
Augmented Interval List: a novel data structure for efficient genomic interval search

Supplementary Information

Authors: Jianglin Feng, Aakrosh Ratan, and Nathan C. Sheffield

1. AIList augmented with SortedE

In this variant of the AIList data structure, the AIList is augmented directly with SortedE, the sorted list
of interval ends, instead of the MaxE. So the basic data structure contains 3 elements: interval start,
interval end and SortedE. Let aiL be a constructed AIList, hSub be the head info containing the start of
the sublists in aiL. We seek to identify overlaps of AIList with a given query q = [start, end). The search
algorithm is listed in Algorithm S1.

For each sublist, we first find the index of the last interval IE that has start < q.end with a binary search,
which excludes all intervals on the right. Since SortedE is sorted by the end, we can find the index of the
leftmost element IS that has end > q.start. This indicates that there are IS-1 elements on the left of IS
should be excluded and the number of intersections is, thus, IE - IS +1 (Layer et al., 2013). This algorithm
does not directly find IS , instead it simultaneously enumerates SortedE and aiL from IE to the left, so
only one binary search is needed.

This search algorithm can slightly outperform the search algorithm of the MaxE version in cases such as
wide queries (q.end >> q.start), but the sorting of the interval ends for SortedE is slower than finding the
running maximum ends for MaxE. Generally MaxE version runs slightly faster than SortedE version, so the
MaxE version is preferred.

Algorithm S1 AIList Search Algorithm

Input: AIList aiL, sublist header hSub, query [start, end)
Output: Overlaps H

1: procedure AILISTSEARCH(aiL, hSub, start, end)
2: H ← ∅
3: for i← 1 to |hSub| − 1 do
4: k ← BinarySearch(aiL, hSub[i], hSub[i+ 1]− 1, end)
5: t← 0
6: while k > hSub[i] and aiL[k].SortedE > start do
7: t← t+ 1
8: if aiL[k].end > start then
9: H ← H ∪ aiL[k]

10: t← t− 1
11: end if
12: k ← k − 1
13: end while
14: while t > 0 do
15: if aiL[k].end > start then
16: H ← H ∪ aiL[k]
17: t← t− 1
18: end if
19: k ← k − 1
20: end while
21: end for
22: return H
23: end procedure

2. Relation of AIList with AITree and NCList

The AIList can be considered as a combination of AITree and NCList. It is helpful to get a detailed runtime
break-down for their construction and search algorithms in order to understand their differences.

For the data structur construction algorithm, AITree involves a tree-balancing operation, so it is slower
than AIList and NCList on data structure construction, see Table 1. For the flat dataset (Dataset 1) AIList
takes slightly longer than NCList because of the coverage length len computing during decomposition,
but in all other cases, AIList construction is more efficient than NCList.

FOr the query algorithm, AITree is faster than NCList for highly contained datasets but slower for simple
datasets; and in all cases, AIList is more efficient than both AITree and NCList, see Table 2. AIList is more
efficient than AITree because AIList has fewer extra comparison m due to the decomposition. Although
both AIList and NCList use sublists, the numbers of their sublists are very different, see Table 3. AIList
maintains a very small number of sublists (<10 in all datasets we have tested), while NCList has 19 million
linked sublists for a dataset of 128 million intervals. Since each sublist access involves a binary search, the
query is slowed down. Thus, the key advantage of AIList over NCList is that it does not require complete
decomposition, because it works relatively efficiently even with some containment; in contrast, the NCList
data structure requires recursive sublist containment construction because it relies on a non-overlapping
guarantee in the query algorithm.

Runtime(s) Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6
AIList 0.086 0.12 0.681 2.352 14.560 34.418
AITree 0.117 0.25 1.187 5.533 42.672 111.536
NCList 0.075 0.157 0.883 3.391 22.983 57.657

Table 1. Construction time for AIList, AITree and NCList for datasets listed in Table 1 of the main text.

Runtime(s) Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6
AIList 0.427 0.465 6.310 17.530 66.256 107.732
AITree 0.666 0.705 22.671 68.706 303.796 482.278
NCList 0.590 0.642 25.381 100.360 401.934 611.847

Table 2. Query time of AIList, AITree and NCList for datasets listed in Table 1 of the main text.

Runtime(s) Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 0
AIList 1 2 6 8 7 7 6
NCList 1 1,006 364,025 2,500,263 8,898,006 19,294,893 203,576

Table 3. Number of total sublist of AIList and NCList for the seven datasets listed in Table 1 of the main text.

3. Data sources

The test datasets “exons” and “fBrain-DS14718” were downloaded from the BEDTools website http:

//quinlanlab.org/tutorials/bedtools/bedtools.html#what-are-these-files. The other datasets
used in comparisons were downloaded from the UCSC website http://hgdownload.cse.ucsc.edu/

goldenPath/hg19/database. For simplicity, AITree, NCList and AIList ignore unplaced contigs, chrM
and alternate haplotypes. We stripped off intervals from such contigs prior to use in comparisons. 1-
3% regions of these datasets were stripped off, and these datasets (in BED format) are available at
code.databio.org/AIList.

4. AIList source code

Source code for AIList is available at http://github.com/databio/AIList. We also provide the source
code for AITree, and NCList which was downloaded from websites https://github.com/biocore-ntnu/

kerneltree/tree/master/src and https://github.com/hunt-genes/ncls/tree/master/ncls/src re-
spectively, along with methods to use them in comparative analysis to AIList.

http://quinlanlab.org/tutorials/bedtools/bedtools.html#what-are-these-files
http://quinlanlab.org/tutorials/bedtools/bedtools.html#what-are-these-files
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database
http://big.databio.org/AIList
http://github.com/databio/AIList
https://github.com/biocore-ntnu/kerneltree/tree/master/src
https://github.com/biocore-ntnu/kerneltree/tree/master/src
https://github.com/hunt-genes/ncls/tree/master/ncls/src

References

Layer,R.M. et al. (2013) Binary interval search: A scalable algorithm for counting interval intersections.
Bioinformatics, 29, 1–7.

	Augmented Interval List: a novel data structure for efficient genomic interval search
	Supplementary Information
	1. AIList augmented with SortedE
	2. Relation of AIList with AITree and NCList
	3. Data sources
	4. AIList source code

	References

