Supplementary material

Identification of a T follicular helper cell subset that drives anaphylactic IgE

Uthaman Gowthaman^{1,2}, Jennifer S. Chen^{1,2,} *, Biyan Zhang^{1,2}*, William F. Flynn³, Yisi Lu², Wenzhi Song², Julie Joseph¹, Jake A. Gertie^{1,2}, Lan Xu^{1,2}, Magalie A. Collet³, Jessica Grassmann³, Tregony Simoneau⁴, David Chiang⁵, M. Cecilia Berin⁵, Joseph E. Craft², Jason S. Weinstein⁶, Adam Williams^{3,7*†}, Stephanie C. Eisenbarth^{1,2,*†}

Affiliations:

¹Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.

²Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.

³The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA.

⁴The Asthma Center, CT Children's Medical Center, Hartford, CT 06106

⁵Jaffe Food Allergy Institute/Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA

⁶Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA.

⁷The Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA.

* Contributed equally

[†]Corresponding author. Email: stephanie.eisenbarth@yale.edu (S.C.E.); adam.williams@jax.org (A.W.)

50%

Fig. S1. T-Dock8^{-/-} mice have normal dendritic cell migration and T cell activation

(A) Comparable frequency of OVA⁺ migratory conventional dendritic cells type 1 (cDC1s) and type 2 (cDC2s) in MedLNs of T-*Dock8*^{-/-} or control *Dock8*^{fl/fl} mice 18 hr post intranasal (i.n.) immunization with LPS and OVA-AF647. (B) Splenic marginal zone B cell frequencies in *Dock8*^{fl/fl}, T-*Dock8*^{-/-}, or *Dock8*^{-/-} mice. (C) DOCK8 immunoblot performed on purified CD4⁺ T cells from *Dock8*^{-/-}, T-*Dock8*^{-/-} and control *Dock8*^{fl/fl} mice. (D) Splenic T cell frequencies in *Dock8*^{fl/fl}, T-*Dock8*^{-/-}, or *Dock8*^{-/-} mice. (E-F) *Dock8*^{-/-} CD4⁺ OVA-specific T cells (OT-II cells) show normal proliferation and Tfh differentiation. (E) Congenically marked *Dock8*^{WT} and *Dock8*^{-/-} OT-II cells were labeled with CFSE and co-transferred into naïve recipients, which were immunized with LPS and NP-OVA i.n. Three days later, proliferation was assessed by CFSE dye dilution. (F) Tfh cell differentiation of *Dock8*^{WT} and *Dock8*^{-/-} OT-II cells was assessed 6 days post immunization. Numbers in flow cytometry plots indicate percentage. Statistical tests: ANOVA (B, D). **P*<0.05, ****P*<0.001. Data representative of at least two independent experiments with 2-3 mice per group.

Fig. S2. T-*Dock8*^{-/-} mice have a hyper IgE state

WT, Dock8^{fl/fl}, or T-Dock8^{-/-} mice were immunized i.n. with LPS and NP16-OVA and boosted twice with NP16-OVA. NP16-OVA-specific antibody responses on day 8 post boost were quantitated by ELISA for (A) IgG2c, (B) IgG1, and (C) IgE isotypes. (D) LPS+OVA immunized and boosted T- $Dock8^{-/-}$ or control ($Dock8^{fl/fl}$) mice were challenged intraperitoneally (i.p.) with NP7-BSA. Plasma was collected thirty minutes post challenge and mouse mast cell protease 1 (MMCP-1) levels were measured by ELISA. (E) LPS and NP16-OVA immunized and boosted mice were challenged i.p. with NP7-BSA in 0.2% Evans blue. Forty minutes later, mice were evaluated for edema as described in the adjacent scoring scheme. (F) Total IgE levels in the sera from young or old naïve T-*Dock8*^{-/-} or control (*Dock8*^{fl/fl}) mice. (G) Frequency of CD138⁺ IgE⁺ plasma cells in mesenteric lymph nodes of aged T-Dock8^{-/-} or control mice. (H) Dock8^{fl/fl} Foxp3-EGFP-cre-ERT2 (Treg-Dock8^{-/-}), T-Dock8^{-/-}, or Dock8^{fl/fl} (Ctrl) mice were immunized and boosted with LPS and NP16-OVA i.n. as described. Day 8 post boost high-affinity IgE was quantitated by ELISA using NP7-BSA-coated plates. Dock8 was inducibly deleted in Treg-Dock8^{-/-} mice by administering tamoxifen (Tam) (1 mg/day/mouse) in corn oil through oral gavage on three consecutive days before every immunization. (I) Tregs from CD45.2 *Dock8*^{-/-} or WT mice were cultured with naïve CFSE-labeled CD45.1⁺ WT CD4⁺ T cells at a ratio of 1:2 in the presence of α -CD3 and α -CD28 for 4 days. Proliferation was assessed by CFSE dye dilution gated on CD45.1⁺ CD4⁺ T effectors. (J-K) T-Dock8^{-/-} or control (*Dock8*^{fl/fl}) mice were immunized with Alternaria extract and NP16-Ova (Alt+OVA) and boosted twice as described in the methods. Day 8 sera from boosted mice were analyzed by ELISA for (J) high-affinity IgE using NP7-BSAcoated plates and (K) total IgE. Each symbol indicates an individual mouse. Error bars indicate SEM. Dotted lines in bar graphs represent background readings of sera from naïve mice. Statistical tests: Kruskal–Wallis H test (A, C, D, E, F, H, J); ANOVA (B); Student's t-test (G, K). *P<0.05,

P<0.01, *P<0.001, and ns is not significant. Data representative of two independent experiments with 2-8 mice per group.

в

Α

Fig. S3

Fig. S3. Tfh cells and germinal centers in T-*Dock8*^{-/-} mice

T-*Dock8*^{-/-} and control (*Dock8*^{fl/fl}) mice were immunized i.n. with LPS and NP16-OVA and analyzed for (A) frequency of day 8 Tfh cells and (B) PD-1 and CXCR5 expression on Tfh cells by flow cytometry. (C) Quantification of germinal centers size Tfh cells in GCs as analyzed by confocal microscopy on sections from day 9 MedLN as in Fig 1G. (D) Day 8 immunofluorescent images of GCs from the MedLN of LPS+OVA immunized T-*Dock8*^{-/-} and *Dock8*^{fl/fl} (control) mice. PD-1 (red), PNA (blue), IgD (green), TCR β (white). Scale bar: 100 µM. (E) Frequency of day 8 GC B cells by flow cytometry. Each symbol indicates an individual mouse. Statistical tests: Student's *t*-test. Error bars indicate SEM. ns is not significant. Data representative of at least two independent experiments with 3-7 mice per group.

G

Fig. S4. Characterization of Tfh13 cells in T-Dock8^{-/-} mice

(A) Gating strategy to identify Tfh13 cells. (B) T-*Dock8*^{-/-} and control (*Dock8*^{fl/fl}) mice were immunized i.n. with LPS and NP16-OVA and analyzed for (B) IL-5 expression by day 8 Tfh13 cells and (C) BCL6 expression in cytokine-producing Tfh cell subsets. (D) IL-21 reporter expression in MedLN Tfh cells from IL-21 TWIK reporter T-*Dock8*^{-/-} or control TWIK *Dock8*^{fl/fl} reporter mice on day 8 post immunization. (E) IL-21 ELISpot of Tfh cells sorted from T-*Dock8*^{-/-} or control (*Dock8*^{fl/fl}) mice at day 7 post immunization. (F) GATA3 expression in Tfh cells from T-*Dock8*^{-/-} or control (*Dock8*^{fl/fl}) mice post immunization is shown as histogram overlay (left) and as bar graphs (right). (G) Frequency of Tfh13 cells in mesenteric lymph nodes of aged T-*Dock8*^{-/-} or control mice. Each symbol indicates an individual mouse. Error bars indicate SEM. Statistical tests: ANOVA (C, F); Mann–Whitney *U* test (E); Student's *t*-test (G). **P*<0.05, ***P*<0.01, ****P*<0.001, *****P*<0.0001, and ns is not significant. Data representative of at least two independent experiments with 3-7 mice. FMO, fluorescence minus one control for GATA3 staining.

Fig. S5. Characterization of type 2 responses to Alternaria in WT and T-Bcl6^{-/-} mice

(A) WT C57BL/6 mice were immunized intranasally (i.n.) with LPS or *Alternaria* extract and NP16-OVA and boosted as described. Day 8 sera from boosted mice were analyzed by ELISA with NP7-BSA-coated plates for high-affinity IgG1. (B-C) Frequency of Tfh cells from $Cd4^{Cre}Bcl6^{ll/l}$ (T- $Bcl6^{-/-}$) mice or controls ($Bcl6^{fl/l}$) that were immunized with *Alternaria* extract and NP16-OVA. (C) T- $Bcl6^{-/-}$ or control ($Bcl6^{fl/l}$) mice were immunized and boosted with *Alternaria* extract and NP16-OVA. Data depict total serum IgE day 8 post-boost. (D) Bronchoalveolar lavage (BAL) eosinophilia in T- $Bcl6^{-/-}$ or control ($Bcl6^{fl/l}$) mice that were immunized and challenged with *Alternaria* extract and NP16-OVA. Each symbol indicates an individual mouse. Data representative of 3-6 mice per group. Error bars indicate SEM. Dotted lines in bar graphs represent background readings of sera or BAL eosinophils from naïve mice. Statistical tests: Student's *t*-test (A, D); Mann–Whitney *U* test (C). **P*<0.05, ***P*<0.01, and ns is not significant.

Fig. S6. scRNA-seq QC analysis

(A-B) Violin plots showing 5 per-cell metrics used to gauge the quality of individual single-cells from either sorted Tfh cells or *Il4*-expressing (4get+) activated T cells scRNA-seq runs: UMI counts, gene counts, fraction of the captured transcripts mapped to mtRNA, per-cell sequencing saturation, and cumulative expression of 10 hemoglobin genes. Red horizontal lines show the thresholds above or below which were used to exclude cells for each criterion; sequencing saturation was not used to filter cells. More stringent filtering criteria were used for the second sample. (C-J) 2D UMAP embedding of the single-cell expression profiles from both scRNA-seq runs labeled by (C-D) biological replicate as determined by cell-hashing (*82*), (E-F) cluster assigned by the Leiden community detection algorithm, (G-H) total UMI counts per cell, and (I-J) gene counts per cell. (K-L) Matrix plots showing the log-transformed normalized expression of representative marker genes to identify the T-cell populations of interest and remove B-cells, monocytes, and NK cells. Gene expression is colored relative to the highest expressed gene shown in each matrix. (M-N) Bar plots showing the proportion of cells in each cluster from each biological replicate from each scRNA-seq run, respectively.

Α

Fig. S7. Differentially expressed genes between Tfh2 and Tfh13 cells

(A) Violin plots showing the expression of *Ccl1*, *Il3*, *Il5*, *Furin*, *Phlda1*, *Lgals7*, *Tnfrsf4* (OX40), *Cd40lg* (CD40L), *Icos*, *Pdcd1* (PD-1), *Maf* (c-Maf), *Batf*, *Foxp3*, and *Il21* in the seven Tfh cell clusters. (B) Volcano plot showing differentially expressed genes (DEGs) between clusters 1 (Tfh2 cells) and 4 (Tfh13 cells). The horizontal axis shows the log₂-fold change in mean expression between the two clusters and the vertical axis shows the log₁₀ adjusted *P*-value (Benjamini-Hochberg correction) given by a likelihood ratio test. Genes that are more highly expressed in cluster 4 have positive log-fold change. The 7 and 10 most significant DEGs for clusters 1 and 4 are labeled.

IL-13⁺Th2

Tfh2

Tfh13

Tfh2

Tfh13

IL-13⁺Th2 Tfh2 Tfh13

Fig. S8. Characterization of Tfh13 cells induced to Alternaria extract in WT mice

WT C57BL/6 mice were immunized with LPS+OVA or Alt+OVA and Tfh cells were analyzed by flow cytometry 8 days later. (A) Tfh cell frequencies and (B) numbers post immunization. (C) Frequency of GC B cells (PNA⁺ IgD⁻). (D) Gating strategy to identify Tfh cells (PD-1⁺CXCR5⁺) and effectors (PD-1^{lo} CXCR5^{lo}) that make cytokines IL-4 and IL-13. Samples were stimulated with PMA+Ionomycin and stained for cytokines as described in methods. (E) Unstained (FMO) control for IL-13 staining. (F) Absolute counts of Tfh2 and Tfh13 cells induced in LPS+OVA or Alt+OVA day 8 post immunization. (G-H) Expression of (G) PD-1, (H) CXCR5 and (I) BCL6 in Tfh2, Tfh13 and IL-13+ Th2 (gated as in D using intracellular cytokine staining). Dotted lines indicate MFI of naïve CD4 T cells. Each symbol indicates an individual mouse. Error bars indicate SEM. Data representative of two to three experiments with 3-5 mice per group. Statistical tests: Student's *t*test (A-C); Mann–Whitney *U* test (F); ANOVA (G-I). **P*<0.05, ***P*<0.01, ****P*<0.001, *****P*<0.0001, and ns is not significant.

Е

Fig. S9. Association of Tfh13 cells and LN Eosinophils

Day 7 Tfh cells were sorted from WT C57BL/6 mice (n=4) immunized with Alt+OVA or LPS+OVA. Cells from each immunization were pooled to obtain two biological replicates for each immunization group, and qPCR was performed with technical duplicates for (A) *Il13* and (B) *Il4* transcripts. (C) Frequency and (D) numbers of eosinophils gated on TCR β^- B220⁻ MHC-II⁻ CD11c⁻ cells in the MedLN at day 8 post immunization with LPS or *Alternaria* and NP-OVA depicted as flow cytometry plots (left) and summary bar graph. (E) Representative flow cytometry plot for PD-1 and CXCR5 expression on IL-5⁺ CD4 T cell post Alt+OVA immunization. Error bars indicate SEM. Data representative of two experiments with 4-5 mice per group. Statistical tests: Student's *t*-test (C-D). ***P*<0.01.

Fig. S10. Transcription factors in Tfh cells induced to type 1 and 2 immunizations

WT C57BL/6 mice were immunized with Alt+OVA or LPS+OVA and day 7 Tfh cells (PD-1⁺ CXCR5⁺) and effectors (PD-1¹⁰ CXCR5¹⁰) were analyzed for (A) BCL6, (B) BATF, (C) IRF4, and (D) TCF1. Each symbol indicates an individual mouse. Error bars indicate SEM. ANOVA was performed for (A-D). Data representative of two experiments with 3-4 mice per group. *P<0.05, **P<0.01, ***P<0.001, ***P<0.001, and ns is not significant.

Fig. S11. Tfh13 cells are a distinct T cell subset

4get/Il4-reporter mice were immunized intranasally (i.n.) with Alternaria extract and NP19-OVA. 4get⁺ CD44⁺ CD4 T cells were sorted and single-cell RNA sequencing analysis was performed. (A) Volcano plot showing differentially expressed genes (DEGs) between clusters 1 (Th2 cells, n=405) and 2 (Tfh13 cells, n=340) from the $II13^+$ selected cells. The horizontal axis shows the log₂ fold change in mean expression between the two clusters and the vertical axis shows the log₁₀ adjusted p-value (Benjamini-Hochberg correction) given by a likelihood ratio test. Genes that are more highly expressed in cluster 2 have positive log fold change. Selected statistically significant DEGs for clusters 1 and 2 are labeled. (B-C) Bcl6-expressing cell analyses: cells expressing 1 or more transcripts of Bcl6 were isolated and subjected to the dimensionality reduction and clustering strategy outlined in the Materials and Methods. (B) 2D UMAP embedding of the single-cell expression profiles of n=805 $Bcl6^+$ T cells. Low resolution (0.1) Leiden community detection on the cell-cell k=10 nearest neighbor graph segregates the cells into two general clusters; 1: Tfh2 cells (n=668); 2: Th13 cells (n=137). (C) A matrix plot showing the expression of key marker genes that are similarly and differentially expressed between Tfh2 and Th13 cells. The color scale represents the log-transformed normalized UMI counts that have been scaled between 0 and 1 separately for each gene.

в

Gated: PD-1⁺ CXCR5⁺ Tfh cells

Fig. S12. Smart13/IL-13 reporter mice validation

Smart13/IL-13 reporter mice were immunized with *Alternaria* extract and NP19-OVA. MedLN cells were stained for Tfh markers and human CD4 (hCD4) indicative of IL-13 expression. (A) IL-13 reporter expression in Tfh cells and effectors day 3 post boost. Non-reporter mice were used as controls for the stain. (B) Comparison of hCD4 expression on day 8 Tfh cells that make IL-13 protein as measured by intracellular staining (ICS).

Fig. S13. Tfh13 cells are induced to multiple allergens

(A, B) WT C57BL/6 mice were immunized intranasally (i.n.) with LPS or HDM and NP19-OVA and intracellular expression of (A) IL-4 and IL-13 from day 8 MedLN Tfh cells induced after primary immunization is depicted as absolute counts. (B) IL-5 expression in Tfh13 cells. (C, D) WT C57BL/6 mice were intragastrically immunized with ground peanut (PN) \pm cholera toxin. (C) IL-4 and IL-13 from day 8 MesLN Tfh cells induced after primary immunization is depicted as absolute counts. (D) IL-5 expression in Tfh13 cells. Each symbol indicates an individual mouse. Error bars indicate SEM. Statistical tests: Student's *t*-test (A, D); Mann–Whitney *U* test (B, C). **P*<0.05, ***P*<0.01. Data representative of at least two independent experiments with 4-5 mice per group.

Fig. S14. Gating strategy for peanut-specific circulating Tfh (cTfh) cells

Representative flow plot of PBMCs from a peanut-allergic patient shown that were stimulated or not with crude peanut extract, and cTfh cells were gated as depicted. FMO, fluorescence minus one for CXCR5 demonstrates the specificity of CXCR5 staining and identification of cTfh cells.

в

Gating strategy for IgE, IgG1, IgM GC B Cells

A

Fig. S15. Loss of Tfh13 cells abrogates production of high-affinity IgE

(A) Frequencies of Th2 (PD-1^{lo} CXCR5^{lo} IL-13⁺ CD4 T cells) from 13Cre*Bcl6*^{fl/fl} or control *Bcl6*^{fl/fl} mice that were immunized with ALT+OVA on day 8 post immunization. Data representative of two experiments with 3-5 mice per group. Statistical tests: Student's *t*-test. (B) WT C57BL/6 mice were immunized intranasally (i.n.) with Alt+OVA and day 9 MedLN cells were stained for IgE, IgG1 GC B cells. Non-draining inguinal LN shown to demonstrate an unimmunized site.

Fig. S16. GC B cells express IL-13Ra1

WT C57BL/6 mice were immunized intranasally (i.n.) with Alt+OVA. Expression of IL-13R α 1 on MedLN B cells at day 8 post immunization with is shown as histogram overlay (left) and as summary bar graphs (right). Data representative of two independent experiments with 3-5 mice. Statistical test: Student's *t*-test. *****P*<0.0001

Supplementary Tables

Table S1: 10X Genomics scRNA-seq sequencing metrics

				Median UMI	Mean	Median				Fraction
	10X	Number of	Cells	Counts per	Reads per	Genes per	Total Genes	Valid	Sequencing	Reads in
Run	Chemistry	Reads	Captured	Cell	Cell	Cell	Detected	Barcodes	Saturation	Cells
Tfh Sort	V2	158,232,094	3,956	2,708	39,998	1,180	14,966	96.80%	79.30%	74.90%
IL-4+ Sort	V3	281,768,394	7,674	3,961	36,717	1,514	17,743	97.00%	57.60%	69.40%

Table S2: 10X Genomics scRNA-seq mapping metrics

			% Q30	Bases in	% Read	s Mapped to			9	6 Reads Map	ped Confidently to
		RNA	Sample			Antisense		Intergenic	Intronic	Exonic	
Run	Barcode	Read	Index	UMI	Genome	Gene	Genome	Regions	Regions	Regions	Transcriptome
Tfh Sort	98.10	81.40	97.40	98.30	94.70	1.60	90.10	2.70	17.90	69.60	66.30
IL-4+ Sort	93.20	91.50	87.40	93.00	94.10	1.70	90.00	5.30	18.80	65.90	62.60

Table S3: Single Cell exclusion criteria

	Cells excluded by							
	Total	Cells	T-Cells	HTO	UMI	Gene	mtRNA	Hemoglobin
Run	Cells	passing QC	recovered	multiplet ^a	count	count	content	UMI count
Tfh Sort	3,956	3,811	3,002	126	8	0	11	1
IL-4+ Sort	7.674	4.096	3.863	1.059	66	1.770	660	23

^aHTO multiplets denote cells classified as either belonging to multiple HTOs or those with too few tags to be confidently classified.

Table S4: Clinical Characteristics of Aeroallergen-sensitized Patients (for Figure 4)					
	Allergic	Control	P value		
	N=13	N=16			
Age-Years mean (SD)	10 (2.6)	11.2 (2.6)	0.23		
Sex Female N (%)	5 (38.5)	7 (44)	0.77		
Total IgE (kU/L) mean (SD)	610 (631)	62 (77)	< 0.05		
Total eosinophils (cells/uL) mean (SD)	337 (387)	119.4 (92.5)	< 0.05		
Allergen N (%)*					
Dermatophagoides farina	6 (46)				
Dermatophagoides pteronyssis	6 (46)				
Dog	6 (46)				
Cat	6 (46)				
Cockroach	3 (23)				
Mouse	2 (15)				
Rat	2 (15)				
Mugwort	1 (8)				
Alternaria alternata	2 (15)				
Cladosporium herbarum	0 (0)				

*Percentages add to greater than 100% as some individuals were allergic to more than one allergen.

Table S5: Antibody Clones and Dilutions

Target (Clone)	Species	Fluorochrome/conjugate	Dilution	Source
TCRβ (H57-597)	Armenian Hamster	Percp/cy5.5	1:300	Biolegend
	IgG	PE/Cy7	1:300	
CD4 (GK1.5)	Rat IgG _{2b} , Rat IgG _{2a}	Percp/cy5.5	1:400	Biolegend
(RM4-5)		PE/Cy7	1:400	
		APC-Fire [™] 750	1:400	
		PE-CF594	1:400	BD Bioscience
Human CD4	Mouse IgG ₁	AF647	5ul/test	Biolegend
(RPA-T4)		BV605	5ul/test	
		APC-Cy7	3:100	Tonbo Biosciences
CD44 (IM7)	Rat IgG _{2b}	FITC	1:600	Biolegend
		BV605	1:600	
CXCR5 (L138D7)	Rat IgG _{2b} ,	Biotin	1:200	Biolegend,
(2G8)	Kat IgO _{2a}	Biotin	1:150	BD Bioscience
PD-1 (29F.1A12)	Rat IgG _{2a} ,	APC-Fire TM 750	1:200	Biolegend
(RMP1-30)	Rat IgG _{2b}	BV421	1:200	
		PE	1:200	
IL-4 (11B11)	Rat IgG ₁	PE	1:100	Biolegend
		APC	1:100	
IL-5 (TRFK5)	Rat IgG1	APC	1:150	Biolegend
IL-13 (eBio13A)	Rat / IgG1	PE/Cy7	1:100	eBioscience
		FITC	1:100	
B220 (RA3-6B2)	Rat IgG _{2a}	Percp/cy5.5	1:400	Biolegend
		APC-Fire TM 750		
CD19 (6D5)	Rat IgG _{2a}	PE/Cy7	1:400	Biolegend
		FITC		
		Percp/cy5.5		
GL7	Rat IgM	FITC	1:600	Biolegend
		Percp/cv5.5		
1	1	1	1	

All targets are mouse proteins except where indicated.

CD95 (Jo2)	Armenian Hamster	PE	1:300	BD Bioscience
	IgG ₂	APC		
CD23 (B3B4)	Rat IgG _{2a}	PE	1:400	Biolegend
CD21/35 (7E9)	Rat IgG _{2a}	APC	1:200	Biolegend
CD11c (N418)	Armenian Hamster	Pacific Blue	1:300	Biolegend
	IgG	APC/Cy7		
MHC II	Rat IgG _{2b}	BV510	1:800	Biolegend
(M5/114.15.2)		BV412	1:800	
CD11b (M1/70)	Rat IgG _{2b}	PE/Cy7	1:500	Biolegend
Va2 (B20.1)	Rat IgG _{2a}	PB	1:400	Biolegend
		PE	1:400	
CD103 (2E7)	Armenian Hamster	PE	1:300	Biolegend
	IgG			
CD24 (M1/69)	Rat IgG _{2b}	PeCy7	1:400	Biolegend
CD45.1 (A20)	Mouse IgG _{2a}	PE, APC	1:200	Biolegend
CD45.2 (104)	Mouse (SJL) IgG _{2a}	PE, APC, PB	1:200	Biolegend
Siglec-F	Rat IgG _{2a}	PE	1:300	BD Bioscience
(E50-2440)				
GR-1 (RB6-8C5)	Rat IgG _{2b}	APC	1:000	Biolegend
ICOS (15F9)	Syriyan Hamster IgG	PE	1:200	Biolegend
	ArmenianHamster			
(C398.4A)	IgG			
		FITC	1:200	BD Bioscience
GATA-3				
(L50-823)	Mouse IgG ₁	Pacific Blue	1:50	BD Bioscience
(TWAJ)	Rat IgG _{2b}	PeCy7	1:30	eBioscience
Foxp3 (FJK-16s)	Rat IgG _{2a}	Pacific Blue	1:100	eBioscience
IRF4 (IRF4.3E4)	Rat IgG ₁	PE	1:300	Biolegend
BCL-6	Mouse IgG ₁	FITC	1:50	BD Biosciences
(K112-91)		AF647	1:50	
TCF-1(C63D9)	Rabbit IgG	Purified	1:200	Cell Signaling
BATF (S39-1060)	Mouse IgG ₁	PE	1:100	BD Biosciences
ICOS (15F9)	Syriyan Hamster IgG	PE	1:200	Biolegend
	ArmenianHamster			
(C398.4A)	IgG	FITC	1:200	BD Bioscience
IgD (11-26c.2a)	Rat IgG _{2a}	AF647	1:400	Biolegend

		Percp/cy5.5	1:300	
		AF488	1:300	
IgG1 (A85-1)	Rat IgG ₁	V450	1:500	BD Bioscience
IgE (RME-1)	Rat IgG ₁	FITC	1:400	Biolegend
		Purified	1:30	
CD16/CD32	Rat IgG _{2b}	Purified	1:50	BD Bioscience
(BD Fc Block TM)				
CD138 (281-2)	Rat IgG _{2a}	PeCy7	1:300	Biolegend
IL-13Rα	Rat IgG _{2a}	PE	1:100	Biolegend
(13MOKA)				
Peanut Agglutinin		Biotin	1:800	Vector Labs
Viability dye aqua		510nm	1:1000	Life
		(Amcyan channel)		Technologies
Human CD3 (UCHT1)	Mouse IgG ₁	PerCP-Cy5.5	4.25:100	Tonbo Biosciences
Human CD45RA (HI100)	Mouse IgG _{2b}	V450	2.75:100	Tonbo Biosciences
Human CXCR5 (RF8B2)	Rat IgG _{2b}	BB515	5:100	BD Bioscience
Human ICOS (DX29)	Mouse IgG ₁	BV711	2.4:100	BD Bioscience
Human PD-1 (EH12.2H7)	Mouse IgG ₁	BV605	2:100	Biolegend
Human IL-4 (MP4-25D2)	Rat IgG ₁	PE-Cy7	5:100	Biolegend
Human IL-13 (JES10-5A2)	Rat IgG1	APC	5:100	Biolegend
Human IFNγ (4S.B3)	Mouse IgG ₁	AF700	2:100	Biolegend
IgE (R35-72) Elisa:capture	Rat IgG ₁	Purified	1:250	BD Bioscience
IgE Elisa:detection	Goat anti-mouse IgE	HRP	1:4000	Southern Biotech
IgG1 Elisa:detection	Goat anti-mouse IgG1	HRP	1:6000	Southern Biotech
IgG2c Elisardetection	Goat anti-mouse	HRP	1:5000	Southern Biotech
DOCK8	Rabbit IgG	Purified	1:1000	Clontech/Takara

Rabbit IgG	Goat anti-Rabbit IgG	HRP	1:5000	Invitrogen
	(H+L)			