Regulation of Plant ER Oxidoreductin 1 Activity for Efficient Oxidative Protein Folding

Motonori Matsusaki, Aya Okuda, Koichi Matsuo, Kunihiko Gekko, Taro Masuda, Yurika Naruo, Akiho Hirose, Keiichi Kono, Yuichiro Tsuchi, Reiko Urade

Table S1

Second structure contents of recombinant GmERO1a (WT) and its cysteine-mutants. Second structure contents were estimated from the vacuum ultraviolet circular dichroism (VUVCD) spectrum by SERCON3 program. Second structer contents of Human ERO1a was obtaind from PDB # 3AHR.

Protoin	Second structure contents (%)				Numbers of				
FIOLEIII	α-helix	β-strand	turn	coil	α-helix residues	α-helix segments	β-strand residues	β-strand segments	
GmERO1a									
WT	51.1	5.5	13.7	31.1	193.7	20	20.8	4	
C113A	52.4	8.2	13.5	29.8	198.6	20	31.1	7	
C118A	50.8	7.9	13.6	30.3	192.5	20	29.9	7	
C121A	43.8	10.5	17.5	31.5	166.0	17	39.8	9	
C123A	43.2	10.0	18.9	30.2	163.7	16	37.9	9	
C146A	42.2	10.2	17.2	31.1	159.9	17	38.7	9	
C113/146A	50.9	7.9	13.4	32.0	192.9	20	29.9	8	
C121/146A	53.1	8.7	12.6	30.1	201.2	20	33.0	7	
C123/146A	55.6	3.5	15.2	29.0	210.7	18	13.3	3	
C118/121A	50.6	7.3	11.9	32.7	191.8	20	27.7	8	
Human ERO1α	48.9	6.4	6.9	-	185.3	16	24.3	9	

GmERO1a C113A C121A C121A C123A C146A C113/146A C123/146A C123/146A C123/146A	69 69 69 69 69 69 69 69 69	YETVDRLNEEVLHPSLQELVKTPFFRYFKVKLW@D@PFWPDDGM@RLRD@SV@E@PENEFPESFKKPDRRLSMTDLV@QEGKPQAAVDRTLDSKAFRGWT YETVDRLNEEVLHPSLQELVKTPFFRYFKVKLW@D@PFWPDDGM@RLRD@SV@E@PENEFPESFKKPDRRLSMTDLV@QEGKPQAAVDRTLDSKAFRGWT YETVDRLNEEVLHPSLQELVKTPFFRYFKVKLW@D@PFWPDDGM@RLRD@SV@E@PENEFPESFKKPDRRLSMTDLV@QEGKPQAAVDRTLDSKAFRGWT YETVDRLNEEVLHPSLQELVKTPFFRYFKVKLW@D@PFWPDDGM@RLRD@SV@E@PENEFPESFKKPDRRLSMTDLV@QEGKPQAAVDRTLDSKAFRGWT YETVDRLNEEVLHPSLQELVKTPFFRYFKVKLW@D@PFWPDDGM@RLRD@SV@E@PENEFPESFKKPDRRLSMTDLV@QEGKPQAAVDRTLDSKAFRGWT YETVDRLNEEVLHPSLQELVKTPFFRYFKVKLW@D@PFWPDDGM@RLRD@SV@E@PENEFPESFKKPDRRLSMTDLV@QEGKPQAAVDRTLDSKAFRGWT YETVDRLNEEVLHPSLQELVKTPFFRYFKVKLW@D@PFWPDDGM@RLRD@SV@E@PENEFPESFKKPDRRLSMTDLV@QEGKPQAAVDRTLDSKAFRGWT YETVDRLNEEVLHPSLQELVKTPFFRYFKVKLW@D@PFWPDDGM@RLRD@SV@E@PENEFPESFKKPDRRLSMTDLV@QEGKPQAAVDRTLDSKAFRGWT YETVDRLNEEVLHPSLQELVKTPFFRYFKVKLW@D@PFWPDDGM@RLRD@SV@E@PENEFPESFKKPDRRLSMTDLV@QEGKPQAAVDRTLDSKAFRGWT YETVDRLNEEVLHPSLQELVKTPFFRYFKVKLW@D@PFWPDDGM@RLRD@SV@E@PENEFPESFKKPDRRLSMTDLV@QEGKPQAAVDRTLDSKAFRGWT YETVDRLNEEVLHPSLQELVKTPFFRYFKVKLW@D@PFWPDDGM@RLRD@SV@E@PENEFPESFKKPDRRLSMTDLV@QEGKPQAAVDRTLDSKAFRGWT YETVDRLNEEVLHPSLQELVKTPFFRYFKVKLW@D@PFWPDDGM@RLRD@SV@E@PENEFPESFKKPDRRLSMTDLV@QEGKPQAAVDRTLDSKAFRGWT YETVDRLNEEVLHPSLQELVKTPFFRYFKVKLW@D@PFWPDDGM@RLRD@SV@E@PENEFPESFKKPDRRLSMTDLV@QEGKPQAAVDRTLDSKAFRGWT YETVDRLNEEVLHPSLQELVKTPFFRYFKVKLW@D@PFWPDDGM@RLRD@SV@E@PENEFPESFKKPDRRLSMTDLV@QEGKPQAAVDRTLDSKAFRGWT YETVDRLNEEVLHPSLQELVKTPFFRYFKVKLW@D@PFWPDDGM@RLRD@SV@E@PENEFPESFKKPDRRLSMTDLV@QEGKPQAAVDRTLDSKAFRGWT
GmERO1a C113A C121A C121A C123A C146A C113/146A C121/146A C123/146A C123/146A C118/121A		EIDNPWTNDDETDNDEMTYVNLQLNPERYTGYTGPSARRIWDAVYSEN G PKYPSQEL G QEEKILYKLISGLHSSISIHIASDYLLEEATNLWGQNLTLMY EIDNPWTNDDETDNDEMTYVNLQLNPERYTGYTGPSARRIWDAVYSEN G PKYPSQEL G QEEKILYKLISGLHSSISIHIASDYLLEEATNLWGQNLTLMY
GmEROla C113A C118A C121A C123A C146A C113/146A C123/146A C123/146A C118/121A		DRVLRYPDRVRNLYFTFLFVLRAVTKASDYLEQAEYDTGNPNEDLTTQSLIKQLLYNPKLQAAGPIPFDEANLWKGQSGPELKQKIQQQFRNISALMDGV DRVLRYPDRVRNLYFTFLFVLRAVTKASDYLEQAEYDTGNPNEDLTTQSLIKQLLYNPKLQAAGPIPFDEANLWKGQSGPELKQKIQQQFRNISALMDGV DRVLRYPDRVRNLYFTFLFVLRAVTKASDYLEQAEYDTGNPNEDLTTQSLIKQLLYNPKLQAAGPIPFDEANLWKGQSGPELKQKIQQQFRNISALMDGV DRVLRYPDRVRNLYFTFLFVLRAVTKASDYLEQAEYDTGNPNEDLTTQSLIKQLLYNPKLQAAGPIPFDEANLWKGQSGPELKQKIQQQFRNISALMDGV DRVLRYPDRVRNLYFTFLFVLRAVTKASDYLEQAEYDTGNPNEDLTTQSLIKQLLYNPKLQAAGPIPFDEANLWKGQSGPELKQKIQQQFRNISALMDGV DRVLRYPDRVRNLYFTFLFVLRAVTKASDYLEQAEYDTGNPNEDLTTQSLIKQLLYNPKLQAAGPIPFDEANLWKGQSGPELKQKIQQQFRNISALMDGV DRVLRYPDRVRNLYFTFLFVLRAVTKASDYLEQAEYDTGNPNEDLTTQSLIKQLLYNPKLQAAGPIPFDEANLWKGQSGPELKQKIQQQFRNISALMDGV DRVLRYPDRVRNLYFTFLFVLRAVTKASDYLEQAEYDTGNPNEDLTTQSLIKQLLYNPKLQAAGPIPFDEANLWKGQSGPELKQKIQQQFRNISALMDGV DRVLRYPDRVRNLYFTFLFVLRAVTKASDYLEQAEYDTGNPNEDLTTQSLIKQLLYNPKLQAAGPIPFDEANLWKGQSGPELKQKIQQQFRNISALMDGV DRVLRYPDRVRNLYFTFLFVLRAVTKASDYLEQAEYDTGNPNEDLTTQSLIKQLLYNPKLQAAGPIPFDEANLWKGQSGPELKQKIQQQFRNISALMDGV DRVLRYPDRVRNLYFTFLFVLRAVTKASDYLEQAEYDTGNPNEDLTTQSLIKQLLYNPKLQAAGPIPFDEANLWKGQSGPELKQKIQQFRNISALMDGV DRVLRYPDRVRNLYFTFLFVLRAVTKASDYLEQAEYDTGNPNEDLTTQSLIKQLLYNPKLQAAGPIPFDEANLWKGQSGPELKQKIQQFRNISALMDGV DRVLRYPDRVRNLYFTFLFVLRAVTKASDYLEQAEYDTGNPNEDLTTQSLIKQLLYNPKLQAAGPIPFDEANLWKGQSGPELKQKIQQFRNISALMDGV DRVLRYPDRVRNLYFTFLFVLRAVTKASDYLEQAEYDTGNPNEDLTTQSLIKQLLYNPKLQAAGPIPFDEANLWKGQSGPELKQKIQQFRNISALMDGV
GmEROla C113A C121A C121A C123A C146A C113/146A C123/146A C123/146A C123/146A		GœK&RLWGKLQVLGLGTALKILFSVDGQENSSHTLQLQRNEVIALTNLLNRLSESVKFVHEVGPTAERIMEGG 442 GœK&RLWGKLQVLGLGTALKILFSVDGQENSSHTLQLQRNEVIALTNLLNRLSESVKFVHEVGPTAERIMEGG 442

Figure S1. Alignment of amino acid sequences of wild type GmERO1a and its cysteine-mutants. Second structures of GmERO1a and its cysteine-mutants were predicted from VUVCD spectrum. Purple, light blue and black amino acid residues in the amino acid sequences are included in helix, β structures and turn or coil, respectively.

Figure S2. Conversion of ox-2 GmERO1a to the ox-1 form by reduced active center mutant of PDI family proteins. GmERO1a (5 μ M) was incubated with 2 μ M reduced cysteine-mutants of GmPDIL-1 (*A*), GmPDIM (*B*), GmPDIS-1 (*C*) or GmPDIS-2 (*D*) in the presence of 10 mM GSH at 25° C, then treated with N-ethylmaleimide and subjected to non-reducing SDS-PAGE. Proteins were stained with Coomassie Brilliant Blue G-250.

В

prev	(pmol)							bait	
prey	80	40	20	10	5	2.5	1.25	Dait	
GmPDIS-1		0	0	0	0	0	0.		
BSA	0.	01	6					GINPDIL-1	
GmPDIL-1		•	0	0	0	0	0	CmPDIS 1	
BSA								GIIIF DIS-1	

Figure S3. GmPDIL-1 associates with GmPDIS-1 in the ER. *A*, detection of PDI family protein complexes. Immunoprecipitation (IP). Soybean cotyledons (were frozen in liquid nitrogen and homogenized using a Dounce homogenizer at 4° C in 20 mM HEPES buffer (pH 7.2) containing 150 mM NaCl, 1% digitonin, and 1% protease inhibitor cocktail (Sigma-Aldrich). The homogenate was placed on ice for 1 h and centrifuged for 30 min at 10,000 \times g at 4° C. Immunoprecipitation was performed at 4° C for 1 h with pre-immune serum or antiserum specific to PDI family proteins (39, 44, 51, 52). Immunoprecipitants were collected using protein A-conjugated Sepharose beads (Sigma-Aldrich), washed with 20 mM HEPES buffer (pH 7.2) containing 150 mM NaCl, and subjected to Western blot analysis using antiserum specific to GmPDIL-1 as primary antibodies. The cotyledon extracts (input) and resulting immunoprecipitants were subjected to Western blot with anti-GmPDIL-1 serum. *B*, Dot far-Western blot analysis of the association of GmPDIL-1 with GmPDIS-1. Indicated amounts of GmPDIS-1, GmPDIL-1, or bovine serum albumin (BSA) as prey were dot-blotted and incubated with GmPDIL-1 or GmPDIS-1 as bait. Bound GmPDIL-1 or GmPDIS-1 was immuno-stained.

А

Figure S4. Oxidative refolding of RNase A catalyzed by GmPDIL-1, GmPDIS-1, or respective active-center cysteine mutants in the presence of wild-type (WT) GmERO1a or C121/146A hyperactive (HA) mutant. A, Reduced and denatured RNase A (8 µM) was incubated with 3 µM WT GmPDIL-1 (black), domain a' (C418/421A) (orange), or domain a (C73/76A) (green) active-center cysteine mutant in the presence of 1 µM WT (solid symbols) or HA GmERO1a (open symbols) at 25° C, after which the recovered RNase A activity was assayed. B, Formation of disulfide bonds in reduced and denatured RNase A during refolding catalyzed by the GmPDIL-1 C418/421A mutant (upper) or C73/76A mutant (bottom). Reactions were carried out as described in A above and quenched with 4'-acetamido-4'-maleimidylstilbene-2,2'disulfonic acid. Proteins in the reaction mixture were analyzed by non-reducing SDS-PAGE. Dred, reduced and denatured RNase A; Dox, denatured RNase A with nonnative disulfides; N, native RNase A. C, reduced and denatured RNase A was incubated with WT GmPDIS-1 (black) or domain a' active-center cysteine mutant (C176/179A) (orange) or domain a active-center cysteine mutant (C57/60A) (green) in the presence of WT (solid symbols) or HA GmERO1a (empty symbols) at 25° C, after which the recovered RNase A activity was assayed. D, formation of disulfide bonds in reduced and denatured RNase A during refolding catalyzed by the GmPDIS-1 C176/179A (upper) or C57/60A (bottom) mutant.

Figure S5. Effect of the loss of regulation of GmERO1a activity on refolding of RNase A catalyzed by GmPDIL-1. *A*, reduced and denatured RNase A (8 μ M) was incubated with 0.3 μ M GmPDIL-1 in the presence of GmERO1a at the indicated concentrations at 25° C, after which the recovered RNase A activity was assayed. *B*, reduced and denatured RNase A was incubated with GmPDIL-1 in the presence of the C121/146A hyperactive GmERO1a at the indicated concentrations, after which the recovered RNase A activity was assayed.

Table S2

List of primers and template plasmids for PCR of variant preparation.

GmERO1a								
Variant	Forward primer	Reverse primer	Template plasmids					
C113A	GGCCTGATGATGGCATGGCTCGGTTGCGGG	CCCGCAACCGAGCCATGCCATCATCAGGCC	GmERO1a WT / pGEX6p-2					
C118A	GGTTGCGGGACGCTAGTGTG	CACACTAGCGTCCCGCAACC	GmERO1a WT / pGEX6p-2					
C121A	GGTTGCGGGACTGTAGTGTGGCTGAATGCCCTGAAAATGAATTCC	GGAATTCATTTTCAGGGCATTCAGCCACACTACAGTCCCGCAACC	GmERO1a WT / pGEX6p-2					
C123A	GGGACTGTAGTGTGTGTGAAGCCCCTGAAAATGAATTCCC	GGGAATTCATTTTCAGGGGCTTCACACACACACAGTCCC	GmERO1a WT / pGEX6p-2					
C146A	CGCCTTTCAATGACTGATCTTGTTGCCCAAGAAGGAAAACC	GGTTTTCCTTCTTGGGCAACAAGATCAGTCATTGAAAGGCG	GmERO1a WT / pGEX6p-2					
C113/146A	CGCCTTTCAATGACTGATCTTGTTGCCCAAGAAGGAAAACC	GGTTTTCCTTCTTGGGCAACAAGATCAGTCATTGAAAGGCG	GmERO1a C113A / pGEX6p-2					
C121/146A	CGCCTTTCAATGACTGATCTTGTTGCCCAAGAAGGAAAACC	GGTTTTCCTTCTTGGGCAACAAGATCAGTCATTGAAAGGCG	GmERO1a C121A / pGEX6p-2					
C123/146A	GGGACTGTAGTGTGTGTGAAGCCCCTGAAAATGAATTCCC	GGGAATTCATTTTCAGGGGCTTCACACACACACAGTCCC	GmERO1a C121/146A / pGEX6p-2					
C121/123/146A	GGGACTGTAGTGTGGCTGAAGCCCCTGAAAATGAATTCCC	GGGAATTCATTTTCAGGGGCTTCAGCCACACTACAGTCCC	GmERO1a C123/146A / pGEX6p-2					
C118/121A	GGTTGCGGGACGCTAGTGTG	CACACTAGCGTCCCGCAACC	GmERO1a C121A / pGEX6p-2					
	GmPDIL-1							
Variant	Forward primer	Reverse primer	Template plasmids					
C73/76A	CCATGGGCTGGCCACGCTAAGAAGCTTGCTCCCGAGTAT	CTTCTTAGCGTGGCCAGCCCATGGAGCGTAGAACTCGACGACGATGAAA	GmPDIL-1 WT / pET46Ek/LIC					
C418/421A	CCCTGGGCTGGTCATGCCAAACAGTTGGCTCCAATATTG	CTGTTTGGCATGACCAGCCCAGGGAGCATAAAACTCCAGCAGAACATTC	GmPDIL-1 WT / pET46Ek/LIC					
		GmPDIS-1						
Variant	Forward primer	Reverse primer	Template plasmids					
WT(full)	CGCGTACGAATTCCCGACGACGTCGTTGTG	CGCGCATCTCGAGCTCAAGCCGCATATGTC	GmPDIS-1 full / pET46Ek/LIC					
C57/60A			GmPDIS-1 full / pGEX6p-2					
C176/179A	TATGCACCCTGGGCTGGACATGCCAAAAGTCTTGCTCCTACTTACGAGAAA	GGAGCAAGACTTTTGGCATGTCCAGCCCAGGGTGCATAAAACTCAACCAAGACAT	GmPDIS-1 full / pGEX6p-2					
	GTTGCC	C						
GmPDIS-2								
Variant	Forward primer	Reverse primer	Template plasmids					
WT(full)	CGAATCGGATCCGACGACGTCGTTGCAC	CGCGCATCTCGAGCTCAAGCAAAGATAGATAAG	GmPDIS-2 full / pET46Ek/LIC					
C56/59A	TACGCTCCCTGGGCTGGACACGCCAAAAGGCTTGCCCCGGAGTACGAACA		GmPDIS-2 full / pGEX6p-2					
	GCTC	GGCAAGCCTTTTGGCGTGTCCAGCCCAGGGAGCGTAAAACTCAACGAGAGCGGC						
C175/178A	TATGCACCATGGGCTGGTCATGCCAAGGCCCTTGCCCCTATTTATGAAAAA		GmPDIS-2 full / pGEX6p-2					
	GTTGC	GGCAAGGGCCTTGGCATGACCAGCCCATGGTGCATAGAATTCCACCAGAACATC						
	Forward primer	Reverse primer						
E. coli Trx1	GACGACGACAAGATGAGCGATAAAATTATTCACC	GAGGAGAAGCCCGGTTACGCCAGGTTAGCGTCGAG						