1	Supplementary Information
2	
4 5	Defense of Scots pine against sawfly eggs (<i>Diprion pini)</i> is primed by exposure to sawfly sex pheromones
6 7	
8 9 10 11	Norbert Bittner ^a , Janik Hundacker ^a , Ander Achotegui-Castells ^{b,c} , Olle Anderbrant ^d and Monika Hilker ^{a,1}
12 13 14	^a Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Haderslebener Str. 9, 12163 Berlin, Germany
15 16	^b Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Cerdanyola del Valles, Barcelona, 08193, Catalonia, Spain
17 18	^c Global Ecology Unit, CREAF-Consejo Superior de Investigaciones Científicas, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Catalonia, Spain
19 20 21	^d Lund University, Department of Biology, Sölvegatan 37, 223 62 Lund, Sweden
22 23 24 25	Eman. <u>monika.niiker@ru-benin.ue</u>
26	This PDF file includes:
27	Supplementary Material and Methods
28	Supplementary Table S1 to S8
29	Supplementary Fig. S1
30	Supplementary References
31	
32	
33	

34 Supplementary Material and Methods

35

36 Pine exposure to pheromones for 24 h. Male and female D. pini adults are spending their lives in the 37 pine trees. Since no distinct mate calling behavior has been observed in D. pini females, no 38 information is available on their active pheromone release. Interestingly, pheromonal components 39 have also been detected in extracts of D. pini cuticle (1), suggesting some continuous, passive 40 pheromone release. Regardless of the exposure to pheromones released from *D. pini* females sitting 41 in a tree, the tree might also perceive pheromones via (gusts of) wind transferring diprionid 42 pheromones over some distance, as indicated by studies showing that attraction of diprionids to 43 traps baited with female sex pheromones are affected by wind conditions (2). Thus, depending on the distance of a tree from a pheromone source and on the speed of wind carrying a pheromone 44 45 plume to a tree in a pine forest subjected to a mass outbreak of D. pini, an individual pine tree might 46 be exposed to diprionid pheromones at any daytime. During a mass outbreak of D. pini with 47 successive emergence of adults, high concentrations of pheromones might be around even for longer 48 than 24 h.

49

50 **Determination of pheromone release rate.** To calculate the release rate of *D. pini* pheromones from 51 cotton pads placed into the cylinders with the pine trees, we determined the initial quantity of 52 pheromones applied to the pads and the remaining pheromone quantity after a 24 h exposure to 53 pine trees. The pheromones were supplied by Olle Anderbrant from Lund University in Sweden; they 54 were synthesized by Helen Edlund and Erik Hedenström at Mid Sweden University, with a GC purity 55 of 99%.

More specifically, we applied 100 μ l of a pheromone solution in hexane (50 ng μ l⁻¹ mixture of each of 56 57 the pheromone esters (2S, 3R, 7R)-3,7-dimethyl-2-tridecanyl acetate and propionate) to a cotton pad 58 (as described in the main text). After pheromone application, the pads were placed for 30 min in a 59 fume hood, thus allowing the hexane to evaporate. Thereafter, we extracted the pheromone with hexane from the dispenser cotton pads (n = 5). Analysis of the extracts by GC-MS (conditions as 60 61 described in the main text, Material and Methods) provided data on the initial amount of pheromone per pad (and tree). After being used in the experiments (i.e. after the 24 h treatment of plants), we 62 63 also extracted the cotton pads and analyzed the quantity of pheromone remaining on them (n = 48). Based on our data and assuming a continuous release rate, we calculated the proportion of the 64 pheromone released and the release rate in ng h^{-1} (SI Appendix, Table S1). Approximately half of the 65 propionate of (2S,3R,7R)-3,7-dimethyl-2-tridecanol, and two-thirds of the acetate were released 66 67 during the 24 h incubation period.

The amounts of pheromone components per D. pini female were found to vary within a wide range 68 (1). Small amounts of the acetate and propionate component were detected in a similar ratio, but 69 70 the maximum amount of the acetate component detected in a female was 1000 pg, and of the 71 propionate component 500 pg (1). Hence, the ratio of the two pheromone components may range 72 from about 1:1 to 2:1. When comparing the release rate determined here in our study (see Table S1) 73 with that of the maximum amount of pheromonal compounds determined by Anderbrant et al. per 74 D. pini female (1), the quantity of pheromones released from a cotton pad in our study was 75 equivalent to the possible emission by 270 to 450 females. This number of females is very similar to 76 the numbers per tree that were previously observed during mass outbreaks of D. pini by us and 77 others (3).

78 Pheromone residues on plants. To examine whether residues of the pheromone were left on pine 79 needles, pine was exposed to both pheromone esters for 24 h following the method described in the 80 main text. After exposure to the pheromones, pine was exposed to clean, charcoal-filtered air for additional 6 h. We exposed three P. sylvestris trees to the pheromones and harvested 1g needles of 81 82 each tree. The three needle samples were extracted each with 1 ml hexane. The extracts were 83 analyzed (i) directly and (ii) after concentration to 50 μ l under N₂. A volume of 1 μ l of the extracts was injected into a GC-MS (Agilent 7890 A GC model coupled to an Agilent 5975 C MS unit) in 84 85 splitless mode (injector temperature 250 °C; Zebron ZB-5HT capillary column; 30 m x 0.25 mm i.d.; film thickness: 0.25 µm). Helium was used as carrier gas with a flow rate of 1 ml min⁻¹. The following 86 program was used for analysis: 4 min hold at 40 °C, ramp of 10 °C min⁻¹ to 180 °C, followed by a ramp 87 88 of 20 °C min⁻¹ to 280 °C and a 5 min hold of 280° C. A solvent delay of 4 min was added. The column effluent was exposed to electron impact ionization at 70 eV. We recorded a total ion current 89 90 chromatogram (TIC) with a mass range of 25 to 300 m/z and additionally analyzed samples in the single ion mode (SIM) in search for characteristic ions of the pheromone esters: 87 m/z, 101 m/z, 210 91 92 m/z.

93 No (traces of) pheromone esters were detected in neither type of extract.

94

95 Supplementary Table S1. Determination of release rate of *Diprion pini* sex pheromones from 96 cotton pads used in the experiments. Emission rate and percentage of emitted total proportion of 97 the acetate and propionate esters of *D. pini* sex pheromone ((2*S*,3*R*,7*R*)-3,7-dimethyl 2-tridecanyl 98 acetate and propionate) are given (means ± SE).

Pheromone ester	Emission rate in ng h^{-1}	Percentage emitted during 24 h
Acetate	270±16.3	64.7±3.9
Propionate	225±16.6	53.9±4.0

100

101	Supplementary Table S2. Details of evaluations by ANOVA. For data on egg survival and number of
102	eggs laid: please compare Fig. 1, main text. For measurements of water content and $H_2 O_2$
103	concentrations, which were conducted 2 and 12 days after pheromone exposure (i.e. 1 or 11 days
104	after egg deposition): please compare Fig. 2, main text and Fig. S1, SI Appendix.

Analysis	Degrees of * Freedom	* Sum of Squares	* Mean Square	<i>F</i> value	P value
Egg survival	2 / 19	2015.47 / 4679.54	1007.74 / 246.29	4.092	= 0.033
Number of eggs laid	2 / 19	8977.36 / 28112.50	4488.68 / 1479.61	3.034	= 0.072
Water content, day 2	4 / 32	29.07 / 87.71	7.27 / 2.92	2.486	= 0.065
Water content, day 12	4 / 32	210.60 / 661.60	52.65 / 20.68	2.547	= 0.058
H ₂ O ₂ conc., day 2	4 / 35	158.18 / 1159.24	39.54 / 33.12	1.194	= 0.331
H ₂ O ₂ conc., day 12	4 / 35	544.93 / 90.12	136.23 / 2.58	52.911	< 0.001

105 Source of variation: between groups / within groups

107

108

109 Supplementary Table S3. Details of paired *t*-test evaluations of comparison of numbers of laid eggs

110 with numbers of hatched eggs per treatment. Compare Fig. 1, main text.

Treatment	Degrees of Freedom	t value	P value
Untreated	5	4.584	= 0.006
Hexane	7	6.200	< 0.001
Pheromone	7	8.233	< 0.001

111

112 Supplementary Table S4. Details of statistical evaluations of differences in gene expression by

113 Kruskal-Wallis *H* test. Compare Table 1, main text.

Gene	Day*	Degrees of Freedom	H value	P value	
	ROS mediating genes				
PsRboh	2	3	15.763	0.001	
PsRboh	12	3	9.568	0.023	
PsSOD	2	3	4.071	0.254	
PsSOD	12	3	7.937	0.026	
PsCAT	2	3	7.910	0.048	
PsCAT	12	3	2.895	0.423	
PsAPX	2	3	5.993	0.112	
PsAPX	12	3	9.260	0.026	
	Genes in	volved in SA- and J	A-mediated re	esponses	
PsLOX	2	3	4.588	0.205	
PsLOX	12	3	10.513	0.015	
PsPDF	2	3	2.065	0.559	
PsPDF	12	3	1.215	0.729	
PsPR-1	2	3	3.048	0.384	
PsPR-1	12	3	16.682	0.001	
PsPAL	2	3	1.622	0.654	
PsPAL	12	3	10.177	0.017	

114 * days after pheromone exposure

¹⁰⁶

¹⁰⁰

Gene	Primer sequence (5' -> 3')	Pine template	Species	Species for BLAST search			
		for primer design	for primer design	for pine primer template design			
	Housekeeping genes						
PsUBIF	ACTTTACCAGAGTCATCAACC	HE629096	Pinus sylvestris	Picea abies (EF681766)			
PsUBIR	GGTTCTTCGTCTGAGAGGTG						
PscATPF	GGGTCGGTCAAGTCGTCAGC	GW765967	Pinus banksiana	Ginkgo biloba (EU071049)			
PscATPR	GCACGGAAATGGGTTCTTTGC						
PsPETBF	ACCATCATACTTGCCGACCATC	CV035597	Pinus taeda	Populus euphratica (XM011050173)			
PsPETBR	TCGTCCGACCGTTACAGAAGC						
		ROS-mediatin	g genes				
PsRbohF	GATGTACCTGGCAGTTCC	MF389973	Pinus sylvestris	Picea abies (KT192592)			
PsRbohR	GCCACTCTTGTATCTGAACC						
PsSODF	GCTGATGTCAAGGGGGTTGT	X58578	Pinus sylvestris	-			
PsSODR	ACCATGCTCCTTGCCTAACG						
PsCATF	AAGGGCTTTTTCGAGGTGAC	AL751103	Pinus pinaster	-			
PsCATR	GGAATTACCTGCATGGCATC						
PsAPXF	TCTGGTTTTGAAGGACCATG	AY485994	Pinus pinaster	-			
PsAPXR	AAACTAGGATCAGCCAGCAG						
		Genes involved in SA- and JA	A-mediated responses				
PsLOXF	TGGACTAATGATGGAAGAGCAC	DR169048	Pinus taeda	Picea sitchensis (CO218750)			
PsLOXR	TGATGTTGGCAGCAATAACTCG						
PsPDFF	GGCAAGGGAGTTGGCAGTCG	EF455616	Pinus sylvestris	-			
PsPDFR	TGGTGCTGTTCACACAATACCC						
PsPR-1F	TCGTCAACGTACACAGATGTTG	HE627106	Pinus sylvestris	Arabidopsis thaliana (NM127025)			
PsPR-1R	ACTACGATCCGCCTGGGAAC						
PsPALF	CTGGCAGCGATCCACTGAAC	AF353967	Pinus sylvestris	-			
PsPALR	CTTCGAGCAACGGCAGCAAC						

Supplementary Table S5. Sequences of primers used in this study for qPCR and related search information. Compare Table 1, main text.

Supplementary Table S6. Nucleotide sequences of PCR products obtained from primers used in this

study (if based on published sequences, the references are given here in the *SI Appendix,* section "References"). Compare Table 1, main text.

Name	Nucleotide sequence 5'-3'
	Housekeeping genes
PsUBI	ACTTTACCAGAGTCATCAACCTTGTAGTACTGCAGAACAGCCAATTTTACCTTCTTCTTGT GCTTGAGCTTCTTAGGCTTAGTGTAAGTCTTCTTCTTCTTCTTCTTGGCACCACCTCTCAGACG AAGAACCAA
PscATP	GGGTCAAGTCGTCAGCAGGTACATAAACTGCTTGAATCGAGGTTATGGATCCCTTTTTGTGG AGTAATTCTCGTGCCTTTACCCAAGAAACGTT
PsPETB	ACCATCGATGAATTGATCGGATTAACCAACCAAAGTTAACTTCGGTCATTAGGTATTGAACAG AGGCAAAAGCTTCTGTAACGGTCGGACGA
	ROS-mediating genes
PsRboh	GATGTACCTGGCAGTTCCCGTATTATTATATGGAGGAGAACGAAC
PsSOD (4)	GCTGATGTCAAGGGGGTTGTTCAATTCACCCAGGAAGGAGATGGGCCAACAACTGTAACT GGGAAGATCAGTGGTCTGAGCCCTGGTCTCCATGGTTTCCATGTTCATGCACTAGGTGAC ACAACAAATGGGTGCATGTCAACTGGACCACATTTTAATCCGTTAGGCAAGGAGCATGGT
PsCAT (5)	TAAGGGCTTTTTCGAGGTGACCCACTATGTCTCCGATCTCACCTGTGCAGATTTCATGAG GGCACCTGGCGTTCAGACCCCAGTGATTGTTCGGTTTTCTACTGTCATACATGAACGTGG GAGCCCGGAGACTATGAGAGACCCCAGGGGTTTCGCTGTCAAGTTTTACACGAGAGAAGG GAACTTCGACATTGTTGGAAACAATATTCCCGTTTTCTTCACTCGTGATGCCATGCAGGT AATTCC
PsAPX (6)	TCTGGTTTTGAAGGACCATGGACCTCTAACCCTCTTATCTTTGACAACTCTTACTTCACA GAGCTTGTGACTGGAGAGAAGGAAGGCCTGCTTCAGCTGCCATCTGATAAGGCACTGCTG GCTGATCCTAGTTTA
	Genes involved in SA- and JA-mediated responses
PsLOX	TGGACTAATGATGGAAGAGCACTGGAGGCCTTTCAAAGGTTTTCTACCACAGTTCAGGGGGT AGAGGAAATCATACATCAGAGAAATGAAGATTCGAGTAAGAAGAACAGGAATGGGGCSGG CGTACTTCCTTACGAGTTATTGCTGCCAACATCAACC
PsPDF	GGCAAGGGAGTTGGCAGTCGACTCAGCACTCTTTTTCTGCTCGTGCTGCTTGTTATAACC ATTGGGATGATGCAGGTTCAAGTTGCAGAGGGCCGAATGTGCAAAACCCCGAGCGGCAAG TTCAAAGGGTATTGTGTGAACAGCACCA
PsPAL (7)	CTGGCAGCGATCCACTGAACTGGGTTCGAGCAGCCAAGGCCATGGAAGGAA
PsPR-1	TCGTCAACGTACACAGATGTTGAAGATTTACAGTAACACGGAATATTAGAAGGAAATTAACG AAAACTAATACGATATGATAGGTCGGGATATCAGAATTCAGTATGGTTTCTGCCCTACATAGT TCCCAGGCGGATCGTAGT

Supplementary Table S7. Transcript levels of genes in untreated pine trees and in trees exposed to hexane. Gene expression in untreated trees was normalized to the expression of the housekeeping genes (see main text, Material and Methods) and set to value 1. Gene expression in hexane-treated trees expressed as fold-change to expression levels in untreated controls. Data show means \pm SE. n = 8 untreated and n = 5-8 hexane-treated trees. Expression levels were determined 2 and 12 days after treatment. *P* values: pairwise comparison of untreated and "hexane control" by *t-test or *Mann-Whitney *U* test. Compare Table 1, main text.

Time	Hexane control	Untreated	P value				
PsRbo	PsRboh - Respiratory burst oxidase homolog (plant NADPH oxidase)						
2d [*]	0.76±0.09	1.00±0.20	0.311				
$12d^{\dagger}$	2.06±0.28	1.00±0.16	0.126				
	PsSOD - Superoz	xide dismutase					
2d [*]	1.21±0.24	1.00±0.17	0.498				
$\mathbf{12d}^{*}$	1.46±0.15	1.00±0.13	0.720				
	PsCAT – (Catalase					
2d [†]	0.56±0.13	1.00±0.25	0.222				
$12d^{\dagger}$	0.56±0.10	1.00±0.21	0.228				
	PsAPX - Ascorba	ate peroxidase					
2d [*]	0.98±0.10	1.00±0.20	0.924				
$12d^{\dagger}$	1.44±0.24	1.00±0.07	0.081				
	PsLOX - Lipoxygenase						
2d [†]	1.59±0.46	1.00±0.17	0.442				
12d [*]	0.68±0.12	1.00±0.09	0.055				
	<i>PsPDF</i> - Plar	nt defensin					
2d [†]	1.27±0.54	1.00±0.34	0.878				
12d [*]	0.55±0.15	1.00±0.22	0.128				
	PsPR-1 - Pathogenesis related 1						
2d [†]	4.11±2.36	1.00±0.48	0.442				
12d [*]	0.56±0.16	1.00±0.41	0.382				
	PsPAL - Phenylalani	ine ammonia lyase					
2d [*]	1.48±0.44	1.00±0.18	0.335				
12d [°]	0.75±0.17	1.00±0.16	0.294				

Supplementary Table S8. Details of statistical evaluations of the EAG responses by *Diprion pini* to the acetate / propionate sex pheromonal components. Responses to test substance compared to responses to controls; Wilcoxon matched pairs test. Compare Fig. 3, main text.

Test substance	Sex	Z value	P value
Acetate pheromone component	male	2.521	0.008
Propionate pheromone component	male	2.521	0.008
Acetate + Propionate pheromone components	male	2.521	0.008
Acetate pheromone component	female	0.840	0.461
Propionate pheromone component	female	1.540	0.148
Acetate + Propionate pheromone components	female	1.183	0.297

Supplementary Fig. S1. (*A*) Water contents and (*B*) hydrogen peroxide concentrations of *Pinus sylvestris* after exposure to sawfly sex pheromones and subsequent egg deposition. Measurements were conducted 2 days after pheromone exposure, i.e. 1 day after egg deposition, and at equivalent time points in controls. Water concentrations and hydrogen peroxide concentrations were determined in pine needles from untreated trees, from trees exposed to the solvent hexane (without eggs: hexane control; with eggs: hexane + eggs), from trees exposed to the pheromones (dissolved in hexane) (without eggs: pheromone; with eggs: pheromone + eggs). Means + SE of water contents and hydrogen peroxide concentrations are given (n = 5 for water content untreated; n = 8 for all other treatments). All data evaluated by ANOVA (n.s., not significant) (compare *SI Appendix*, Table S2).

Supplementary References

- 1. O. Anderbrant *et al.*, Release of sex pheromone and its precursors in the pine sawfly *Diprion pini* (Hym., Diprionidae). *Chemoecology* **15**, 147–151 (2005).
- R. Wedding, O. Anderbrant, P. Jönsson, Influence of wind conditions and intertrap spacing on pheromone trap catches of male European pine sawfly, *Neodiprion sertifer. Entomol. Exp. Appl.*. 77, 223–232 (1995).
- 3. W. Thalenhorst, Der Zusammenbruch einer Massenvermehrung von Diprion pini L. und seine Ursachen. Z. Angew. Entomol. 29, 367–411 (1942).
- 4. B. Karpinska *et al.*, A novel superoxide dismutase with a high isoelectric point in higher plants. Expression, regulation, and protein localization. *Plant Physiol.* **126**, 1668–1677 (2001).
- 5. B. Vornam, A. Arkhipov, R. Finkeldey, Nucleotide diversity and gene expression of catalase and glutathione peroxidase in irradiated Scots pine (*Pinus sylvestris* L.) from the Chernobyl exclusion zone. *J. Environ. Radioact.* **106**, 20–26 (2012).
- L. Valledor, M. J. Cañal, J. Pascual, R. Rodríguez, M. Meijón, Early induced protein 1 (PrELIP1) and other photosynthetic, stress and epigenetic regulation genes are involved in *Pinus radiata* D. don UV-B radiation response. *Physiol. Plant.* 146, 308–320 (2012).
- 7. V. Dvornyk, A. Sirviö, M. Mikkonen, O. Savolainen, Low nucleotide diversity at the *pal1* locus in the widely distributed *Pinus sylvestris*. *Mol. Biol. Evol.* **19**, 179–188 (2002).