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Appendix

This appendix shows the mathematical description of the definition of multicollinearity and its diagnostics, which was not present-
ed in the main text. 

Multicollinearity

If two explanatory variables X1 and X2 have a linear relationship, as follows,

c1X1 + c2X2 = c0

⇔X1 = c0 − c2

c1
X2

⇔X2 = c0 − c1

c2
X1,

where c0, c1, and c2 are arbitrary constants, the relationship is called exact collinearity. If the relationship between more than two ex-
planatory variables (X1, X2, … , Xk, k > 2, k is a natural number) is or approximates

c1X1 + c2X2 + … + ckXk = c0,

where ck (k > 2, k is a natural number) is an arbitrary constant, multicollinearity occurs. Under multicollinearity, more than one ex-
planatory variable Xh is determined by the other explanatory variables as follows:
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Variance Inflation Factor

A multiple linear regression model with n sample observations of k explanatory variables (X1, X2, … , Xk) and a response variable (Y) 
is given by

Yi = β0 + β1Xi1 + β2Xi2 + , … , + βkXik + εi (i = 1,2, … , n)   εi ~ N(0, σ2),

where βj(j = 0,1,2, … , k) and εi are the regression coefficients and error, respectively. Each error (ε1, ε2, … , εn) is stochastically inde-
pendent and is normally distributed with a mean of 0 and a variance of σ2. The variance of βj [Var(βj)] is
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2 )()()()( L   is the sum of squares of the difference between each value of Xij 
and the mean of Xij (Xj) and Rj

2 is the coefficient of determination from the regression model [Xij = γ0 + k
l 1=∑   γlXil + ϵi (i = 1, 2, … , n;  l = 

1,2, … , k; l ≠ j)] with the response variable of Xij, the explanatory variables of Xil, the regression coefficients of γ0 and γl, and the error 

of ϵ i. Assuming that 2
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  and σ2 are constant, Var(βj) is solely dependent on 1
1 − Rj

2 and an increase in Rj
2 leads to an increase 

in Var(βj) and vice versa. Because 0 ≤ Rj
2 ≤ 1, Rj

2 = 0 minimizes Var(βj) while Rj
2  ≈ 1 makes Var(βj) infinite (Fig. 1). This means that the 

complete absence of multicollinearity (Rj
2 = 0) between explanatory variables minimizes the variance of the regression coefficient for 

an explanatory variable of interest, whereas exact multicollinearity (Rj
2 = 1) between them inflates the variance infinitely. Because of its 

significant effects on the variance of a regression coefficient, the term
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is called the variance inflation factor; its reciprocal is known as the tolerance.

The variance inflated by strong multicollinearity increases the standard error of the regression coefficient ( ))( jβVar   and widens 

the 95% confidence interval of a regression coefficient (βj), which is

βj ± t(n − k − 1; 0.025) ( ))( jβVar  ,

where t(n − k − 1; 0.025) is the critical t-statistic at 2.5% (= 100 − 95
2 %) level under the degree of freedom n − k − 1. The increase in the variance 

also results in a reduction in t-statistic
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for the hypothesis test (H0: βj = 0 versus H1: βj ≠ 0), which produces an insignificant result.

Condition Number and Condition Index

Each explanatory variable (Xij) from a multiple linear regression Yi = β0 + β1Xi1 + β2Xi2 + , … , + βkXik + εi (i = 1,2, … , n) can be stan-
dardized by dividing the difference between each of its values (Xij) and their mean (Xj) by the square root of the sum of squares of all 
the differences:
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Then, we obtain an n × k matrix (Z) of the standardized explanatory variables:
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By transposing Z, so that the rows become columns and vice versa, we obtain the k × n transposed matrix (ZT):
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The multiplication of ZT by Z produces a k × k square matrix. As shown below, the multiplications of each element from the ath row of 
ZT and the bth  column of Z yield the element from the bth  column of the ath row in ZT × Z:
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Each element of the square matrix is equivalent to a correlation coefficient (r) of two explanatory variables (Xih and Xij).

Z1hZ1j + Z2hZ2j + … + ZnhZnj
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Therefore, the matrix ZTZ can be expressed as follows:
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To calculate the eigenvalues of a square matrix, its determinant needs to be known. The determinant of a 2 × 2 matrix is
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The determinant of a 3 × 3 matrix is
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Using the above equations for the determinant of a square matrix, the eigenvalues (λ1, λ2) of the 2 × 2 correlation matrix can be ob-
tained:
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If generalized, the eigenvalues (λ1, λ2, … , λk) of the correlation matrix can be calculated.

0

100

010
001

21

22221

11211

=

⎟

⎟

⎟

⎟

⎠

⎞

⎜

⎜

⎜

⎜

⎝

⎛

×−

⎟

⎟

⎟

⎟

⎠

⎞

⎜

⎜

⎜

⎜

⎝

⎛

L

MOMM

L

L

L

MOMM

L

L

λ
rrr

rrr
rrr

kkkk

k

k

 

0

21

22221

11211

=

−

−

−

λrrr

rλrr
rrλr

kkkk

k

k

L
MOMM

L

L

 

0)(
1)(1

1)2(122

3

23

1

21

21

2

222

11 =++

−

+

−

−

−

−

−

kkk

k

k

kk

k

kkkkk

k

rr

rr
r

λr

r

r

r

r

r
r

λrr

rλr
λr

L
MOM

L

LM
L
O
L

MM
L

MOM

L

1
 

(λ − λ1)(λ − λ2)…(λ − λk) = 0

By solving the kth degree polynomial equation of the variable λ, we can obtain k eigenvalues (λ1, λ2, … , λk). The number of eigenvalues 
(λ1, λ2, …, λk) from the k × k matrix is k and their mean and total sum are 1 and k, respectively.

The square root of the ratio between the maximum and each eigenvalue (λ1, λ2 , … , λk) is termed “condition index” and is expressed as
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The largest condition index is called the “condition number.”

Variance Decomposition Proportion

Eigenvectors are calculated from their corresponding eigenvalues. The relationship between two eigenvalues (λ1, λ2) and their ei-
genvectors (υ1, υ2) is as follows:
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By solving the above equation, the ratio (Rs) between the two elements (υ1s = Rs × υ2s) is obtained. As long as the ratio is maintained, the 
values of the two elements can be chosen arbitrarily. Then, two eigenvectors can be obtained.
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we have k eigenvectors (υ1, υ2, … , υk) consisting of k elements in one column, which correspond to k eigenvalues (λ1, λ2, … , λk).
The eigenvector corresponding to the eigenvalue λs (s = 1, 2, … , k) are expressed as
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There are k variance decomposition proportions for the regression coefficient βj (j = 1, 2, … , k), which are defined as
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The total sum of the variance decomposition proportions for βj (πj1 + πj2 + … + πjk = k
s 1=∑   πjs) is 1. 


