 104.46, 116.34, 120.75, 124.96, 125.82, 128.98, 129.51, 136.99, 141.16, 144.01, 150.20, 151.51, 171.33, 171.93 ppm. HRMS (ESI+) m/z calculated for C₃₁H₃₅ClN₄NaO₈ [M+Na]⁺: 649.2049; found: 649.2036. Elemental analysis; calculated for: C₃₁H₃₅ClN₄O₈: C: 59.38 H: 5.63 N: 8.93 found: C: 59.77 H: 5.80 N: 9.04.

Hybrid 5: Compound **24** (140 mg, 0.321 mmol, 1 equiv.), 4-azido-7-chloroquinoline (**27**) (132 mg, 0.641 mmol, 2 equiv.), CH₂Cl₂ (5 mL), CuSO₄·5H₂O (16 mg, 0.0642 mmol, 20 mol %), L-ascorbic acid (25.5 mg, 0.128 mmol, 40 mol %), H₂O (5 mL). Yield: 29%.

¹H NMR (300 MHz, CDCl₃) δ : 0.77 (d, J = 7.1 Hz, 3H), 0.92 (d, J = 5.2 Hz, 3H), 1.14 – 1.23 (m, 4H), 1.30 (s, 3H), 1.49 – 1.96 (m, 4H), 1.79 – 1.96 (m, 2H), 2.23 – 2.34 (m, 1H), 2.39 – 2.51 (m, 1H),

2.62 – 2.70 (m, 4H), 3.23 (t, J = 6.1 Hz, 2H), 4.39 – 4.56 (m, 2H), 5.14 (s, 1H), 5.60 (d, J = 9.9 Hz, 1H), 7.57 (d, J = 4.6 Hz, 1H), 7.61 (d, J = 2.2 Hz, 1H), 8.08 (d, J = 3.6 Hz, 1H), 8.11 (s, 1H), 8.20 (d, J = 2.2 Hz, 1H), 9.04 (d, J = 4.7 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 12.08, 20.25, 21.99, 24.54, 25.47, 25.91, 29.05, 29.20, 31.76, 34.05, 36.22, 37.28, 45.14, 51.50, 63.40, 80.09, 91.44, 92.34, 104.46, 116.11, 120.75, 124.22, 125.22, 128.90, 129.34, 136.83, 141.26, 145.08, 150.24, 151.54, 171.31, 171.84 ppm. HRMS (ESI+) *m/z* calculated for C₃₂H₃₇ClN₄NaO₈ [M+Na]⁺: 663.2207; found: 663.2192. Elemental analysis; calculated for C₃₂H₃₇ClN₄O₈: C: 59.95 H: 5.82 N: 8.74 found: C: 60.14 H: 6.19 N: 8.21.

Hybrid 6: Compound **25** (75 mg, 0.166 mmol, 1 equiv.), 4-azido-7-chloroquinoline (**27**) (68 mg, 0.33 mmol, 2 equiv.), CH₂Cl₂ (3 mL), CuSO₄·5H₂O (8.3 mg, 0.033 mmol, 20 mol %), L-ascorbic acid (7 mg, 0.066 mmol, 40 mol %), H₂O (3 mL). Yield: 78%.

¹H NMR (300 MHz, CDCl₃) δ : 0.78 (d, J = 7.1 Hz, 3H), 0.91 (d, J = 5.1 Hz, 3H), 1.18 – 1.26 (m, 5H), 1.33 (s, 3H), 1.49 – 1.57 (m, 1H), 1.62 – 1.71 (m, 2H), 1.79 – 1.96 (m, 2H), 2.09 – 2.18 (m, 2H),

2.33 – 2.34 (m, 1H), 2.42 – 2.54 (m, 1H), 2.60 – 2.70 (m, 4H), 2.93 (t, J = 7.4 Hz, 2H), 4.18 (t, J = 6.2 Hz, 2H), 5.24 (s, 1H), 5.68 (d, J = 9.8 Hz, 1H), 7.49 (d, J = 4.6 Hz, 1H), 7.57 (dd, J = 9.1 Hz, 2.1 Hz, 1H), 7.91(s, 1H), 8.02 (d, J = 9.1 Hz, 1H), 8.19 (d, J = 2.1 Hz, 1H), 9.02 (d, J = 4.7 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 12.09, 20.23, 21.92, 21.98, 24.55, 25.92, 28.06, 28.99, 29.23, 31.79, 34.05, 36.20, 37.27, 45.17, 51.50, 63.48, 80.08, 91.45, 92.26, 104.44, 116.00, 120.69, 123.32, 123.38, 124.99, 128.95, 129.31, 136.80, 141.22, 147.57, 150.21, 171.26, 172.10 ppm. HRMS (ESI+) m/z calculated for C₃₃H₃₉ClN₄NaO₈ [M+Na]⁺: 677.2359; found: 677.2349. Elemental analysis; calculated for C₃₃H₃₉ClN₄O₈: C: 60.50 H: 6.00 N: 8.55 found: C: 60.57 H: 6.32 N: 8.18.

Hybrid 7: Compound **26** (175 mg, 0.377 mmol, 1 equiv.), 4azido-7-chloroquinoline (**27**) (154 mg, 0.753 mmol, 2 equiv.), CH₂Cl₂ (6 mL), CuSO₄·5H₂O (19 mg, 0.0754 mmol, 20 mol %), L-ascorbic acid (30 mg, 0.15 mmol, 40 mol %), H₂O (6 mL). Yield: 43%. ¹H NMR (300 MHz, CDCl₃) δ : 0.77 (d, J = 7.1 Hz, 3H), 0.87 (d, J = 5.0 Hz, 3H), 1.09 – 1.24 (m, 5H), 1.33 (s, 3H), 1.49 – 1.82 (m, 9H), 2.22 – 2.32 (m, 1H), 2.43 – 2.50 (m, 1H), 2.59 – 2.66 (m, 4H), 2.86 (t, J = 7.2 Hz, 2H), 4.12 (s, 2H), 5.26

(s, 1H), 5.68 (d, J = 9.8 Hz, 1H), 7.47 (d, J = 4.7 Hz, 1H), 7.54 (d, J = 9.0 Hz, 1.8 Hz, 1H), 7.84 (s, 1H), 8.02 (d, J = 9.1 Hz, 1H), 8.16 (s, 1H), 8.99 (d, J = 4.7 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 12.13, 21.91, 25.11, 25.64, 28.16, 28.91, 29.22, 31.77, 36.16, 37.20, 45.15, 51.41, 64.28, 80.04, 91.41, 92.17, 104.39, 115.77, 115.90, 120.61, 122.71, 122.78, 124.84, 125.05, 128.71, 128.98, 129.26, 136.73, 141.14, 148.52, 150.16, 151.43, 171.12, 172.07 ppm. HRMS (ESI+) m/z calculated for C₃₄H₄₂ClN₄O₈ [M+H]⁺: 669.2681; found: 669.2686. Elemental analysis; calculated for C₃₄H₄₁ClN₄O₈: C: 61.03 H: 6.18 N: 8.37 found: C: 60.75 H: 6.45 N: 8.00.

The general synthesis route of compounds 28-32: DHA was dissolved in dry CH_2Cl_2 :MeCN (1:1) under N₂, subsequently the catalyst $H_3[P(W_3O_{10})_4]$ ·xH₂O (phosphotungstic acid hydrate) was added. After stirring the reaction mixture for 5 min., alcohol derivative was added. The reaction mixture was stirred 1.5-2 h and screened by thin layer chromatography to observe the consumption of DHA. When DHA was consumed, the solvent evaporated under reduced pressure and crude product was purified via column chromatography (SiO₂, Hexane/EtOAc). In all reactions, alpha beta isomeric mixture of the products observed, however the isomers successfully separated via column chromatography.

Scheme S5. General presentation of precursor synthesis.

Compound 28 (C-10 β isomer): DHA (250 mg, 0.88 mmol, 1 equiv.), H₃[P(W₃O₁₀)₄]·xH₂O (127 mg, 0.044 mmol, 0.05 equiv.) propargyl alcohol (77 mg, 1.1 mmol, 1.25 equiv.). Yield: 86%.

> ¹H NMR (300 MHz, CDCl₃) δ : 0.88 – 0.89 (m, 1H), 0.94 (d, J = 12.9 Hz, 6H), 1.21 – 1.37 (m, 2H), 1.44 (s, 3H), 1.46 – 1.55 (m, 3H), 1.60 – 1.68 (m, 1H), 1.73 – 1.81 (m, 2H), 1.84 – 1.93 (m, 1H), 2.00 – 2.07 (m, 1H), 2.32 – 2.43 (m, 2H),

2.65 – 2.70 (m, 1H), 4.31 (d, J = 2.7 Hz, 2H), 4.98 (d, J = 3.5 Hz, 1H), 5.41 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 104.24, 100.72, 88.16, 81.14, 79.88, 74.08, 55.06, 52.66, 44.46,

37.52, 36.52, 34.73, 30.70, 26.24, 24.79, 24.55, 20.44, 12.90 ppm. HRMS (ESI+) *m/z* calculated for C₁₈H₂₆NaO₅ [M+Na]⁺: 345.1678; found: 345.1677.

Compound 29 (C-10a isomer): The product was obtained as side product of compound **28**.

¹H NMR (300 MHz, CDCl₃) δ : 0.88 (d, J = 7.2 Hz, 3H), 0.94 (d, J = 6.1 Hz, 3H), 0.96 – 1.03 (m, 1H), 1.20 – 1.35 (m, 3H), 1.41 (s, 3H), 1.44 – 1.57 (m, 2H), 1.65 – 1.79 (m, 2H), 1.83 – 1.89 (m, 1H), 1.97 – 2.02 (m, 1H), 2.31 – 2.44 (m, 3H),

4.33 – 4.44 (m, 2H), 4.66 (d, J = 9.3 Hz ,1H), 5.32 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 104.37, 97.62, 91.35, 80.44, 79.77, 74.29, 55.10, 51.74, 45.54, 37.44, 36.42, 34.34, 32.43, 26.08, 24.80, 22.31, 20.32, 12.48 ppm. HRMS (ESI+) m/z calculated for C₁₈H₂₆NaO₅ [M+Na]⁺: 345.1672; found: 345.1680.

Compound 30 (C-10\beta isomer): DHA (250 mg, 0.88 mmol, 1 equiv.), H₃[P(W₃O₁₀)₄]·xH₂O (127 mg, 0.044 mmol, 0.05 equiv.), butyn-1-ol (77 mg, 1.1 mmol, 83 μ M, 1.25 equiv.). Yield: 64%.

¹H NMR (300 MHz, CDCl₃) δ : 0.79 – 0.84 (m, 1H), 0.87 (d, J = 7.3 Hz, 3H),

≫ 0.90 (d, J = 6.2 Hz, 3H), 1.13 – 1.35 (m, 2H), 1.39 (s, 3H), 1.42 – 1.87 (m, 6H), 1.91 (t, J = 2.6 Hz, 1H), 1.95 – 2.02 (m, 1H), 2.32 (ddd, J = 14.5, 13.5, 4.0 Hz,1H), 2.42 (td, J = 6.6, 2.6 Hz, 2H), 2.53 – 2.63 (m, 1H), 3.51 (dt, J = 9.6, 6.3 Hz, 1H), 3.88 (dt, J = 9.6, 6.8 Hz, 1H), 4.78 (d, J = 3.3 Hz, 1H), 5.42 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 13.01, 20.08, 20.44, 24.34, 24.73, 26.21, 30.91, 34.73, 36.46, 37.44, 44.44, 52.62, 66.25, 69.13, 81.13, 81.78, 88.02, 101.92, 104.07 ppm. HRMS (ESI+) m/z calculated for C₁₉H₂₈NaO₅ [M+Na]⁺: 359.1829; found: 359.1827.

Compound 31 (C-10\beta isomer): DHA (250 mg, 0.88 mmol, 1 equiv.), H₃[P(W₃O₁₀)₄]·xH₂O (127 mg, 0.044 mmol, 0.05 equiv.), pentyn-1-ol (92.5 mg, 1.1 mmol, 102 μ M, 1.25 equiv.). Yield: 98%.

¹H NMR (300 MHz, CDCl₃) δ : 0.77 (m, 1H), 0.83 (d, J = 7.4 Hz, 3H), 0.88 (d, J = 6.2 Hz, 3H), 1.08 – 1.29 (m, 2H), 1.35 (s, 3H), 1.38 – 1.99 (m, 10H), 2.20 (td, J = 7.1, 2.7 Hz, 2H), 2.23 – 2.34 (m, 1H), 2.49 – 2.60 (m, 1H), 3.38 (dt, J = 9.7, 5.9 Hz, 1H), 3.88 (dt, J = 9.8, 6.1 Hz, 1H), 4.71 (d, J = 4.6 Hz, 1H), 5.33 (s,

1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 12.96, 15.37, 20.34, 24.44, 24.65, 26.15, 28.47, 30.87, 34.61, 36.39, 37.38, 44.39, 52.54, 66.55, 68.73, 80.99, 83.60, 87.80, 101.97, 103.96 ppm. HRMS (ESI+) *m*/*z* calculated for C₂₀H₃₀NaO₅ [M+Na]⁺: 373.1987; found: 373.1985.

Compound 32 (C-10\beta isomer): DHA 250 mg, 0.88 mmol, 1 equiv.), H₃[P(W₃O₁₀)₄]·xH₂O (127 mg, 0.044 mmol, 0.05 equiv.), hexyn-1-ol (108 mg, 1.1 mmol, 122.7 μ M 1.25 equiv.). Yield: 77%.

¹H NMR (300 MHz, CDCl₃) δ : 0.85 (d, J = 7.1 Hz, 3H), 0.92 (d, J = 6.0 Hz, 3H), 0.93 – 1.02 (m, 1H), 1.17 – 1.35 (m, 3H), 1.41 (s, 3H), 1.43 – 1.88 (m, 9H), 1.91 (t, J = 2.6 Hz, 1H), 1.95 – 2.03 (dt, 1H), 2.19 (td, J = 6.9, 2.6 Hz,

2H), 2.29 – 2.44 (m, 2H), 3.40 (dt, J = 9.8, 6.5 Hz, 1H), 3.96 (dt, J = 9.8, 5.8 Hz, 1H), 4.39 (d,

J = 3.6 Hz, 1H), 5.30 (s, 1H) ppm. HRMS (ESI+) m/z calculated for C₂₁H₃₂NaO₅ [M+Na]⁺: 387.2142; found: 387.2149.

The general synthesis route of hybrids 8-12: The alkyne derived dihydroartemisinin (1 equiv.) and 4-azido-7-chloroquinoline (27) (2 equiv.) were dissolved in CH_2Cl_2 . The solution of $CuSO_4 \cdot 5H_2O$ (20 mol %) and L-ascorbic acid (40 mol %) in H_2O was then added to the reaction mixture. After stirring overnight, the crude was extracted with CH_2Cl_2 , dried over Na₂SO₄, and concentrated *in vacuo*. The product was isolated via column chromatography (SiO₂, Hexane/EtOAc).

Hybrid 8: Compound **28** (100 mg, 0.31 mmol, 1 equiv.), 4-azido-7-chloroquinoline (**27**) (63.4 mg, 0.31 mmol, 1 equiv.), CH_2Cl_2 (1 mL), $CuSO_4 \cdot 5H_2O$ (3.87 mg, 0.0155 mmol, 5 mol %), L-ascorbic acid (6.14 mg, 0.031 mmol, 10 mol %), H_2O (1 mL). (SiO₂, Hexane/EtOAc 1:1, $R_{\rm f}$: 0.26) Yield: 70%.

¹H NMR (300 MHz, CDCl₃) δ : 0.94 (d, J = 5.5 Hz, 6H), 1.08 – 1.17 (m, 1H), 1.44 (s, 3H), 1.51-2.12 (m, 9H), 2.34 – 2.54 (m, 1H), 2.70 (s, 1H), 4.85 – 5.09 (m, 3H), 5.44 (s, 1H), 7.52 (d, J = 4.6 Hz, 1H), 7.60 (dd, J = 9.2, 2.2 Hz, 1H), 7.99 (s, 1H), 8.03 (s, 1H), 8.25 (s, 1H), 9.06 (d, J = 4.7 Hz, 1H) ppm. ¹³C NMR (75 MHz,

CDCl₃) δ : 12.53, 19.82, 24.02, 24.22, 25.67, 30.40, 34.10, 35.94, 36.95, 43.89, 52.04, 61.26, 80.57, 87.55, 101.76, 103.72, 115.53, 120.19, 123.76, 124.19, 128.51, 128.94, 136.46, 140.57, 145.67, 149.75, 150.86 ppm. HRMS (ESI+) m/z calculated for C₂₇H₃₂ClN₄O₅ [M+H]⁺: 527.2056; found: 527.2061. Elemental analysis; calculated for C₂₇H₃₁ClN₄O₅: C: 61.53 H: 5.93 N: 10.63 found: C: 61.26 H: 5.44 N: 10.35.

Hybrid 9: Compound **29** (80 mg, 0.25 mmol, 1 equiv.), 4-azido-7-chloroquinoline (**27**) (65 mg, 0.32 mmol, 1 equiv.), CH_2Cl_2 (1 mL), $CuSO_4 \cdot 5H_2O$ (1.25 mg, 0.05 mmol, 2 mol %), L-ascorbic acid (4.4 mg, 0.025 mmol, 10 mol %), H_2O (1 ml). (SiO₂, Hexane/EtOAc 7:3, R_f : 0.12) Yield: 54%.

¹H NMR (300 MHz, CDCl₃) δ : 0.89 (d, J = 7.1 Hz, 3H), 0.93 (d, J = 5.8 Hz, 3H), 0.99 – 1.05 (m, 1H), 1.27 – 1.31 (m, 2H), 1.33 (s, 3H), 1.38 – 1.98 (m, 7H), 2.29 – 2.40 (dd, J = 31.9 Hz, 1H), 2.42 – 2.52 (m, 1H), 4.68 (d, J = 9.3 Hz, 1H), 5.04 (11 L = 6.5 + 12.0 Hz, 2H) = 5.20 (-11) - 7.40 (11 L = 6.5 + 12.0 Hz, 2H)

(dd, J = 65.5, 12.8 Hz, 2H), 5.38 (s, 1H), 7.49 (d, J = 4.6 Hz, 1H), 7.57 (d, J = 9.1 Hz, 1H), 8.00 (d, J = 9.1 Hz, 1H), 8.12 (s, 1H), 8.20 (d, J = 2.1 Hz, 1H), 9.02 (d, J = 4.6 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ : 151.54, 150.37, 146.93, 141.24, 137.02, 129.56, 129.11, 124.92, 124.88, 120.78, 116.14, 104.48, 100.41, 91.45, 80.53, 62.68, 51.74, 45.46, 37.53, 36.41, 34.33, 32.77, 26.13, 24.84, 22.34, 20.40, 12.75 ppm. HRMS (ESI+) *m/z* calculated for C₂₇H₃₁ClN₄NaO₅ [M+Na]⁺: 549.1875; found: 549.1879. Elemental analysis; calculated for C₂₇H₃₁ClN₄O₅: C: 61.53 H: 5.93 N: 10.63 found: C: 61.39 H: 5.89 N: 10.48.

Hybrid 10: Compound **30** (111 mg, 0.38 mmol, 1 equiv.), 4-azido-7-chloroquinoline (**27**) (118 mg, 0.575 mmol, 1.5 equiv.), CH_2Cl_2 (7 mL), $CuSO_4 \cdot 5H_2O$ (19 mg, 0.076 mmol, 20 mol %), L-ascorbic acid (30 mg, 0.152 mmol, 40 mol %), H_2O (7 mL). (SiO₂, Hexane/EtOAc 1:1, R_f : 0.24) Yield: 35%.

¹H NMR (300 MHz, CDCl₃) δ : 0.84 (d, J = 5.8 Hz, 3H), 0.86 (d, J = 7.4 Hz, 3H), 0.90 – 0.92 (m, 1H), 1.21 – 1.14 (m, 2H) 1.40 (s, 3H), 1.48 – 1.98 (m, 7H), 2.33 (td, J = 14.1, 3.9 Hz, 1H), 2.59 – 2.66 (m, 1H), 3.11 – 3.23 (m, 2H),

3.81 (dt, J = 9.8, 6.3 Hz, 1H), 4.22 (dt, J = 9.7, 6.4 Hz, 1H), 4.85 (d, J = 3.4 Hz, 1H), 5.29 (s, 1H), 7.46 (d, J = 4.6 Hz, 1H), 7.57 (dd, J = 9.1, 2.0 Hz, 1H), 7.85 (s, 1H), 8.01 (d, J = 9.1 Hz, 1H), 8.23 (d, J = 2.0 Hz, 1H), 9.04 (d, J = 4.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO–d₆) δ : 152.36, 149.55, 145.55, 140.40, 135.34, 128.84, 128.18, 125.70, 124.78, 119.99, 116.22, 103.25, 100.60, 86.90, 80.36, 66.31, 51.89, 43.68, 36.51, 35.96, 33.98, 30.44, 25.93, 25.61, 24.12, 23.77, 19.85, 12.69 ppm. HRMS (ESI+) *m*/*z* calculated for C₂₈H₃₄ClN₄O₅ [M+H]⁺: 541.2212; found: 541.2225. Elemental analysis; calculated for C₂₈H₃₃ClN₄O₅: C: 62.16 H: 6.15 N: 10.36 found: C: 61.88 H: 6.03 N: 10.40.

Hybrid 11: Compound 31 (180 mg, 0.514 mmol, 1 equiv.), 4-azido-7chloroquinoline (27) (210 mg, 1.03 mmol, 2 equiv.), $CH_2Cl_2(6 \text{ mL})$, $CuSO_4 \cdot 5H_2O$ (13 mg, 0.0514 mmol, 10 mol %), L-ascorbic acid (20.4 mg, 0.103 mmol, 20 mol %), H_2O (6 ml). (SiO₂, Hexane/EtOAc 1:1, R_f : 0.24) Yield: 35%. ¹H NMR (300 MHz, CDCl₃) δ : 0.94 (d, J = 3.4 Hz, 3H), 0.95 (d, J = 2.3 Hz, 3H),

Hybrid 12: Compound **32** (133 mg, 0.365 mmol, 1 equiv.), 4-azido-7-chloroquinoline (**27**) (90 mg, 0.438 mmol, 2 equiv.), CH_2Cl_2 (6 mL), $CuSO_4 \cdot 5H_2O$ (3.6 mg, 0.015 mmol, 4 mol %), L-ascorbic acid (14.5 mg, 0.073 mmol, 20 mol %), H_2O (6 mL). (SiO₂, Hexane/EtOAc 1:1, R_{f} : 0.24) Yield: 32%.

¹H NMR (300 MHz, CDCl₃) δ : 0.84 (d, J = 5.7 Hz, 3H), 0.86 (d, J = 7.4 Hz, 3H), 0.90 – 0.92 (m, 1H), 1.13 – 1.20 (m, 3H), 1.40 (s, 3H), 1.43 – 2.01 (m, 8H), 2.33 (td, J = 14.0, 3.9 Hz, 1H), 2.59 – 2.66 (m, 1H), 3.11 – 3.23 (m, 2H), 3.81 (dt, J = 9.8, 6.3 Hz, 1H), 4.22 (dt, J = 9.8, 6.4 Hz, 1H), 4.85 (d, J = 3.5

Hz, 1H), 5.29 (s, 1H), 7.46 (d, J = 4.6 Hz, 1H), 7.57 (dd, J = 9.1, 2.2 Hz, 1H), 7.85 (s, 1H), 8.01

(d, J = 9.1 Hz, 1H), 8.23 (d, J = 2.1 Hz, 1H), 9.04 (d, J = 4.6 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 13.12, 20.39, 24.53, 24.69, 25.30, 26.08, 26.23, 29.31, 30.94, 34.64, 36.44, 37.49, 44.44, 52.55, 68.01, 81.11, 87.93, 102.04, 104.09, 115.84, 120.66, 122.52, 124.86, 128.94, 129.31, 136.81, 141.18, 148.90, 150.21, 151.42 ppm. HRMS (ESI+) m/z calculated for C₃₀H₃₇ClN₄NaO₅ [M+Na]⁺: 591.2344; found: 591.2342. Elemental analysis; calculated for C₃₀H₃₇ClN₄O₅: C: 63.32 H: 6.55 N: 9.85 found: C: 63.57 H: 6.63 N: 9.50.

Hybrid 13: Artesunic acid (100 mg, 0.26 mmol, 1 equiv.) and 7chloroquinoline derivative **34** (58 mg, 0.26 mmol, 1 equiv.) were dissolved in dry CH_2Cl_2 (0.52 mL) under N₂. DCC (59 mg, 0.286 mmol, 1.1 equiv.) and DMAP (127 mg, 1.04 mmol, 4 equiv.) were added at 0 °C to the solution. The reaction mixture was warmed up to room temperature and stirred overnight. After filtration of the precipitated urea, solvent was evaporated, and the hybrid **13** was purified via column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5, R_f:

0.67), 35%, white crystalline.

¹H NMR (300 MHz, CDCl₃) δ : 0.78 (d, J = 7.1 Hz, 3H), 0.94 (d, J = 5.8, 3H), 1.39 (s, 3H), 1.55 – 1.71 (m, 6H), 1.85 – 1.94 (m, 2H), 2.29 – 2.41 (m, 1H), 2.48 – 2.56 (m, 1H), 2.71 – 2.72 (m, 4H), 3.41 – 3.52 (m, 1H), 4.00 – 4.11 (m, 1H), 4.38 – 4.41 (m, 2H), 4.59 – 4.61 (m, 2H), 5.28 – 5.34 (d, J = 17.2, 1H), 5.69 – 5.72 (d, J = 9.7, 1H), 6.73 – 6.75 (d, J = 5.3, 1H), 7.46 – 7.50 (d, J = 9.0 Hz, 1H), 8.06 (s, 1H), 8.14 – 8.17 (d, J = 9.0, 1H), 8.72 – 8.74 (d, J = 5.2, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 12.12, 20.33, 22.05, 24.69, 25.09, 26.07, 28.97, 29.26, 31.90, 34.09, 34.18, 36.33, 37.38, 45.29, 49.24, 51.66, 62.37, 66.61, 80.22, 91.61, 92.36, 101.05, 104.60, 123.80, 126.98, 136.19, 152.36, 161.46, 171.09, 172.09 ppm. MS (MALDI-TOF): m/z calculated for C₃₀H₃₆ClNO₉ [M]⁺ = 590; found: 590. Elemental analysis; calculated for C₃₀H₃₆ClNO₉: C: 61.07 H: 6.15 N: 2.37 found: C: 61.26 H: 6.44 N: 2.35.

Hybrid 14: Artesunic acid (100 mg, 0.26 mmol, 1 equiv.) and 7chloroquinoline derivative **33** (115.8 mg, 0.52 mmol, 2 equiv.) were dissolved in dry CH_2Cl_2 (7.5 mL) under N₂. DCC (59 mg, 0.286 mmol, 1.1 equiv.) and DMAP (63 mg, 0.52 mmol, 2 equiv.) were added at 0 °C to the solution. The reaction mixture was warmed up to room temperature and stirred overnight. After filtration of the precipitated urea, solvent was evaporated, and the hybrid **14** was

purified via column chromatography (SiO₂, Hexane/EtOAc 2:8, R_f : 0.2), 70%, white crystalline.

¹H NMR (300 MHz, CDCl₃) δ : 0.73 (d, J = 7.1 Hz, 3H), 0.92 (d, J = 5.8 Hz, 3H), 1.18 – 1.24 (m, 4H), 1.31 (s, 3H), 1.49 – 1.64 (m, 3H), 1.79 – 2.00 (m, 2H), 2.25 – 2.35 (m, 2H), 2.45 – 2.57 (m, 1H), 2.67 – 2.73 (m, 4H), 3.57 – 3.62 (m, 2H), 4.45 (t, J = 5.1 Hz, 2H), 5.14 (s, 1H), 5.62 (d, J = 9.9 Hz, 1H), 5.92 (brs, 1H), 6.37 (d, J = 5.5 Hz, 1H), 7.41 (dd, J = 2.2 Hz, 1H), 7.90 (d, J = 9.0 Hz, 1H), 7.96 (d, J = 2.1 Hz, 1H), 8.49 (d, J = 5.5 Hz, 1H) ppm. ¹³C (75 MHz, CDCl₃) δ : 11.43, 19.60, 21.25, 24.00, 25.25, 28.75, 28.94, 31.12, 33.50, 35.69, 36.66, 41.74, 44.55, 50.97, 61.78, 79.52, 90.96, 91.91, 98.35, 103.91, 116.98, 121.69, 124.76, 127.94, 134.46, 148.69, 149.24, 151.38, 171.03, 171.61 ppm. HRMS (ESI+) m/z calculated for C₃₀H₃₈ClN₂O₈

[M+H]⁺: 589.2311; found: 589.2323. Elemental analysis; calculated for C₃₀H₃₇ClN₂O₈ C: 61.17 H: 6.33 N: 4.76 found: C: 60.75 H: 6.46 N: 4.50.

Hybrid 15: Artesunic acid (100 mg, 0.26 mmol, 1 equiv.) was dissolved in dry CH_2Cl_2 . The coupling agent EDCI (40 mg, 0.26 mmol, 1 equiv.) which was used to activate the carboxyl of artesunic acid, was added at 0 °C. DMAP (32 mg, 0.26 mmol, 1 equiv.) and 7-chloroquinoline derivative **36** (115 mg, 0.52 mmol, 2 equiv.) were added subsequently. The reaction mixture was warm up to room temperature and stirred overnight. The reaction was worked up with

water (25 mL) and extracted with CH_2Cl_2 (25 mL x 3). The combined CH_2Cl_2 phase was evaporated and the hybrid **15** was isolated via column chromatography (SiO₂, $CH_2Cl_2/MeOH$ 15:1, R_f : 0.2), 61%, white solid.

¹H NMR (300 MHz, CDCl₃) δ : 0.73 (d, J = 7.1 Hz, 3H), 0.85 – 0.97 (m, 5H), 1.34 (s, 3H), 1.49 – 1.56 (m, 1H), 1.62 – 1.67 (m, 2H), 1.80 – 1.87 (m, 1H), 1.93 – 1.99 (m, 1H), 2.22 – 2.34 (m, 1H), 2.43 – 2.65 (m, 6H), 2.75 – 2.79 (m, 2H), 3.39 – 3.76 (m, 4H), 4.96 (s, 1H), 5.59 (d, J = 9.9 Hz, 1H), 6.30 (d, J = 5.7 Hz, 1H), 6.90 (d, J = 6.1 Hz, 2H), 7.39 (dd, J = 8.9, 2.2 Hz, 1H), 7.93 (s, 1H), 7.96 (s, 1H), 8.42 (d, J = 5.6 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 11.41, 13.60, 19.59, 21.33, 22.15, 23.99, 25.31, 27.76, 30.22, 30.99, 31.08, 31.23, 33.48, 35.63, 36.65, 37.91, 42.61, 44.01, 44.55, 50.87, 79.47, 90.84, 92.04, 97.75, 103.93, 116.56, 122.18, 125.23, 171.58, 173.25 ppm. HRMS (ESI+) m/z calculated for C₃₀H₃₉ClN₃O₇ C: 61.27 H: 6.51 N: 7.15 found: 588.2462. Elemental analysis; calculated for C₃₀H₃₈ClN₃O₇ C: 61.27 H: 6.51 N: 7.15 found: C: 61.40 H: 6.89 N: 6.86.

Hybrid 16: Artesunic acid (66 mg, 0.172 mmol, 1 equiv.) was dissolved in dry CH_2Cl_2 . The coupling agent EDCI (40 mg, 0.26 mmol, 1 equiv.) which was used to activate the carboxylic acid of artesunic acid, was added at 0 °C. DMAP (32 mg, 0.26 mmol, 1 equiv.) and 7-chloroquinoline derivative **37** (99 mg, 0.344 mmol, 2 equiv.) were added subsequently. The reaction mixture was warm up to room temperature and stirred overnight. The reaction was worked

up with water (25 mL) and extracted with CH_2Cl_2 (25 mL x 3). The combined CH_2Cl_2 fraction was evaporated and the hybrid **16** was isolated via column chromatography (SiO₂, CH_2Cl_2 /MeOH 10:2), 72%, white solid.

¹H NMR (300 MHz, CDCl₃) δ : 8.43 (d, J = 5.8 Hz, 1H), 8.06 (s, 1H), 7.79 (d, J = 9.0 Hz, 1H), 7.52 (brs, H), 7.44 (dd, J = 8.9, 2.2 Hz, 1H), 6.33 (d, J = 5.8 Hz, 1H), 5.68 (d, J = 9.8 Hz, 1H), 5.34 (s, 1H), 3.85 (t, J = 5.3 Hz, 2H), 3.60 – 3.47 (m, 4H), 2.85 – 2.66 (m, 5H), 2.57 – 2.47 (m, 2H), 2.40 – 2.27 (m, 4H), 2.07 (t, J = 2.6 Hz, 1H), 2.06 – 1.99 (m, 1H), 1.91 – 1.84 (m, 3H), 1.71 – 1.46 (m, 4H), 1.41 (s, 3H), 1.02 – 1.98 (m, 1H), 0.96 (d, J = 5.8 Hz, 3H), 0.76 (d, J = 7.1Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ : 174.76, 171.57, 136.47, 126.40, 122.82, 116.80, 104.60, 97.85, 92.33, 91.60, 82.43, 80.25, 70.40, 51.67, 47.84, 47.41, 45.62, 45.27, 44.35, 37.39, 36.36, 34.15, 31.96, 31.73, 29.77, 27.97, 27.43, 26.10, 24.70, 22.80, 22.07, 20.34, 15.93, 14.27, 12.12 ppm. HRMS (ESI+) m/z calculated for C₃₅H₄₅ClN₃O₇ [M+H]⁺: 654.2941; found: 654.2950. Elemental analysis; calculated for C₃₅H₄₄ClN₃O₇ C: 64.26 H: 6.78 N: 6.42 found: C: 63.99 H: 7.00 N: 6.05.

Hybrid 17: To a stirred solution of hybrid **14** (589.1 mg, 1.00 mmol) in CH₂Cl₂ (20 mL) *hept*-6-ynoyl chloride (289.2 mg, 2.00 equiv.) and Et₃N (0.42 mL, 3.00 equiv.) was added at 0 °C. The reaction mixture was warmed to room temperature and stirred for a further 18 h. The reaction was poured into an aqueous NaHCO₃ solution and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with

brine, dried over MgSO₄ and concentrated. The crude residue was purified by column chromatography (*n*-hexane/EtOAc: 2/3) to afford the hybrid **17** as a white solid (425.3 mg, 61%).

¹H NMR (600 MHz, CDCl₃) (dr: 1.0/1.0) δ = 8.86 (d, J = 4.5 Hz, 1H), 8.80 - 8.79 (d, J = 9.2) Hz, 1H), 8.19 - 8.17 (d, J = 9.2 Hz, 1H), 8.08 - 8.09 (d, J = 2.2 Hz, 1H), 8.07 - 8.06 (d, J = 2.2Hz, 2H), 7.53 - 7.51 (m, 2H), 7.50 - 7.48 (m, 2H), 6.66 (t, J = 5.8 Hz, 1H), 6.37 (t, J = 5.8 Hz, 1H), 5.46 (d, *J* = 9.9 Hz, 1H), 5.42 (d, *J* = 9.9 Hz, 1H), 5.00 (s, 1H), 4.55 (s, 1H), 4.38 (ddd, *J* = 11.0, 7.7, 3.1 Hz, 1H), 4.25 - 4.20 (m, 2H), 4.16 (dd, J = 8.5, 6.4 Hz, 1H), 4.11 - 4.01 (m, 3H), 3.50 – 3.36 (m, 3H), 3.26 – 3.21 (m, 1H), 2.69 – 2.64 (m, 1H), 2.55 – .41 (m, 7H), 2.36 – 2.18 (m, 9H), 2.06 – 2.00 (m, 3H), 1.92 (t, J = 2.6 Hz, 1H), 1.91 (t, J = 2.6 Hz, 1H), 1.88 – 1.60 (m, 10H), 1.58 – 1.42 (m, 3H), 1.28 – 1.15 (m, 7H), 1.08 (s, 3H), 1.07 – 0.97 (m, 2H), 0.95 – 0.84 (m, 10H), 0.74 (d, J = 7.1 Hz, 3H), 0.64 (d, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) $(dr: 1.0/1.0) \delta = 171.6, 171.5, 171.4, 171.3, 171.0, 171.0, 151.4, 151.3, 148.9, 148.8, 147.1, 171.3, 171.0, 170.0, 170$ 145.4, 134.9, 134.9, 129.2, 129.1, 127.5, 127.3, 125.5, 125.3, 124.8, 124.6, 120.0, 119.7, 104.3, 104.1, 92.3, 92.2, 91.3, 91.3, 83.9, 83.6, 79.9, 79.8, 69.0, 68.8, 62.8, 62.2, 51.4, 51.2, 47.8, 46.7, 45.0, 44.8, 39.0, 38.9, 37.1, 37.0, 36.1, 36.1, 33.9, 33.9, 32.6, 31.8, 31.5, 31.3, 29.4, 29.4, 29.3, 29.2, 26.7, 26.6, 25.7, 25.4, 24.4, 24.2, 21.9, 21.9, 20.1, 20.0, 18.3, 18.1, 12.0, 11.9. MS (ESI) m/z (relative intensity) 697 (100) $[M+H]^+$. HRMS (ESI+) m/z calculated for C₃₇H₄₆³⁵ClN₂O₉ [M+H]⁺: 697.2886, found: 697.2879. Elemental analysis; calculated for C₃₇H₄₅ClN₂O₉: C, 63.74; H, 6.51; N, 4.02; Found: C, 63.68; H, 6.62; N, 4.01.

3. Stability experiments

Thermal stability: The thermal stability test of hybrids **1**, **4**, **7**, **9**, **10**, **13**, and **14**, was performed in DMSO-d₆ at 60 °C for 60 h, and their stability was confirmed via ¹H and ¹³C NMR spectroscopy. Decomposition of the hybrids was not observed, showing that hybrids are highly thermally stabile. (See following pages, the selected NMR spectra). **Hydrolytic stability:** The hydrolytic stability of the hybrid **14** was observed in hydrochloric acid (nonenzymatic simulated gastric fluid, pH 1-2) and phosphate buffer (nonenzymatic simulated intestinal fluid, pH 6.8) for 84 h. The sample was extracted from solution with dichloromethane and measured via ¹H NMR at 400 MHz. The results showed that the ester derivative (hybrid **14**) remained stable in simulated intestinal fluids for 84 h. In simulated gastric fluid the hybrid **14** hydrolyzes to alcohol and acid. The stability of hybrid **14** in the acetate buffer at pH 5 and 37 °C for 24 h was also confirmed via ¹H NMR that hybrid **14** remain stable. **Enzymatic stability:** Even though the ester bonds known to be hydrolyze to acid and alcohol by carboxyl esterase, some of them can persist to esterase.^{4,5} We tested the hydrolysis ratio of ester bond containing hybrid **14** in the presence of carboxyl esterase (PLE) for 24 h at room temperature according to published protocol.⁶ The hybrid remained intact after 24 h according to ¹H NMR and ESI-MS measurements. Additionally, stability of hybrid **14** (5 mg) was tested in 1 mL human serum (HS) and 1 mL fetal bovine serum (FBS) at 37 °C for 24 h. The stability of the hybrid was confirmed via ¹H NMR (see following pages).

4. Biological methods

Cytotoxicity studies against P. falciparum 3D7 strains

P. falciparum culture. *P. falciparum* 3D7, Dd2, and K1 parasites were cultured in type A-positive human erythrocytes at a hematocrit of 5% in RPMI 1640 supplemented with 25 mM HEPES, 2 mM l-glutamine, 24 mM NaHCO₃, 0.1 mM hypoxanthine, 25 μ g/mL gentamycin and 0.5% albumax I. Cultures were incubated at 37 °C under controlled atmospheric conditions of 3% O₂, 5% CO₂, and 92% N₂ at 95% relative humidity.

In vitro antimalarial activity assay. Cultures used in cell proliferation assays were synchronized by sorbitol treatment.⁷ Concentrations to inhibit parasite growth by 50% (EC₅₀) were determined using the SYBR Green I malaria drug sensitivity assay.⁸ 50 µl aliquots of a cell suspension containing ring stages at a parasitemia of 0.2% and a hematocrit of 2% were added to the wells of 96-well microtiter plates. Plates were incubated for 72 h in the presence of different drug concentrations. Subsequently, cells of each well were lysed with 100 µl lysis buffer (40 mM Tris, pH 7.5, 10 mM EDTA, 0.02% saponin, 0.08% Triton X-100) containing 8.3 µM SYBR green. Plates were incubated for 1 h in the dark at room temperature under constant mixing before fluorescence (excitation wavelength 485 nm; emission wavelength 520 nm) was determined using a microtiter plate fluorescence reader (Victor X4; Perkin Elmer). Drugs were serially diluted 1:3 with initial drug concentrations being 243 nM for artesunic acid and its derivates, 81 nM for dihydroartemisinin and and 243 nM for its derivates and 243 nM for chloroquine when the strain 3D7 was used and 729 nM when Dd2 and K1 strains were examined. For compounds 3, 33, 36, and 18 the initial drug concentrations were 100 μ M, when the EC₅₀ values were above 100 nM and 243 nM for compound **36** when 3D7 was used as strain. Except for hybrid 3, each drug concentration was examined in triplicate and repeated at least three times. Uninfected erythrocytes (hematocrit 2%) and infected erythrocytes without drug served as controls and were investigated in parallel. Percent growth was calculated as described by Beez.9 Data were analyzed using the SigmaPlot (version 12.0; Hill function, three parameters) and Sigma Stat programs.

Efficacy of hybrid compounds in the experimental malaria

Drugs and dilutions: Artesunate was supplied by FarManguinhos (Rio de Janeiro, Brazil). All drugs were dissolved in propylene glycol (Merck Millipore, Darmstadt, Germany) and then diluted in sterile saline to a final concentration of 2:1 (v/v) of propylene glycol:saline.

Parasite and animals: *P. berghei* expressing green fluorescent protein $(GFP)^{10}$ was kindly supplied by Prof. Antoniana Ursine Krettli (Fiocruz Minas/Brazil). Male Swiss Webster mice (18-22 g) were housed at Instituto Gonçalo Moniz (Brazil), maintained in sterilized cages under a controlled environment, receiving a rodent balanced diet and water *ad libitum*. All experiments were carried out in accordance with the recommendations of Ethical Issues Guidelines and were approved by the Animal Ethics Committee of Instituto Gonçalo Moniz (protocol number 016/2017).

Suppressive activity (Peters test): Mice were infected by intraperitoneal injection of 1×10^6 GFP-*P. berghei*-infected erythrocytes per mouse and randomly divided into groups of n=5. Treatment was initiated 3 h post infection and given once a day for four consecutive days by subcutaneous injection of 100 µL or orally by gavage of a 200 µL volume. Untreated infected mice receiving propylene glycol /saline (2:1 v/v) were used as negative control (vehicle). At days 5-24 post-infection, two drops of blood collected from the tail were diluted in 200 µL of saline containing 5 U/mL of heparin sulphate. Parasitemia was determined in a flow cytometer (BD LSRFortessa) using at least 100`000 events and parasites were gated at FTIC channel. Animal survival was observed daily until day 41 post-infection. The % of parasitemia reduction was calculated as follow: [mean vehicle group – mean treated group/mean vehicle group] × 100. Experiments were independent repeated for treatment which inhibited > 70% the parasitemia.

Curative activity (Thompson test): Mice were infected by intraperitoneal injection of 1×10^6 GFP-*P. berghei*-infected erythrocytes per mouse. At 4 dpi, mice which reached parasitemia 2-3% were randomly divided into groups of n = 6 and treatment was initiated 5 dpi and given once a day for three consecutive days by subcutaneous injection of 100 µL. Untreated infected mice receiving propylene glycol /saline (2:1 v/v) were used as negative control (vehicle). At days 11-24 post-infection, two drops of blood collected from the tail were used for parasitemia determination and animal survival were determined as described above.

Inhibition of β **-hematin formation**: In a 96-well U-bottom microplate, 100 µL of a 0.5 mg/mL solution of heme dissolved in 0.2 NaOH solution was distributed. Compounds were dissolved in 20% DMSO in saline and a 50 µL of different concentrations of compounds at range of 2-0.5 mM was added in triplicate. After, 25 µL of acetic acid and 75 µL of sodium acetate buffer (3 M) were added and the plate incubated at 37°C for 24 h. After cooling at room temperature, plate was centrifuged at 3300 g for 25 min, washed with water. Pellet was resuspended with 200 µL of DMSO, centrifuged and the remaining pellet was dissolved in 150 µL of 0.1 M NaOH solution and the plate was read for spectroscopic quantitation at 405 nm. Three independent experiments were performed, IC₅₀ values were calculated in Prism fitting into a non-linear regression equation.

Hemozoin analyses: Mice were infected by intraperitoneal injection of 2×106 GFP-*P*. *berghei*-infected erythrocytes per mouse. When mice reached a parasitemia of 8-10 %, they were randomly divided into groups of n=3 and received treatment once a day by oral gavage of 105 µmol/kg body weight of hybrid **14** and chloroquine (210 µmol/kg body weight). Untreated

infected mice receiving propylene glycol /saline (2:1 v/v) and untreated uninfected mice were used as controls (vehicles). Before and after 24 h, two drops of blood collected from the tail were used for parasitemia determination by flow cytometry as described above. After 24 h of treatment, mice received anesthesia, blood was gently aspirated in the brachial plexus using a heparin coated tip and transferred into heparinized vials on ice. The blood samples were centrifuged at 2500 rpm at 4 °C for 15 min. to remove plasma. White cells were removed by filtration into a cellulose column pad and the pellets resulting from red cells were stored at -80°C until analysis. Total hemogloblin, free heme and hemozoin of each sample were quantified following a protocol described by Egan et al.¹¹

Figure S1. Parasitemia (A, C) and animal survival (B, D) of *P. berghei*-infected mice in the suppressive Peters test (treatment initiated 3 h post-infection). Compounds were given at dose of 105 μ mol/kg and the administration route is indicated in the legend caption. Parasitemia and animal survival were measured using an *n*=5/group, unless indicated. Panels C and D are the results of independent experiment repetition for hybrid **14** given by oral administration. Error bars indicate standard deviation. *p<0.05, ***p<0.01 (two-way ANOVA) versus vehicle group. #p<0.01, ##p<0.005 (Log-rank, Mantel-Cox test) versus vehicle. ARE = Artesunate, given subcutaneously. DPI = days post-infection.

Figure S2. Parasitemia (A) and animal survival (B) of *P. berghei*-infected mice in the suppressive Peters test (treatment initiated 3 h post-infection). Hybrid **12** or ARE were given subcutaneously (s.c.) at dose of 105 μ mol/kg. Parasitemia and animal survival were measured using an *n*=5/group. Error bars indicate standard deviation. *p<0.05, ***p<0.01 (two-way ANOVA) versus vehicle group. ##p<0.005 (Log-rank, Mantel-Cox test) versus vehicle. ARE = Artesunate, given subcutaneously. DPI = days post-infection.

Figure S3. Parasitemia (A) and animal survival (B) of *P. berghei*-infected mice in the suppressive Peters test (treatment initiated 3 h post-infection). Compounds **14** were given subcutaneously (s.c.) at indicated dose. Parasitemia and animal survival were measured using an n=5/group. Error bars indicate standard deviation. *p<0.05, ***p<0.01 (two-way ANOVA) versus vehicle group. ##p<0.005 (Log-rank, Mantel-Cox test) versus vehicle. DPI = days post-infection.

Figure S4. Curve of parasitemia (A), recrudescence of parasitemia (B) and summary of activities (Table S1) in *P. berghei*-infected mice treated with hybrid **14** or Artesunate (ARE) in intercalated regime at oral dose of 105 µmol/kg against *P. berghei*-infected mice.

Table S1. Ra	w values	of Peters	test.
--------------	----------	-----------	-------

Compounds	% Parasitemia	Median survival time (days)	Parasite recru	descence (%) ^b
	innibition *		Day 12	Day 16
Vehicle	-,-	20	-	-
ARE	84.9±6.3	23	80	100
Hybrid 14	74.0±4.1	30	40	60

^a Values are mean \pm standard deviation and were taken from 10 dpi. ^b Percentage of mice with detectable parasites (parasitemia > 2 %). Experiment using *n*=5/group. Oral administration by gavage after 3 and 48 h post-infection. Parasitemia was measured at indicated day using an *n*=5/group. Error bars indicate standard deviation. *p<0.05, ***p<0.01 (two-way ANOVA) versus vehicle group. In panel B, dashed line indicates 2 % parasitemia value cutoff.

Table S2. Row values of animal survival analysis of *P. berghei*-infected mice in the curative Thompson test (treatment initiated 5 dpi). Compounds were given subcutaneously at daily dose of 140 μ mol/kg for three consecutive days. Animal survival were measured using an *n*=6/group.

Compounds	Median survival	Number of animal alive	Percentage of cured
	time (days)	(41 dpi)	mice
Vehicle	19	1/6*	0
ARE	33	3/6**	33.3
14	>40	6/6	100

*Mouse presented blood smear positive for parasites (parasitemia of 20 %) in the 41 dpi. **One of three mice presented blood smear positive for parasites in the 41 dpi.

Compounds	IC ₅₀ ± standard deviation (mM)
Chloroquine diphosphate	0.89±0.21
Primaquine hydrochloride	>2.0
Artesunate	>2.0 (23.4±5.4 % inhibition at 2.0 mM)
14	0.56±0.15

Table S3. Inhibition of heme polymerization into β -hematin, determined 24 h after drug incubation.

Parasite labelling for target identification.

P. falciparum parasites (unsynchronized) were cultured with 1.25% haematocrit in 150 mm plate. Parasite were enriched and isolated as previously described.¹² Parasite proteins were extracted by suspending the pellets in 500 μ L 0.16% SDS in PBS with protease inhibitors. Protein concentration of the lysates was quantified with BCA protein quantitation kit. About 500 μ g of protein was treated with streptavidin beads attached by hybrid **16** and **17** for 4 h at room temperature to capture the target proteins. After washing with 0.1% SDS, and PBS, the beads were suspended in 100 μ l triethylammonium bicarbonate (25 mM), then added 2 μ l TCEP (100mM stock solution). The beads were heated at 65 °C for 1 h, subsequently1 μ l MMTS (200mM stock solution) was added to react for 15 min at room temperature. Once reduction and alkylation performed, trypsin was added into the samples and incubated at 37 °C overnight. The digested peptides were isolated from beads via a filter-spin column (GE Healthcare). Liquid chromatography–mass spectrometry/mass spectrometry method was described previously.¹²

Filtering PAINS Elements among Hybrid Compounds 1 – 17 (Calculated)

All seventeen hybrid compounds (1 - 17) were screened for pan assay interference compounds (PAINS) by FAF-Drugs4 filtering tool (server available at http://fafdrugs4.mti.univ-paris-diderot.fr).¹³ All hybrids passed the PAINS filters (See following pages).

5. ¹H and ¹³C NMR spectra and mass spectra of the compounds

¹H NMR spectrum of **18** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

¹³C NMR spectrum of **18** recorded on a Bruker Avance spectrometer (75 MHz, CDCl₃):

¹H NMR spectrum of **20** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

¹³C NMR spectrum of **20** recorded on a Bruker Avance spectrometer (75 MHz, CDCl₃):

¹³C NMR spectrum of **21** recorded on a Bruker Avance spectrometer (75 MHz, CDCl₃):

¹H NMR spectrum of **22** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

¹³C NMR spectrum of hybrid **2** recorded on a Bruker Avance spectrometer (75 MHz, CDCl₃):

¹H NMR spectrum of **4,7-dichloroquinoline** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

ESI mass spectrum of hybrid 36 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

¹H NMR spectrum of **37** recorded on a Bruker Avance spectrometer (400 MHz, CDCl₃):

ESI mass spectrum of **37** recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

¹H NMR spectrum of **34** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

¹H NMR spectrum of **27** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 f1 (ppm)

FTIR spectrum of 27 on a Agilent Resolution spectrometer

Agilent Resolutions Pro

¹H NMR spectrum of **23** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

¹³C NMR spectrum of **23** recorded on a Bruker Avance spectrometer (100 MHz, CDCl₃):

ESI mass spectrum of 24 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

¹H NMR spectrum of **25** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

¹³C NMR spectrum of **25** recorded on a Bruker Avance spectrometer (100 MHz, CDCl₃):

ESI mass spectrum of 25 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

ESI mass spectrum of 26 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

¹H NMR spectrum of hybrid 4 recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

ESI mass spectrum of hybrid 4 recorded on a Bruker micrOTOF II focus TOF MS spectrometer:

¹H NMR spectrum of hybrid **5** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

¹³C NMR spectrum of hybrid **5** recorded on a Bruker Avance spectrometer (100 MHz, CDCl₃):

ESI mass spectrum of hybrid 5 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

¹H NMR spectrum of hybrid **6** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

¹H NMR spectrum of hybrid 7 recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

ESI mass spectrum of hybrid 7 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

¹H NMR spectrum of **28** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

¹³C NMR spectrum of **28** recorded on a Bruker Avance spectrometer (75 MHz, CDCl₃):

¹H NMR spectrum of **29** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

¹³C NMR spectrum of **29** recorded on a Bruker Avance spectrometer (75 MHz, CDCl₃):

ESI mass spectrum of Compound 29 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

¹H NMR spectrum of **30** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

ESI mass spectrum of Compound **30** recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

¹H NMR spectrum of **31** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

¹³C NMR spectrum of **31** recorded on a Bruker Avance spectrometer (75 MHz, CDCl₃):

ESI mass spectrum of Compound 31 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

¹H NMR spectrum of **32** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

ESI mass spectrum of Compound 32 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

¹H NMR spectrum of hybrid **8** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

ESI mass spectrum of hybrid 8 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

¹H NMR spectrum of hybrid **9** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

¹³C NMR spectrum of hybrid **9** recorded on a Bruker Avance spectrometer (75 MHz, CDCl₃):

ESI mass spectrum of hybrid 9 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

¹H NMR spectrum of hybrid **10** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

¹³C NMR spectrum of hybrid **10** recorded on a Bruker Avance spectrometer (100 MHz, DMSO-d₆):

ESI mass spectrum of hybrid 10 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

¹³C NMR spectrum of hybrid **11** recorded on a Bruker Avance spectrometer (75 MHz, CDCl₃):

ESI mass spectrum of hybrid 11 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

 Meas. m/z # Ion Formula
 m/z err [ppm] Mean err [ppm] rdb N-Rule e Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 577.21751 1 C29H35CIN4NaO5 577.21882
 2.26
 918.00 13.5
 ok even
 12.3
 17.2
 n.a.
 n.a.
 n.a.
 n.a.

¹H NMR spectrum of hybrid **12** recorded on a Bruker Avance spectrometer (300 MHz, CDCl₃):

¹³C NMR spectrum of hybrid **12** recorded on a Bruker Avance spectrometer (75 MHz, CDCl₃):

ESI mass spectrum of hybrid 12 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

¹³C NMR spectrum of **hybrid 13** recorded on a Bruker Avance spectrometer (100 MHz, CDCl₃):

EI mass spectrum of hybrid 13 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

¹H NMR spectrum of hybrid 14 recorded on a Bruker Avance spectrometer (400 MHz, CDCl₃):

¹³C NMR spectrum of hybrid 14 recorded on a Bruker Avance spectrometer (100 MHz, CDCl₃):

ESI mass spectrum of hybrid 14 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

 Meas. m/z # Ion Formula
 m/z err [ppm] Mean err [ppm] rdb N-Rule e
 Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 589.230489 1 C30H38CIN208 589.231120
 1.1
 1.1 12.5
 ok even
 6.8
 8.3
 n.a.
 n.a.
 n.a.
 n.a.

¹H NMR spectrum of **hybrid 15** recorded on a Bruker Avance spectrometer (400 MHz, CDCl₃):

ESI mass spectrum of hybrid 15 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

¹H NMR spectrum of **hybrid 16** recorded on a Bruker Avance spectrometer (400 MHz, CDCl₃):

¹³C NMR spectrum of **hybrid 16** recorded on a Bruker Avance spectrometer (125 MHz, CDCl₃):

ESI mass spectrum of hybrid 16 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

70

¹H NMR spectrum of **hybrid 17** recorded on a Bruker Avance spectrometer (600 MHz, CDCl3):

 $^{13}\mathrm{C}$ NMR spectrum of hybrid 17 recorded on a Bruker Avance spectrometer (125 MHz, CDCl₃):

171.63 171.54 171.54 171.13 17	1119.66 91.24 91.24 91.24 83.85 83.85 83.85 83.85 83.85 83.75 1.27 1.27 1.27 2.1.37 2.5.1.37 2.5.1.37 2.5.23 4.4.57 2.5.1.37 2.5.23 4.4.57 3.3.00 3.3.00 3.3.00 3.3.55 3.3.50 3.50	11,89 12,20

ESI mass spectrum of hybrid 17 recorded on a Bruker micrOTOF II focus TOF MS-spectrometer:

6. NMR spectra of the compounds after stability analysis:

¹H NMR spectrum of hybrid **13** recorded (400 MHz, DMSO-d₆) after heating 60 h at 60 °C:

¹H NMR spectrum of hybrid **14** recorded (400 MHz, DMSO-d₆) before heating 60 h at 60 °C:

¹³C NMR spectrum of hybrid 14 recorded (400 MHz, DMSO-d₆) before and after heating 60 h at 60 °C:

¹H NMR spectrum of hybrid **14** recorded (400 MHz, DMSO-d₆) after stirring in PBS 84 h at rt, in Fetal Bovine Serum 48 h at 37 °C, and in Human Serum 48 h at 37 °C:

¹H NMR spectrum of hybrid **14** recorded (400 MHz, DMSO-d₆) after stirring in Acetate buffer pH 5, 24 h at 37 °C:

¹H NMR spectrum of hybrid **14** recorded (400 MHz, DMSO-d₆) after stirring in the presence of Carboxylesterase:

¹H NMR spectrum of hybrid **4** recorded (400 MHz, DMSO-d₆) after heating 60 h at 60 °C:

¹³C NMR spectrum of hybrid 7 recorded (400 MHz, DMSO-d₆) after heating 60 h at 60 °C:

¹H NMR spectrum of hybrid **9** recorded (400 MHz, DMSO-d₆) after heating 60 h at 60 °C:

¹H NMR spectrum of hybrid **10** recorded (400 MHz, DMSO-d₆) after heating 60 h at 60 °C:

¹³C NMR spectrum of hybrid **10** recorded (400 MHz, DMSO-d₆) after heating 60 h at 60 °C:

¹³C NMR spectrum of hybrid **11** recorded (400 MHz, DMSO-d₆) before heating 60 h at 60 °C:

¹H NMR spectrum of hybrid 1 recorded (400 MHz, DMSO-d₆) after heating 60 h at 60 °C:

7. Filtering PAINS Elements among Hybrid Compounds 1 - 17

Hybrids	Smiles
Hybrid 1	CCCCc1nc(C)c2ccc(cc2c1CCCC)-c1cn(CCOC(=0)CCC(=0)0[C@@H]20[C@@H]30[C@@]4(C)CCC5[C@H](C)CCC([C@H]2C)[C@@]35004)nn1
Hybrid 2	C[C@@H]1CCC2[C@@H](C)[C@H](OC(=0)CCC(=0)OCCn3cc(nn3)-c3ccc4c(C)nc(-c5ccccc5)c(-c5ccccc5)c4c3)0[C@@H]30[C@@]4(C)CCC1[C@@]23OO4
Hybrid 3	C[C@@H]1CCC2C(C)[C@H](OC(=0)CCC(=0)OCCn3cc(nn3)-c3ccc4c(C)nc(-c5ccccc5)c(-c5ccccc5)c4c3)O[C@@H]3O[C@]4(C)O[C@]23[C@H]1C[C@H]4O
Hybrid 4	C[C@@H]1CCC2[C@@H](C)[C@H](OC(=0)CCC(=0)OCc3cn(nn3)-c3ccnc4cc(Cl)ccc34)O[C@@H]30[C@@]4(C)CCC1[C@@]23004
Hybrid 5	C[C@@H]1CCC2[C@@H](C)[C@H](OC(=0)CCC(=0)OCCc3cn(nn3)-c3ccnc4cc(Cl)ccc34)O[C@@H]3O[C@@]4(C)CCC1[C@@]23OO4
Hybrid 6	C[C@@H]1CCC2[C@@H](C)[C@H](OC(=0)CCC(=0)OCCCc3cn(nn3)-c3ccnc4cc(Cl)ccc34)O[C@@H]30[C@@]4(C)CCC1[C@@]23004
Hybrid 7	C[C@@H]1CCC2[C@@H](C)[C@H](OC(=0)CCC(=0)OCCCCc3cn(nn3)-c3ccnc4cc(Cl)ccc34)O[C@@H]3O[C@@]4(C)CCC1[C@@]23OO4
Hybrid 8	C[C@@H]1CCC2[C@@H](C)[C@@H](OCc3cn(nn3)-c3ccnc4cc(Cl)ccc34)O[C@@H]3O[C@@]4(C)CCC1[C@@]23OO4
Hybrid 9	C[C@@H]1CCC2[C@@H](C)[C@H](OCc3cn(nn3)-c3ccnc4cc(Cl)ccc34)O[C@@H]30[C@@]4(C)CCC1[C@@]23004
Hybrid 10	C[C@@H]1CCC2[C@@H](C)[C@@H](OCCc3cn(nn3)-c3ccnc4cc(Cl)ccc34)0[C@@H]30[C@@]4(C)CCC1[C@@]23004
Hybrid 11	C[C@@H]1CCC2[C@@H](C)[C@@H](OCCCc3cn(nn3)-c3ccnc4cc(Cl)ccc34)O[C@@H]3O[C@@]4(C)CCC1[C@@]23OO4
Hybrid 12	C[C@@H]1CCC2[C@@H](C)[C@@H](OCCCCc3cn(nn3)-c3ccnc4cc(Cl)ccc34)O[C@@H]3O[C@@]4(C)CCC1[C@@]23OO4
Hybrid 13	C[C@@H]1CCC2[C@@H](C)[C@H](OC(=0)CCC(=0)OCCOc3ccnc4cc(Cl)ccc34)O[C@@H3O[C@@]4(C)CCC1[C@@]23004
Hybrid 14	C[C@@H]1CCC2[C@@H](C)[C@H](OC(=0)CCC(=0)OCCOc3ccnc4cc(Cl)ccc34)O[C@@H]3O[C@@]4(C)CCC1[C@@]23OO5
Hybrid 15	C[C@@H]1CCC2[C@@H](C)[C@H](OC(=0)CCC(=0)OCCOc3ccnc4cc(Cl)ccc34)O[C@@H3O[C@@]4(C)CCC1[C@@]23006
Hybrid 16	C[C@@H]1CCC2[C@@H](C)[C@H](OC(=0)CCC(=0)N(CCCC#C)CCNc3ccnc4cc(Cl)ccc34)0[C@@H]30[C@@]4(C)CCC1[C@@]23004
Hybrid 17	CC1CCC2[C@@H](C)[C@H](OC(=0)CCC(=0)OCCNC(=0)C(CCCC#C)c3ccnc4cc(Cl)ccc34)O[C@@H]30[C@@]4(C)CCC1[C@@]23004

Hybrids	MW	logP	logD	logSw	tPSA	RotatableB	RigidB	Flexibility	HBD	HBA	HBD_HBA	Rings	MaxSizeRing	NumCharges	TotalCharge	HeavyAtoms	CarbonAtoms
Hybrid 1	732.91	8.1	8.79	-8.53	133.12	16	37	0.3	0	12	12	3	19	0	0	53	41
Hybrid 2	772.88	7.77	8.95	-8.93	133.12	12	49	0.2	0	12	12	5	19	0	0	57	45
Hybrid 3	772.88	6.75	7.68	-8.28	144.12	12	48	0.2	1	12	13	5	16	0	0	57	45
Hybrid 4	627.08	4.7	5.75	-6.24	133.12	9	37	0.2	0	12	12	3	19	0	0	44	31
Hybrid 5	641.11	5.16	5.98	-6.54	133.12	10	37	0.21	0	12	12	3	19	0	0	45	32
Hybrid 6	655.14	5.52	6.27	-6.78	133.12	11	37	0.23	0	12	12	3	19	0	0	46	33
Hybrid 7	669.16	5.87	6.72	-7.02	133.12	12	37	0.24	0	12	12	3	19	0	0	47	34
Hybrid 8	527.01	4.9	5.75	-6.09	89.75	4	35	0.1	0	9	9	3	19	0	0	37	27
Hybrid 9	527.01	4.9	5.75	-6.09	89.75	4	35	0.1	0	9	9	3	19	0	0	37	27
Hybrid 10	541.04	5.84	5.98	-6.7	89.75	5	35	0.13	0	9	9	3	19	0	0	38	28
Hybrid 11	555.06	6.19	6.27	-6.94	89.75	6	35	0.15	0	9	9	3	19	0	0	39	29
Hybrid 12	569.09	6.55	6.71	-7.18	89.75	7	35	0.17	0	9	9	3	19	0	0	40	30
Hybrid 13	590.06	4.77	5.89	-5.94	111.64	10	32	0.24	0	10	10	2	19	0	0	41	30
Hybrid 14	589.08	4.78	5.24	-5.94	114.44	10	32	0.24	1	10	11	2	19	0	0	41	30
Hybrid 15	588.09	4.21	4.32	-5.64	117.24	9	33	0.21	2	10	12	2	19	0	0	41	30
Hybrid 16	654.19	5.32	5.5	-6.54	108.45	12	34	0.26	1	10	11	2	19	0	0	46	35
Hybrid 17	697.21	6.16	6.62	-7.2	131.51	14	35	0.29	1	11	12	2	19	0	0	49	37

Hybrids	HeteroAtoms	ratioH/C	Lipinski_Violation	Solubility(mg/l)	SolubilityForecastIndex	Oral_Bioavailability_VEBER	Oral_Bioavailability_EGAN	TrafficLights	4_400
Hybrid 1	12	0.29	3	144.3	Reduced Solubility	Low	Low	7	bad
Hybrid 2	12	0.27	3	102.78	Reduced Solubility	Low	Low	7	bad
Hybrid 3	12	0.27	3	195.43	Reduced Solubility	Low	Low	8	bad
Hybrid 4	13	0.42	2	1228.32	Reduced Solubility	Good	Good	5	bad
Hybrid 5	13	0.41	3	925.1	Reduced Solubility	Low	Low	6	bad
Hybrid 6	13	0.39	3	741.41	Reduced Solubility	Low	Low	7	bad
Hybrid 7	13	0.38	3	597.49	Reduced Solubility	Low	Low	7	bad
Hybrid 8	10	0.37	1	1189.48	Reduced Solubility	Good	Good	3	bad
Hybrid 9	10	0.37	1	1189.48	Reduced Solubility	Good	Good	3	bad
Hybrid 10	10	0.36	2	665.99	Reduced Solubility	Good	Good	4	bad
Hybrid 11	10	0.34	2	540.09	Reduced Solubility	Good	Good	4	bad
Hybrid 12	10	0.33	2	434.75	Reduced Solubility	Good	Good	4	bad
Hybrid 13	11	0.37	1	1553.71	Reduced Solubility	Good	Good	4	bad
Hybrid 14	11	0.37	1	1552.72	Reduced Solubility	Good	Good	4	bad
Hybrid 15	11	0.37	1	2093.3	Reduced Solubility	Good	Good	4	bad
Hybrid 16	11	0.31	2	947.04	Reduced Solubility	Good	Good	6	bad
Hybrid 17	12	0.32	3	521.44	Reduced Solubility	Low	Low	7	bad

Hybrids	3_75	Phospholipidosis	Fsp3	StereoCenters	PPI_Friendly	PAINS_Filter_A	PAINS_Filter_B	PAINS_Filter_C	Result	Alert
Hybrid 1	warning	NonInducer	0.68	8	Not Computed	0	0	0	Accepted	
Hybrid 2	warning	NonInducer	0.44	8	Not Computed	0	0	0	Accepted	
Hybrid 3	warning	NonInducer	0.44	9	Not Computed	0	0	0	Accepted	
Hybrid 4	warning	NonInducer	0.58	8	Not Computed	0	0	0	Accepted	
Hybrid 5	warning	NonInducer	0.59	8	Not Computed	0	0	0	Accepted	
Hybrid 6	warning	NonInducer	0.61	8	Not Computed	0	0	0	Accepted	
Hybrid 7	warning	NonInducer	0.62	8	Not Computed	0	0	0	Accepted	
Hybrid 8	warning	NonInducer	0.59	8	Not Computed	0	0	0	Accepted	
Hybrid 9	warning	NonInducer	0.59	8	Not Computed	0	0	0	Accepted	
Hybrid 10	warning	NonInducer	0.61	8	Not Computed	0	0	0	Accepted	
Hybrid 11	warning	NonInducer	0.62	8	Not Computed	0	0	0	Accepted	
Hybrid 12	warning	NonInducer	0.63	8	Not Computed	0	0	0	Accepted	
Hybrid 13	warning	NonInducer	0.63	8	Not Computed	0	0	0	Accepted	
Hybrid 14	warning	NonInducer	0.63	8	Not Computed	0	0	0	Accepted	
Hybrid 15	warning	NonInducer	0.63	8	Not Computed	0	0	0	Accepted	
Hybrid 16	warning	NonInducer	0.63	8	Not Computed	0	0	0	Accepted	
Hybrid 17	warning	NonInducer	0.62	9	Not Computed	0	0	0	Accepted	

8. References

- 1 Wang, H., Koeller, J., Liu, W. & Ackermann, L. Cobalt(III)-catalyzed C-H/N-O functionalizations: isohypsic access to isoquinolines. *Chem. Eur. J.* 21, 15525-15528 (2015).
- 2 De Souza, M. V., Pais, K. C., Kaiser, C. R., Peralta, M. A., de, L. F. M. & Lourenco, M. C. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives. *Bioorg Med Chem* 17, 1474-1480 (2009).
- Natarajan, J. K., Alumasa, J. N., Yearick, K., Ekoue-Kovi, K. A., Casabianca, L. B., de Dios, A. C., Wolf, C. & Roepe, P. D. 4-N-, 4-S-, and 4-O-chloroquine analogues: influence of side chain length and quinolyl nitrogen p K a on activity vs chloroquine resistant malaria. *J. Med. Chem.* 51, 3466-3479 (2008).
 Lavis, L. D. Ester bonds in prodrugs. *ACS Chem. Biol.* 3, 203-206 (2008).
- 5 Uludag, M. O., Ergun, B. C., Alkan, D. A., Ercan, N., Ozkan, G. Y. & Banoglu, E. Stable ester and amide conjugates of some NSAIDs as analgesic and antiinflammatory compounds with improved biological activity. *Turk J. Chem.* **35**, 427-439 (2011).
- 6 Perez, C., Daniel, K. B. & Cohen, S. M. Evaluating prodrug strategies for esterase-triggered release of alcohols. ChemMedChem 8, 1662-1667 (2013).
- Zambros, C. & Vanderberg, J. P. Synchronization of plasmodium falciparum erythrocytic stages in culture. *J Parasitol* 65, 418-420 (1979).
- 8 Smilkstein, M., Sriwilaijaroen, N., Kelly, J. X., Wilairat, P. & Riscoe, M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. *Antimicrob. Agents Chemother.* **48**, 1803-1806 (2004).
- 9 Beez, D., Sanchez, C. P., Stein, W. D. & Lanzer, M. Genetic predisposition favors the acquisition of stable artemisinin resistance in malaria parasites. Antimicrob. Agents Chemother. 55, 50-55 (2011).
- 10 Sanchez, B. A., Mota, M. M., Sultan, A. A. & Carvalho, L. H. Plasmodium berghei parasite transformed with green fluorescent protein for screening blood schizontocidal agents. *Int. J. Parasitol.* **34**, 485-490 (2004).
- 11 Combrinck, J. M., Mabotha, T. E., Ncokazi, K. K., Ambele, M. A., Taylor, D., Smith, P. J., Hoppe, H. C. & Egan, T. J. J. A. c. b. Insights into the role of heme in the mechanism of action of antimalarials. **8**, 133-137 (2012).
- 12 Wang, J., Zhang, C. J., Chia, W. N., Loh, C. C., Li, Z., Lee, Y. M., He, Y., Yuan, L. X., Lim, T. K., Liu, M., Liew, C. X., Lee, Y. Q., Zhang, J., Lu, N., Lim, C. T., Hua, Z. C., Liu, B., Shen, H. M., Tan, K. S. & Lin, Q. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. *Nat. Commun.* 6, 10111 (2015).
- 13 Lagorce, D., Bouslama, L., Becot, J., Miteva, M. A. & Villoutreix, B. O. FAF-Drugs4: free ADME-tox filtering computations for chemical biology and early stages drug discovery. *Bioinformatics* **33**, 3658-3660 (2017).