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Supporting Information Text

We here provide a self-consistent and extended derivation of all the results provided in the main text. We will use standard
font for scalars, lower-case bold symbols for vectors, and upper-case bold symbols for matrices. All vectors are column vectors,
unless transposed. x ∼ N

(
µ, σ2) denotes that x is a normal random variable with mean µ and variance σ2.

Optimal decision making with high-dimensional momentary evidence

One-dimensional momentary evidence. Within each individual trial, we assume the latent state µ to be drawn from µ ∼
N
(
m,σ2

µ

)
. m = 0 corresponds to the case of an unbiased prior for which p(µ ≥ 0) = p(µ < 0). In each small time step n

of size δt from trial-onset at t = 0 (i.e., n = 1), the decision maker observes the momentary evidence δzn|µ ∼ N (µδt, δt)
that provides noisy information about the value of µ. The decision-maker’s aim is to infer the sign of µ from the sequence
δz1, δz2, . . . of momentary evidence, to make choice y = 1 (for µ ≥ 0) or y = −1 (for µ < 0).

For Bayes-optimal choices, we find the posterior p (µ ≥ 0|δz1, δz2, . . . ) in two steps. First, for N pieces (i.e., t = Nδt seconds)
of accumulated evidence, the posterior µ is give by Bayes’ rule,

p (µ|δz1:N ) ∝ p (µ)
N∏
n=1

p (δzn|µ) ∝ e
−µ

2
2

(
1
σ2
µ

)
+µ
(
m

σ2
µ

+z
)
∝ N

(
µ|
σ−2
µ m+ z

σ−2
µ + t

,
1

σ−2
µ + t

)
, [1]

where all proportionalities are with respect to µ, and the second proportionality results from substituting the respective normal
distributions, and defining t =

∑
n
δt and z(t) =

∑
n
δzn. This shows that the sufficient statistics of the posterior are z(t) and

t. For the second step we integrate this posterior over the non-negative half-line to find

p(µ ≥ 0|z, t) =
∫ ∞

0
p(µ|z, t)dµ = Φ

(
σ−2
µ m+ z√
σ−2
µ + t

)
, [2]

where Φ (·) is the normal cumulative function. This posterior is more certain (i.e., closer to zero or one) for larger |σ−2
µ m+ z|

and smaller times t.
Using the correspondence between µ ≥ 0 (and µ < 0) and y = 1 (and y = −1), the fact that 1 − Φ(a) = Φ(−a), and

p (µ < 0|z, t) = 1− p (µ ≥ 0|z, t), the more generic posterior over y is given by

p(y|z, t) = Φ

(
y
σ−2
µ m+ z√
σ−2
µ + t

)
. [3]

This posterior captures both y = 1 and y = −1. If y is the made decision, then the expression is the belief that this decision
was correct, and hence the decision confidence (1).

So far we have assumed a prior over µ with arbitrary mean m. With this prior, the a-priori belief that y = 1 is correct
is given by P+ ≡ p (µ ≥ 0) = Φ (m/σµ). The prior is thus unbiased for m = 0, in which case P+ = 1/2. In this case, the
posterior Eq. [3] prefers y = 1 for all z > 0 and y = −1 for all z < 0. Therefore, we can bound evidence accumulation from
above and below by the (potentially time-dependent) ±θ(t) to make Bayes-optimal choices. In particular, once z reaches θ(t)
(or −θ(t)), it would trigger choice y = 1 (or y = −1). Observing that the unbounded accumulated evidence follows a Wiener
process with drift µ, that is, z(t)|µ ∼ N (µt, t), supports the use of drift-diffusion models for Bayes-optimal decision making.
Biased priors, which we discuss in a later section, require additional attention to achieve Bayes-optimal choices.

High-dimensional momentary evidence. To move to J-dimensional momentary evidence δx while preserving parallels to the
one-dimensional case, we assume that there exist some (for now, known) combination weights w such that δzn = wT δxn. We
achieve this by the generative model,

δx|µ ∼ N ((aµ+ b) δt,Σδt) , [4]

for vectors a and b that satisfy aTw = 1 and bTw = 0, and a covariance matrix Σ for which wTΣw = 1. With these properties
it becomes easy to show that wT δx|µ ∼ N (µδt, δt), as required. We will discuss our specific choices for a, b, and Σ for the
simulations shown in the main text further below.

Using the same steps as before, we find the posterior µ given N steps (i.e., t = Nδt seconds) of momentary evidence to be
given by

p (µ|δx1:N ,w) = N
(
σ−2
µ m+wTx

σ−2
µ + t

,
1

σ−2
µ + t

)
, [5]

where we have defined the accumulated evidence x(t) =
∑

n
δxn. The posterior over µ ≥ 0 is correspondingly given by

p (µ ≥ 0|x, t,w) = Φ

(
σ−2
µ m+wTx√
σ−2
µ + t

)
. [6]
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Both expressions differ from the one-dimensional case by replacing z by wTx. Expressed as a posterior over y, the above turns
into

p (y|x, t,w) = Φ

(
y
σ−2
µ m+wTx√
σ−2
µ + t

)
. [7]

If y is the made decision, the above is again the decision confidence. Note that the unbounded accumulated evidence follows
the multi-dimensional drifting Wiener process, x(t)|µ ∼ N ((aµ+ b) t,Σt), whose w-weighted linear combination reduces to
the same one-dimensional process z(t) = wTx(t) ∼ N (µt, t) as before.

Assuming again an unbiased prior, m = 0, Bayes-optimal decisions are by the same logic as for the one-dimensional case
cast by the boundaries ±θ(t) on wTx. Here, the positive (negative) boundary correspond to choice y = 1 (y = −1). We will
discuss Bayes-optimal choices for biased priors in a later section.

If difficulty |µ| varies across trials, the decision confidence at a constant decision boundary drops over time. As the previous
sections have shown, the decision confidence is the same for one- and high-dimensional momentary evidence as long as the
decision boundary is on z(t) and wTx(t), respectively. Furthermore, for time-invariant decision boundaries, ±θ(t) = ±θ, this
decision confidence drops as a function of time. Here we show that this drop is a general property of symmetric priors over µ
for which the difficulty |µ| can vary across trials, that extends beyond the Gaussian p (µ) we assume in other parts of this
supplement. To show this, let us redefine p (µ) — in this section only — to be (as in (2)) given by

p(µ) =
L∑
i=1

pi
2 (δ(µ− µi) + δ(µ+ µi)) , [8]

which features L point masses at ±µ1,±µ2, . . . ,±µL, each weighted by pi/2, and where we have assumed positive pi that
satisfy

∑
i
pi = 1. Furthermore, without loss of generality, we assume the µi’s to be positive, ordered, and unique, that is

0 < µ1 < µ2 < · · · < µL. Here, we disallow µ1 = 0 for notational convenience, but our argument can be easily extended to
include this possibility. Assuming the same one-dimensional momentary evidence as before, δzn|µ ∼ N (µδt, δt), it follows from
Bayes’ rule that

p (µ = µi|z, t) = pie
− t2µ

2
i+zµi∑

j
pje
− t2µ

2
j (ezµj + e−zµj )

. [9]

Therefore, the belief that µ ≥ 0 (y = 1) at the upper boundary z = θ is given by

p (y = 1|z = θ, t) =
∑
i

p (µ = µi|z = θ, t) =
∑

i
pie
− t2µ

2
i+θµi∑

j
pje
− t2µ

2
j
(
eθµj + e−θµj

) . [10]

For our symmetric prior, this belief at the upper boundary equals the decision confidence at both boundaries. Therefore, we
will use it as a proxy for decision confidence.

In what follows, we will show that this belief is a mixture of two components. The first is the belief that µ = µi given some
fixed difficulty, µ ∈ {−µi, µi}, and the second is the probability that this is indeed the current difficulty. The first part turns
out to be independent of time, whereas the second changes. In particular, as we will show, the probability that the difficulty is
high (i.e., that |µ| is small) increases over time, resulting in a re-weighting of the per-difficulty beliefs. This re-weighting causes
the overall belief to drop, as we argue in the main text.

Mathematically, this mixture can be written as

p (y = 1|z = θ, t) =
∑
i

p (µ = µi|z = θ, t) =
∑
i

p (µ = µi|z = θ, t, µ = ±µi) p (µ = ±µi|z = θ, t) . [11]

In the right-most sum, the first probability is the per-difficulty belief gi for assumed difficulty µi, and the second is the
probability that µi is indeed the current difficulty. Both follow from [9], and are given by

gi ≡ p (µ = µi|z = θ, t, µ = ±µi) = eθµi

eθµi + e−θµi
= 1

1 + e−2θµi
, [12]

p (µ = ±µi|z = θ, t) =
pie
− t2µ

2
i

(
eθµi + e−θµi

)∑
j
pje
− t2µ

2
j
(
eθµj + e−θµj

) = wi(t)∑
j
wj(t)

, [13]

where we have defined wi(t) = pie
− t2µ

2
i

(
eθµi + e−θµi

)
as the unnormalized, time-dependent, per-difficulty weights. This allows

us to write the overall belief as the weighted mixture

p (y = 1|z = θ, t) =
∑
i

wi(t)∑
j
wj(t)

gi, [14]

which is a weighted mixture of per-difficulty beliefs, gi, in which only the mixture weights are time-dependent. Note that
the per-difficulty beliefs are strictly increasing in µi, such that are also ordered, that is, g1 < g2 < · · · < gL. Furthermore,
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increasing time by δt > 0 results in a drop in unnormalized weights, wi(t+ δt) = ai(δt)wt(t) with ai(δt) = e−
δt
2 µ

2
i ∈ [0, 1]. This

drop is larger for larger µi, that is a1(δt) > a2(δt) > · · · > aL(δt). Therefore, increasing time results in putting proportionally
more weight on per-difficulty beliefs associated with lower µi’s with lower associated gi, such that the overall belief, and equally
the decision confidence, drops.

Once we stop varying the difficulty (i.e., L = 1), the belief reduces to the per-difficulty belief g1, which does not drop over
time. Therefore, the only condition required for the decision confidence to drop at a time-invariant boundary is for the difficulty
|µ| to vary across trials.

Learning the input combination weight w from choice feedback

So far we have assumed w to be known. Here we derive learning rules for w based on feedback on the correctness of a choice.
Specifically, we assume that the decision maker accumulated evidence x for some time t and (potentially, but not necessarily)
made decision y, after which feedback about the correct choice y∗ is provided. Before evidence accumulation we assume the
decision maker to hold belief p(w) about the input combination weights w. Our aim is to find the posterior p(w|x, t, y∗) given
all the available evidence. We focus here on a feedback after a single choice. The same principles apply to choice sequences, by
turning the posterior after a choice into the prior for the subsequent choice.

The desired posterior can be found by Bayes’ rule

p (w|x, t, y∗) ∝ p (y∗|x, t,w) p(w), [15]

where the likelihood p (y∗|x, t,w) is conditional on all observed quantities, x and t, and some hypothetical weights w, and
specifies the probability that y∗ is the correct choice given these weights. This likelihood turns out to correspond to the
previously derived decision-making posterior, Eq. [7], which is a normal cumulative function with argument linear in w. In
general, problems with such a likelihood function structure are known as Probit regression. Such problems don’t yield solutions
for which the posterior has the same functional form as the prior — which is a desirable property to support efficient Bayesian
input weight learning across longer sequences of choices, and to gain insight into the learning rule. Therefore, we derive below
different approximations to such Bayes-optimal learning.

All of the below assumes an unbiased prior over µ by fixing m to m = 0. We can extend the below rules to also learn the
prior bias m by extending the accumulated evidence vector x by one element fixed to σ−2

µ , and the weight vector w by one
element containing m. Learning this extended weight vector then correspond to simultaneously learning the input weight and
the prior bias.

The marginal decision confidence. Before deriving approximate weight learning rules, let us consider the consequences of
uncertain weights on the decision confidence p(y|x, t) with these weights marginalized out. To do so, we assume our prior
weight belief to be normal, w ∼ N (µw,Σw) with mean µw and covariance Σw. Then, we find this marginal decision confidence
by first finding the marginal posterior over µ, which is given by

p(µ|x, t) =
∫
p(µ|x, t,w)p(w)dw = N

(
µTwx

σ−2
µ + t

,
1

σ−2
µ + t

+ xTΣwx(
σ−2
µ + t

)2
)
, [16]

were we have used Eq. [5] with m = 0. We find the marginal decision confidence p(y|x, t) by integrating the above over the
non-negative halfline, which results after some simplification in

p(y|x, t) = Φ

(
y

µTwx√
σ−2
µ + t+ xTΣwx

)
= Φ

(
y

µTwx̃√
1 + x̃TΣwx̃

)
, [17]

where we have defined x̃ ≡ x/
√
σ−2
µ + t for the second equality. Comparing this expression to Eq. [7] reveals the additional

term xTΣwx that lowers the overall posterior confidence (i.e., moving it towards 1/2) due to uncertainty in w. If y is the
made choice, the above is the decision confidence that takes into account weight uncertainty.

Weight learning by Assumed Density Filtering. Assumed Density Filtering (ADF; (3–6)) approximates the posterior by assuming
a particular functional form of the approximate posterior q(w|x, t, y∗) and finding the parameters of this functional form by
minimizing the Kullback-Leiber divergence KL (p (w|x, t, y∗) ‖q (w|x, t, y∗)) between the true posterior and its approximation.
To minimize this divergence we again assume a normally distributed prior w ∼ N (µw,Σw) with mean µw and covariance Σw.
To support sequential choices, we assume the approximate posterior to also be normal, q (w|x, t, y∗) = N (w|µ∗wΣ∗w), with
updated moments µ∗w and Σ∗w.

To find these updated moments, we use the fact that the KL-divergence is in our case minimized by matching the moments
of the Gaussian sufficient statistics w and wwT (7). For the source distribution, p (w|x, t, y∗), these moments can be found by
the gradients of the log-normalizing constant of this source distribution, ∇ log p(y∗|x, t) (7, 8), where we will use the already
derived marginal likelihood p(y|x, t) in Eq. [17]. Using these principles, the updated moments of the approximate posterior can
be found by

µ∗w = µw + Σw∇µw log p(y∗|x, t), [18]

Σ∗w = Σw −Σw

(
∇µw log p(y∗|x, t) (∇µw log p(y∗|x, t))T − 2∇Σw log p(y∗|x, t)

)
Σw. [19]
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The required gradients are given by

∇µw log p(y∗|x, t) = ξw(γ)y∗ x̃√
1 + x̃TΣwx̃

, [20]

∇Σw log p(y∗|x, t) = −ξw(γ)y∗ µTwx̃

2 (1 + x̃TΣwx̃)3/2 x̃x̃
T , [21]

[22]

where ξw(γ) is given by

ξw(γ) = ∂

∂γ
log Φ(γ) = N (γ|0, 1)

Φ(γ) , [23]

and we have defined γ as

γ ≡ y∗ µTwx̃√
1 + x̃TΣwx̃

. [24]

Overall, this leads to the moments update equations,

µ∗w = µw + y∗
ξw(γ)√

1 + x̃TΣwx̃
Σwx̃, [25]

Σ∗w = Σw + ξcov(γ)
((

Σ−1
w + x̃x̃T

)−1 −Σw

)
, [26]

where the covariance learning rate is given by

ξcov(γ) = ξw(γ)2 + ξw(γ)γ. [27]

As illustrated in Fig. S1, both mean and covariance updates are modulated by the marginal decision confidence in the
feedback, y∗, given by Eq. [17]. To see how ξw and ξcov are a function of the marginal decision confidence about the actual
choice y (rather than the feedback y∗) let us first focus on correct choices. For correct choices, y = y∗, such that the marginal
decision confidence about y equals that of y∗, that is, p(y|x, t) = p(y∗|x, t). Furthermore, by the definition of p(y∗|x, t), it can
be written as p(y∗|x, t) = Φ(γ) (where γ is defined in Eq. [24]). This function is strictly increasing in γ, such that small/large
γ’s corresponds to low/high confidence. Therefore, as ξw(γ) and ξcov(γ) are functions of only γ, they are in turn functions of
the marginal decision confidence p(y|x, t).

For incorrect choices we have y 6= y∗, such that p(y|x, t) = 1 − p(y∗|x, t) = 1 − Φ(γ), which is strictly decreasing in γ.
Therefore, we can again assign a unique decision confidence p(y|x, t) to each γ, such that ξw(γ) and ξcov(γ) are again functions
of the decision confidence about the made decision y.

Assumed Density Filtering with a diagonal covariance matrix. The above update equations require tracking of the full covariance
matrix, making these updates scale badly with the size of the input space, J , and require non-local interactions. To find
alternative, local update equations, we here assume that both the prior covariance, as well as the approximate posterior
covariance are given by diagonal matrices, given by Σw = diag

(
σ2
w,1, . . . , σ

2
w,k

)
and Σ∗w = diag

(
σ2∗
w,1, . . . , σ

2∗
w,k

)
. Following the

same derivation as before, this leads to the update equations

µ∗w,i = µw,i + y∗
ξw(γ)√

1 +
∑

j
σ2
w,j x̃

2
j

σ2
w,ix̃i, [28]

σ2∗
w,i = σ2

w,i − ξcov(γ)
σ4
w,ix̃i√

1 +
∑

j
σ2
w,j x̃

2
j

[29]

where µw,i and µ∗w,i are the ith element of µw and µ∗w, respectively, and γ is given by

γ = y∗
µTwx̃√

1 +
∑

j
σ2
w,j x̃

2
j

. [30]

Thus, other than a global divisive normalization and the marginal decision confidence-related term γ, all updates are local.
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Approximating the weight posterior by a second-order Taylor series. A simpler alternative to ADF that also yields a normally
distributed approximate posterior is to approximate the true log-posterior, log p(w|x, t, y∗) by a second-order Taylor series in
w around w = µw. The relevant terms in this log-posterior are

log p(w|x, t, y∗) = Φ
(
y∗wT x̃

)
− 1

2w
TΣ−1

w w +wTΣ−1
w µw + const. [31]

The required gradient and Hessian are

∇w log p(w|x, t, y∗)
∣∣
w=µw

= ξw(γ)y∗x̃, [32]

∇∇w log p(w|x, t, y∗)
∣∣
w=µw

= −Σ−1
w − ξcov(γ)x̃x̃T , [33]

where ξw(·) and ξcov(·) are defined as for ADF, but γ changes to γ = y∗µTwx̃. Using the above to find the second-order Taylor
series and reading off the resulting posterior moments yields the moment updates

µ∗w = µw + y∗ξw(γ)Σ∗wx̃, [34]

Σ∗w =
(
Σ−1
w + ξcov(γ)x̃x̃T

)−1
. [35]

These have a similar form as for ADF, Eqs. [25] and [26], with the main difference that they are missing the normalization by√
1 + x̃TΣwx̃. Given that this normalization modulates the moment update strength by the weight uncertainty, this implies

that the update equations based on the second-order Taylor series will be less influenced by this uncertainty.

Assumed density filtering with noisy feedback. So far we have assumed the feedback y∗ to always be correct. We will now
consider how ADF changes when the feedback itself is noisy. In particular, we assume that feedback is inverted with probability
β, such that the weight likelihood given feedback y∗ becomes

p(y∗|x, t,w) = βΦ
(
−y∗wT x̃

)
+ (1− β)Φ

(
y∗wT x̃

)
= β + (1− 2β)Φ

(
y∗wT x̃

)
. [36]

In this case, the marginal decision confidence about feedback y∗ becomes

p(y∗|x, t, β) = β + (1− 2β)Φ
(
y∗

µTwx̃√
1 + x̃TΣwx̃

)
. [37]

The gradients of the log marginal decision confidence thus become

∇µw log p(y∗|x, t, β) = ξβ,w(γ)y∗ x̃√
1 + x̃TΣwx̃

, [38]

∇Σw log p(y∗|x, t, β) = −ξβ,w(γ)y∗ µTwx̃

2 (1 + x̃TΣwx̃)3/2 x̃x̃
T [39]

with ξβ,w(γ) given by

ξβ,w(γ) = ∂

∂γ
log (β + (1− 2β)Φ(γ)) = (1− 2β)N (γ|0, 1)

β + (1− 2β)Φ(γ) [40]

and where γ is, as for vanilla ADF, given by Eq. [24]. Using again Eqs. [18] and [19] results in the update equations

µ∗w = µw + y∗
ξβ,w(γ)√

1 + x̃TΣwx̃
Σwx̃, [41]

Σ∗w = Σw + ξβ,cov(γ)
((

Σ−1
w + x̃x̃T

)−1 −Σw

)
, [42]

with covariance learning rate
ξβ,cov(γ) = ξβ,w(γ)2 + ξβ,w(γ)γ. [43]

This illustrates that the only impact of noisy feedback is on the update strength modulators, ξβ,w(·) and ξβ,cov. As shown in
Fig. S1, these modulators become smaller for larger feedback noise. For high-confidence choices that the feedback flags as
incorrect, ξβ,cov even becomes negative, indicating that uncertainty in w increases. This increase arises from approximate
inference, as additional information in strictly Bayes-optimal inference should not increase uncertainty, even if this information
is (knowingly) noisy.
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Alternative learning heuristics. Let us now discuss alternative heuristics that do not track a belief over w, but instead update a
point estimate. The first alternative is the delta rule that performs stochastic gradient descent on the sum of squared distances
between the chosen decision boundary and the correct decision boundary. For the current choice, this squared distance is(
wTx(t)− y∗θ(t)

)2, where wTx(t) ∈ {−θ(t), θ(t)} at decision time t equals the chosen bound, and y∗θ(t) ∈ {−θ(t), θ(t)} is
the boundary that would have led to the correct choice. Thus, the delta rule update is given by

w∗ = w + α

2θ(0)
(
y∗θ(t)−wTx

)
x, [44]

where we have chosen to normalize the learning α by 2θ(0) to make the update magnitude less dependent of the bound height.
The residual in the above is either zero or ±2θ(t), such that the learning rule only makes adjustments to the weight estimate in
case of incorrect choices.

The delta rule aims to minimize the probability that incorrect choices are made. In diffusion models this can be achieved
by accumulating more evidence before reaching the decision boundary. This, in turn, can be accomplished by reducing the
overall magnitude of w. In particular for small learning rates, this is exactly what the delta rule does, leading to progressively
smaller ‖w‖, and weight learning that does not converge in expectation. To work around this degeneracy, we introduced the
normalized delta rule. This rule performs the update exactly like the standard delta rule, but subsequently adjusts the weight
magnitude to match that of the true weights. It therefore needs access to the true weight’s magnitude in each trial, making it a
rule that has access to an oracle that other rules don’t. Thus, it uses strictly more information than other rules, which needs to
be kept in mind when comparing its performance to that of other rules.

As a last heuristic we considered performing stochastic gradient ascent on the log-likelihood of the feedback, log p (y∗|x,w, t) =
log Φ

(
y∗wT x̃

)
. Taking the gradient of this log-likelihood results in the learning rule

w∗ = w − αy∗ξw
(
y∗wT x̃

)
x̃, [45]

where ξw(·) is defined as for ADF. Due to the inclusion of ξw(·), this rule modulates the update strength by decision confidence,
unlike the normalized delta rule above. It differs from probabilistic learning rules in that it uses a fixed learning rate α, instead
of a learning rate modulation by a current estimate of the certainty about w.

Tracking non-stationary combination weights

So far we have assumed the true weights, underlying the generation of the momentary evidences, δx, to be stationary, allowing
us to use a sequence x’s, t’s, and y∗’s to learn successively better posteriors over w. In the ideal case (i.e., if we wouldn’t use
approximate inference), this would — after enough observations — lead to a very good approximation of the true w. We now
change this setup to assume that the true weights change slightly across successive trials, and the learner’s task is to track these
changes as well as possible. This implies that, as the weights are now a moving target, they can never be learned perfectly.

We model the non-stationary of the weights by a first-order autoregressive process. That is, we assume that the true weights
wn in trial n depend on the true weights wn−1 in trial n by

wn|wn−1 ∼ N (Awn−1 + b,Σd) , [46]

where A, b and Σd are parameters of the process.
Let us now consider a probabilistic learner that maintains belief wn ∼ N (µw,n,Σw,n) before observing x, t, and y∗ in the

nth trial. Despite the successive weight change across trials, the learner would first follow its standard learning rule (discussed
above different approximations) to compute posterior parameters µ∗w,n and Σ∗w,n. This is followed by taking account of the
weight change by updating its parameters according to

µw,n+1 = Aµ∗w,n + b, Σw,n+1 = AΣ∗w,nAT + Σd. [47]

These weights then act as a starting point, i.e., prior, for learning in the next trial. No other changes to the learning rules are
required to take the non-stationarity of the combination weights into account.

Sampling the Bayes-optimal posterior

Finding a tractable closed-form expression for the Bayes-optimal posterior over w is unfortunately impossible. However, we
can approximate this posterior to almost arbitrary precision by drawing samples from this posterior. We will first discuss such
sampling for stationary combination weights, in which case we can use Gibbs sampling.

Gibbs sampling for stationary weights. For Gibbs sampling, we assume prior w ∼ N (µ0,Σ0), and observations xn, tn, and
y∗n in the nth trial. The aim is to, after N trials, draw samples from p (w|x1:N , t1:N , y

∗
1:N ). With the per-trial likelihood

p (y∗n|xn, tn,w) = Φ
(
y∗nw

T x̃n
)
, this posterior is given by

p (w|x1:N , t1:N , y
∗
1:N ) ∝ N (w|µ0,Σ0)

N∏
n=1

Φ
(
y∗nw

T x̃n
)
. [48]
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The covariance of this posterior is given by

Σw =

(
Σ−1

0 +
N∑
n=1

x̃nx̃
T
n

)−1

[49]

which can be efficiently updated with each successive trial by the Sherman-Morrison update. To sample from the posterior w,
we introduce the auxiliary variables an ∼ N

(
y∗nw

T x̃n, 1
)
for each n, such that an ≥ 0 for a choice consistent with y∗n. Thus,

for a fixed w, we can draw an according to

an|x̃n,w, y∗n ∼ N≥0
(
y∗nw

T x̃n, 1
)
, [50]

where N≥0 denotes a draw from a truncated normal distribution, guaranteeing an ≥ 0. With these samples, the posterior w is
given by

w|x1:N , t1:N , y
∗
1:N , a1:N ∼ N

(
Σw

(
Σ−1

0 µ0 +
N∑
n=1

y∗nx̃nan

)
,Σw

)
. [51]

Overall, Gibbs sampling consists in alternating between sampling a1:N and w until a sufficient number of w-samples are drawn.

Particle filtering for non-stationary weights. Once the weights become non-stationary, particle filtering turns out to be a more
efficient approach to posterior sampling. The aim is to approximate the sequential weight update

p (wn|x1:n, t1:n, y
∗
1:n) ∝ p (y∗n|xn, tn,wn)

∫
p (wn|wn−1) p (wn−1|x1:n−1, t1:n−1, y

∗
1:n−1) dwn−1, [52]

by using the particle approximation

p (wn|x1:n, t1:n, y
∗
1:n) ≈ 1

K

K∑
k=1

δ
w

(k)
n
, [53]

consisting of the K particles
{
w

(1)
n , . . . ,w

(K)
n

}
. With this approximation, the above sequential update becomes

p (wn|x1:n, t1:n, t
∗
1:n) ∝∼

∑
k

p (y∗n|xn, tn,wn) p
(
wn|w(k)

n−1

)
. [54]

We can sample from this posterior by an importance sampling re-sampling scheme in three steps. First, we draw K samples
w̃

(k)
n from a Gaussian proposal density

w̃(k)
n ∼ N

(
µw

(
w

(k)
n−1

)
,Σw

(
w

(k)
n−1

))
. [55]

Second, we compute the importance sampling weights,

λ(k)
n =

p
(
y∗n|xn, tn, w̃

(k)
n

)
p
(
w̃

(k)
n |w(k)

n−1

)
N
(
µw

(
w

(k)
n−1

)
,Σw

(
w

(k)
n−1

)) . [56]

Third, we re-sample the w(k)
n ’s from the w̃(k)

n ’s with probabilities proportional to their respective weights, λ(k)
n . To ensure

efficiency of the procedure, the proposal density for each weight should be close to p (y∗n|xn, tn,wn) p (wn|wn−1), appropriately
normalized, which we achieve by computing the proposal moments µw

(
w

(k)
n−1

)
and Σw

(
w

(k)
n−1

)
according to the ADF variant

that assumes non-stationary combination weights.

Relating learning through inference to learning through optimization

In all of the above we have treated learning as an inference problem, where we want to find the posterior weights given all of
the observed evidence. Here, we address the parallels between inference and optimization in two ways. First, we will describe
more general decision theoretical principles that highlight these parallels. Second, we will show explicitly how our learning
problem can be formulated as an optimization problem.
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Decision theoretic perspective. In decision theory, the Bayes-optimal decision rule is the rule that minimizes some expected
loss (9). In our case, we have defined the loss as the negative reward rate, which is the negative average number of correct
decisions per unit time, across a long sequence of such decisions. Furthermore, we have tuned the diffusion model boundaries
such that there exists an optimal set of weights w∗ that maximize the reward rate, and thus minimize the loss. Formally,
the loss function L (w∗,w) returns this loss for a given action w (in our case a particular set of chosen weights) given some
unobserved state of nature, w∗ (in our case the set of weights that maximize the reward rate).

Given observations X (here, all information gathered from past trials), the Bayes-optimal action is the one minimizing the
posterior loss, that is

argmin
w

〈L(w̃,w)〉p(w̃|X) , [57]

where p (w̃|X) are the posterior weights given all past information. If we assume the loss to be approximately quadratic around
w̃, then it is (approximately) minimized by 〈w̃|X〉 (9). This justifies computing the posterior to perform learning through
inference, and the use of the posterior mean for decision-making, as used in the main text.

Using Bayes-optimal decision rules for decision making has several appealing properties. One of particular interest in relation
to learning through optimization is that it is an admissible rule (9, Ch. 4, Th. 9). Here, admissability is a concept from the
frequentist school of decision theory, and specifies a (not necessarily unique) decision rule δ(·) whose associated risk function
R(w∗, δ) is smallest among all possible decision rules and all possible states of nature w∗. Here, the risk function is the expected
loss for a given w∗, with the expectation taken over possible observations X given w∗, that is R(w∗, δ) = 〈L(w∗, δ(X))〉p(X|w∗).
Therefore, the Bayes-optimal decision rule doesn’t only minimize the expected loss under the posterior, but also the expected
loss across different (frequentist) repetitions of the same "experiment", that is, different observations for the same state of
nature w∗, and does so across all possible states of nature. As a consequence, finding the posterior w through inference allows
us to make decisions that (approximately) minimize the loss in multiple senses, which, in our case, maximizes the reward rate.

Explicit learning through optimization. Here we demonstrate for the stationary-weight case that our inference problem can be
formulated as an optimization problem that aims at maximizing performance — here for simplicity measured as the probability
of making correct choices. To do so, assume that, in each trial, the decision maker observes some J-dimensional momentary
evidence δx that relates to the underlying latent state µ by Eq. [4], as before. They accumulate this evidence into x(t), and at
some point (e.g., when a decision boundary is reached) decide according to y = sign

(
wTx(t)

)
, using some decision strategy

weight parameters w. Their aim is to optimize these weight parameters to maximize their probability of making correct choices.
To find the solution to this maximization problem, let us establish which weight parameters maximize the probability of

making correct choices. For this, note that by Eq. [4], the accumulated evidence is distributed as

x(t)|µ∗ ∼ N ((aµ∗ + b) t,Σt) , [58]

where µ∗ is the (unobserved) latent state that determines the correct choice by y∗ = sign (µ∗). As a consequence, wTx(t)/t is
distributed as

wTx(t)
t
|µ∗ ∼ N

(
wTaµ∗ +wT b,

1
t
wTΣw

)
. [59]

Recall that a, b and Σ in Eq. [4] have been defined to satisfy w∗Ta = 1, w∗T b = 0, and w∗TΣw∗ = 1 for some particular w∗.
For these parameters, we thus have w∗Tx(t)/t ∼ N

(
µ∗, t−1), which provides the best estimate of µ∗ (in the mean squared

error sense (9)), that can in turn be used as a basis for decision-making.
To findw∗ from an observed sequence of (x1(t1), t1, y∗1) , (x2(t2), t2, y∗2) , . . . (xN (tN ), tN , y∗N ), we can use maximum likelihood,

which is consistent and asymptotically efficient. For the diffusion model, the likelihood of w for a particular choice y is by Eq. [7]
(using m = 0) given by p (y|x, t,w) = Φ

(
ywT x̃

)
, where x̃ ≡ x/

√
t+ σ−2

µ , as previously defined. Therefore, the maximum
(log-)likelihood estimate for the observed sequence is given by

ŵML = argmax
w

N∑
n=1

log Φ
(
y∗nw

T x̃n
)
. [60]

Finding this estimate is an optimization problem. For a small number of observations N , this optimization problem might be
underdetermined. To avoid instabilities, we can additionally add a regularization term that penalizes too large ‖w‖2, leading to

ŵML,reg = argmax
w

(
−λwTw +

N∑
n=1

log Φ
(
y∗nw

T x̃n
))

, [61]

where λ > 0 is some regularization parameter. Overall, this demonstrates how to formulate our learning problem as a an
optimization problem. We have used this approach to formulate one of our heuristics, resulting in Eq. [45].

To see how this approach relates to learning through inference, compare the expression for ŵML,reg to Eq. [48]. As can be
seen, with prior parameters µ0 = 0 and Σ0 = λ−1I, ŵML,reg finds the maximum of the Bayesian parameter posterior over w,
given by Eq. [48]. In other words, it equals the maximum a-posteriori estimate. However, the optimization approach does not
directly provide an estimate of the uncertainty in ŵML,reg. This makes it hard to form consistent sequential updates, in which
uncertain weights should be updated more strongly than certain weights. More generally, formulating the learning problem as
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an optimization problem reduces our ability to interpret the resulting expressions. For example, we might not have been able
to identify that the learning rate is modulated by decision confidence without the inference formulation. All of these points
made us follow the learning-as-inference route instead.

Implementing prior biases

So far we have assumed P+ ≡ p(µ ≥ 0) = 1/2, making both µ ≥ 0 and µ < 0 equally likely. Let us now consider how to
consistently implement prior biases for which P+ 6= 1/2. To do so, we will restrict our discussion to the one-dimensional
momentary evidence δz. The high-dimensional momentary evidence case follows the same principles, and yields the same
conclusions, but it notationally more burdensome.

With a consistent implementation of a prior bias we mean that we want to be able to choose a pair of arbitrary, potentially
time-changing boundaries∗ ±θ(t), each of which triggers a different Bayes-optimal choice. This requirement turns out to
become critical.

Let us discuss two ways to implement biased priors in turn. The first corresponds to a shift in the mean of p(µ), while the
second modulates the mass of µ ≥ 0 while keeping the shape of p(µ) otherwise unchanged (as in (10)).

Shifting the prior mean. If we assume prior µ ∼ N (m,σµ), then P+ = Φ (m/σµ), such that P+ 6= 1/2 if and only if m 6= 0.
This is the case we have discussed further above (see Sec. "One-dimensional momentary evidence"), where we have found the
posterior

p(µ > 0|z, t) = Φ

(
σ−2
µ m+ z√
σ−2
µ + t

)
. [62]

Thus, the posterior is p(µ ≥ 0|z, t) ≥ 1/2 if and only if σ−2
µ m+ z ≥ 0. This implies that Bayes-optimal decisions are determined

by the sign of σ−2
µ m + z. As a result, we cannot simply bound the accumulated evidence z, as this might not guarantee

a unique association between boundaries and Bayes-optimal choices. For example, consider some negative m < 0 and a
positive z < σ−2

µ |m| that has just reached the upper boundary z = θ(t). At this point we would intuitively make choice y = 1,
corresponding to µ ≥ 0. However, as σ−2

µ m+ z < 0, our expression for the posterior shows that p(µ ≥ 0|z, t) < 1/2, such that
y = −1 would be the Bayes-optimal choice. This shows that bounding z directly can in some cases violate the boundary -
choice correspondence.

We can regain this correspondence by instead bounding z̃(t) = σ−2
µ m+ z(t), which, by definition, starts at z̃(0) = σ−2

µ m.
For this new accumulation variable it is easy to see that p(µ ≥ 0|z̃, t) ≥ 1/2 if and only if z̃ ≥ 0, thus restoring the boundary -
choice correspondence.

Directly modulating p(µ ≥ 0). An alternative approach to introducing a biased prior, which was taken in (10), is to boost one
half of p(µ), while modulating down the other half,

p(µ) = 2N
(
µ|0, σ2

µ

){P+ if µ ≥ 0,
1− P+ otherwise,

[63]

ensuring again p(µ ≥ 0) = P+. This prior, and the corresponding solution, has previously been investigated by (10).
This choice of prior results in the posterior over µ,

p(µ|z, t) ∝ N
(
µ| z

σ−2
µ + t

,
1

σ−2
µ + t

){
P+ if µ ≥ 0,
1− P+ otherwise .

[64]

Adding the normalization constant and integrating the above over all µ ≥ 0 results in the posterior

p (µ ≥ 0|z, t) =
P+Φ

(
z√
σ−2
µ +t

)
P+Φ

(
z√
σ−2
µ +t

)
+ (1− P+)

(
1− Φ

(
z√
σ−2
µ +t

)) . [65]

This posterior is p (µ ≥ 0|z, t) ≥ 1/2, and thus promotes choice y = 1, if

log
Φ
(

z√
σ−2
µ +t

)
1− Φ

(
z√
σ−2
µ +t

) ≥ log 1− P+

P+ , [66]

that is, if the log-odds provided by the accumulated evidence exceeds that of the prior log-odds for µ < 0. For the same
accumulator value z, the evidence log-odds drops to zero over time. As a result, it might be that the Bayes-optimal choice at
the same boundary changes over time, thus violating the boundary - decision correspondence.

∗They might even follow different time-courses, without changing any of the discussed concepts. To keep notation simple, we won’t consider this case.
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When compared to the previous section, the way the prior impacts the posterior is more complex. This makes recovering the
boundary - decision correspondence more complex. The aim is to find a C2(P+, t) such that z̃(t) = z(t) +C2(P+, t) determines
Bayes-optimal decisions by its sign alone. This can be achieved by

C2(P+, t) =
√
σ−2
µ + tΦ−1

 P+Φ
(

z√
σ−2
µ +t

)
P+Φ

(
z√
σ−2
µ +t

)
+ (1− P+)Φ

(
−z√
σ−2
µ +t

)
− z(t), [67]

which unfortunately doesn’t yield a closed-form expression. To gain further insight, we approximate the cumulative Gaussian
function by the logistic sigmoid Φ(z) ≈ (1 + exp (−Cσz))−1 with Cσ = π2/6 to have matching slope at z = 0. After some
algebra, this results in

C2(P+, t) ≈
√
σ−2
µ + t

1
Cσ

log P+

1− P+ , [68]

showing that it becomes insufficient to use a shift of the accumulation starting point, as for the previous prior. Instead, we
require both a shifted starting point, as well as an additional shift in the accumulated evidence that varies over time.

The relation between decision confidence and choice accuracy for biased priors. For either choice of the prior, the solutions
that regains the boundary - decision correspondence result in a decision confidence that is the same at both boundaries, as
long as these boundaries are symmetric around zero. For example, for the posterior Eq. [62] this is easy to see by replacing
σ−2
µ m+ z by z̃, and, at the decision by z̃ = ±θ(t), depending on which choice has been made. This is seemingly at odds with

expecting a different choice accuracy at either boundary, imposed by the biased prior.
To show that no overall inconsistency between choice accuracy and choice confidence exists, let us consider the simpler case

of a prior with a single "difficulty" µ0, which is given by

p(µ) = P+

2 δ(µ− µ0) + 1− P+

2 δ(µ+ µ0), [69]

where δ(·) is the Dirac delta function. That is, µ = µ0 with probability P+, and µ = −µ0 with probability 1− P+. With this
prior, it is easy to show that the posterior becomes

p(µ = µ0|z, t) = p(µ ≥ 0|z, t) = 1

1 + e
−2µ0

(
z− 1

2µ0
log P+

1−P+

) . [70]

For symmetric boundaries at ±θ, rather than shifting the accumulation starting point, we can equivalently shift the boundaries
by the same amount to

θ+ = θ − 1
2µ0

log P+

1− P+ , θ− = −θ − 1
2µ0

log P+

1− P+ , [71]

again leading to a constant decision confidence (1 + exp (−2µ0θ))−1 at either boundary.
To show that this decision confidence equals the probability of making the correct choice on average, we find this probability

for each possible latent state value, using known expression for boundary hitting probabilities for diffusion models with
asymmetric boundaries, as given in (11, 12). For µ = µ0, the upper boundary θ+ leads to the correct choice. This boundary is
reached with probability

p
(
z = θ+|z ∈

{
θ+, θ−

}
, µ = µ0

)
=

e2µ0θ − 1−P+

p+

e2µ0θ − e−2µ0θ
, [72]

which is the probability of making correct choices if µ = µ0. Note that, unlike the confidence, this probability is modulated by
P+. In particular, it grows with an increase in P+. In other words, the larger the a-priori probability that the upper boundary
leads to the correct choice, the larger the probability that the decision maker chooses correctly in trials in which the upper
boundary is indeed the correct choice.

For µ = −µ0, the lower boundary θ− leads to correct choices, which happens with probability

p
(
z = θ−|z ∈

{
θ+, θ−

}
, µ = −µ0

)
=

e2µ0θ − P+

1−P+

e2µ0θ − e−2µ0θ
, [73]

where the only difference to the previous expression is the impact of the prior. Specifically, this probability shrinks with an
increasing P+.

The average probability of choosing correctly is a combination of both bound-hitting probabilities, weighted by the latent
state probabilities, which, after some algebra, results in

p(correct) = p
(
z = θ+|z ∈

{
θ+, θ−

}
, µ = µ0

)
p(µ = µ0)+p

(
z = θ−|z ∈

{
θ+, θ−

}
, µ = −µ0

)
p(µ = −µ0) = 1

1 + e−2µ0θ
, [74]

where we have used p(µ = µ0) = P+ and p(µ = −µ0) = 1− P+. This demonstrates that, even though the decision confidence
differs from the probability of making the correct choices for individual choices, it equals the average probability of making
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correct choices. This unintuitive result follows from conditioning the choice probabilities on the latent state, which is unknown
to the decision maker, and thus cannot be reflected in their decision confidence. Once this latent state is marginalized out (by
averaging over it in Eq. [74]), consistency with the decision confidence is restored (13). The same principle applies to the more
complex priors used further above, but for those, it becomes hard to establish the equivalence between choice probability and
decision confidence analytically.

Generating correlated momentary evidence

Recall that, for a given latent state µ, the mutli-dimensional momentary evidence is drawn according to

δx|µ ∼ N ((aµ+ b) δt,Σδt) , [75]

where the parameters a, b and Σ satisfy aTw = 1, bTw = 0, and wTΣw = 1 (see Sec. "High-dimensional momentary
evidence").

We satisfy the requirement on a and b by choosing

a = w

wTw
, b = f0

(
1− 1Tw

wTw
w

)
, [76]

where f0 is a parameter. The expression for b minimizes ‖b− f01‖ under the constraint bTw = 0, effectively introducing an
approximate baseline at f0.

For our choice for the covariance we were guided by observations that the noise covariance spectrum in neural population
recordings has few dominant components, and otherwise rapidly drops towards small values. We achieve this while satisfying
wTΣw = 1 by designing a Σ that has one eigenvector w/‖w‖ with associated eigenvalue 1/wTw, and otherwise the desired
eigenspectrum. To do so, we fill a J × J matrix B (J is the size of δx) with zero mean unit variance Gaussian random numbers,
except for the first row, which we set to w. This is followed by Gram-Schmidt orthonormalization of B, such that the first row
becomes w/‖w‖, while all other rows unit vectors, orthogonal to w. We then choose a diagonal D with the first diagonal
element d11 = 1/wTw, and all other diagonal elements djj = max

{
σ2
xe
−j+1, σ2

0
}
/wTw, with parameters σ2

x and σ2
0 . The final

covariance matrix is then given by Σ = BDBT .
If the weights change across consecutive trials n− 1 and n, the momentary evidence needs to satisfy aTnwn = 1, bTnwn = 0,

and wTnΣnwn in each trial. For an and bn this is easily achieved by re-computing them in each trial according to the above
expressions.

The generation of Σn relies on a stochastic process, such that re-generating a new Σn in each trial might lead Σ· to change
significantly across trials despite only small changes in w·. To avoid this, we instead modify Σn−1 by finding the smallest
rotation U of Σn−1 that satisfies wTnΣnwn = 1. To do so, we aim at finding U that satisfies wn ∝ Uwn−1. This leaves U
underconstraint. To introduce additional constraints, we would like to restrict the rotation imposed by U to the (wn−1,wn)
plane. We express this by using ψ3, . . . ,ψJ that are orthonormal unit vectors that are also orthogonal to wn−1 and wn, which
we can find by Gram-Schmidt orthonormalization. For those vectors, we desire ψn = Uψn. Overall, this leads to the linear
equation

U
( wn−1
‖wn−1‖

wn
‖wn‖ ψ3 . . . ψJ

)
=
(

wn
‖wn‖

w̃
‖w̃‖ ψ3 . . . ψJ

)
, [77]

where w̃ is given by

w̃ = 2w
T
n−1wn

wTnwn
wn −wn−1, [78]

and which we can easily solve for† U . With this rotation matrix, Σn is given by

Σn = wTn−1wn−1

wTnwn
UΣn−1U

T , [79]

where the re-scaling by the fraction ensures the correct scaling of the eigenvalues.

Simulation details

We used parameters σ2
0 = 0.001, σ2

x = 2 and f0 = 0 to generate the momentary evidence δx|µ, as described in the previous
section. At the beginning of each trial sequence we drew the true weights according to w ∼ N (mw,Sw), with unit mean
mw = 1 and identity covariance Sw = I. For that sequence, the diffusion model bounds ±θ were time-invariant, and tuned to
maximize the reward rate if the true weights were used to combined the inputs. We used σ2

µ = 32 to draw µ in each trial. This
µ determined the correct choice by y∗ = 1 if µ ≥ 0, and y∗ = −1 otherwise. The reward rate was given by

RR = p(correct)− caccum 〈t〉
〈t〉+ titi

, [80]

where the average was across trials, and we set the evidence accumulation cost to caccum = 0.01 and the inter-trial interval
to titi = 2s. For non-stationary weights, we re-drew the weights after each choice according to Eq. [46], with A = λI,

†Most likely there exists a closed-form expression for U . We found it by solving the above expression numerically in each trial.
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b = (1− λ)mw, and Σd =
(
1− λ2)Sw, and set the decay factor to λ = 1− 0.01. This yields a weight diffusion that follows a

first-order autoregressive process with steady-state mean mw and covariance Sm.
To compare the weight learning performance of ADF to alternative models, we simulated 1,000 learning trials 5,000 times,

and reported the reward rate per trial averaged across these 5,000 repetitions. To assess steady-state performance, we performed
the same procedure with non-stationary weights, and reported reward rate averaged over the last 100 trials, and over 5,000
repetitions. The sequential choice dependencies in Fig. 4A/B where also computed from these last 100 trials. The learning rate
in Fig. 1D in the main text shows the pre-factor to Σwx̃ in Eq. [41] over decision confidence for a subsample of the last 10,000
trials of a single 15,000 trial simulation with non-stationary weights. For the Gibbs sampler, we drew 10 burn-in samples,
followed by 200 samples in each trial. For the particle filter we simulated 1,000 particles.

We sped up the diffusion model simulations by simulating the diffusion directly in the one-dimensional wTxn(t) space. This
resulted in a one-dimensional diffusion model whose first-passage time distribution is known and can be efficiently drawn from
(14). The final xn (tn) was recovered by drawing it from

xn (tn) ∼ N
(

µntn
w∗Tw∗

w∗,
tn

w∗Tw∗
I
)
, [81]

subject to the constraint wTxn(tn) = ynθ, and where w∗ and w denote the true weights, and the weights used for evidence
accumulation, respectively.
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Fig. S1. Assumed density filtering learning rate modulators for noise-free and noisy feedback y∗. The top panel shows the learning rate modulator ξβ,w(γ) of the mean
update for different levels of feedback noise, β. The bottom panel shows the same for the learning rate modulator ξβ,cov(γ) of the covariance update. In both cases, the
marginal decision confidence associated with the feedback p(y∗|x, t) = Φ(γ) is varied along the horizontal axis. This marginal decision confidence is > 1/2 for correct
(green), and < 1/2 for incorrect (red) choices. β = 0 corresponds to the noise-free case, for which ξw(γ) = ξβ,w(γ) and ξcov(γ) = ξβ,cov(γ).
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Fig. S2. Simpler models can learn more rapidly than more complex models, even if they are unable to provide perfect fits. We show model fits and model error for a linear (blue)
and quadratic (red) model when fitting the target function f(x) = w1 +w2x+w3x

2 for different w3 ’s (red number in the w’s in (a)) for the top, middle, and bottom row. The
quadratic model has the same functional form as f(x) and learns all w. The linear model fixes w3 = 0, and only learns w1 and w2. Both models are fitted to training data
consisting of (xn, f(xn))-pairs, by finding the model weights that minimize the mean squared error between model predictions and given f(xn)’s across all observed xn ’s.
(a) With 104 training examples, both the linear and the quadratic model can fit a linear function (top; model fits and target function plotted on top of each other). As soon as the
target function becomes quadratic (middle & bottom), the linear model fails to perfectly fit this function. (b) The mean squared error, here shown as an average across 500
repetitions across different training sets, drops more rapidly for the linear model than for the quadratic model if the target function is linear (top). This is because the linear model
needs to learn fewer parameters for the same training set size. The error of both models goes to zero once the training set size increases. Even if the target function becomes
quadratic (middle), the linear model can still learn more rapidly than the quadratic model (blue initially drops faster than red), even if it can’t reduce its error to zero (arrow). This
is only possible if the target function is still close-to-linear over the range of interest. Once it becomes too non-linear (bottom), the linear model learns slower than the quadratic
model (arrow), and features a significantly worse asymptotic error. In (b), the mean squared error was in each repetition and for each training set size computed over 1000 new
x’s that were not part of the training set. For all simulations, the x’s were drawn from x ∼ N (0, 1). All learning was performed through optimization, by minimizing the mean
squared error. We could have equally used learning by inference (using Bayesian linear regression with sufficiently uninformative priors), without affecting the results. Therefore,
the shown effects are independent of the chosen learning formalism.
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