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Supplementary Figure 1

Peptide and protein quantitation statistics in ProteomeHD

(a) Histogram showing the number of peptides identified per protein in ProteomeHD (10,323 proteins, light blue) and in the subset o
ProteomeHD used to make the co-regulation map (5,013 proteins, dark blue). Dashed lines show the average number of peptides pe
protein. (b) Number of peptides per protein broken down by experiment. The average peptide number for the proteins detected in each
experiment is shown. (c) Average number of SILAC ratio counts (independent observations) per protein, broken down into the 294
input experiments. (d) Sequence coverage of proteins in ProteomeHD. Dashed lines indicate the average. (e) Average sequence
coverage of proteins in each input experiment. (f) The number of proteins that were quantified in the 294 experiments of ProteomeHD
ranges from 817 to 6,080. The average is 3,928 proteins per SILAC ratio. (g) Number of experiments, i.e. SILAC ratios, in which
proteins were quantified. Only proteins that were quantified in at least 95 experiments were used for the co-regulation analysis. Or
average, proteins in ProteomeHD were quantified in 112 input experiments. The average rises to 190 if only proteins used for the co
regulation analysis are considered. (h) Bar chart showing which fraction of proteins have been detected in which fraction o
experiments. For example, 100% of proteins in the co-regulation map have been quantified in at least 30% of the 294 experiments
IAbout 15% of the proteins have been quantified in at least 90% of the experiments.
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Supplementary Figure 2

Impact of co-occurrence on treeClust learning

Performance comparison of a standard treeClust application on ProteomeHD with two types of co-occurrence measures. Jaccarg
scores are an established co-occurrence measure (protein pairs observed in the same set of experiments would get a Jaccard score o
1, while protein pairs without any overlapping experiments would get a score of 0). We also applied treeClust to a "binary" version o
ProteomeHD, where all SILAC ratios were set to 1 and all missing values were set to 0. The precision recall curve uses Reactome as &
gold standard. It shows that Jaccard and "binary treeClust" work equally well but both are outperformed by the standard co-regulatiorn
analysis. Therefore, while co-occurrence of proteins across ProteomeHD does provide some information about functional associations
quantitative up- and down regulation is a far better indicator of shared protein function, at least for ProteomeHD. Notably, this alsq
shows that treeClust can detect co-occurrence, in principle, if the data are transformed into a binary format.
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Supplementary Figure 3

treeClust detects specifically positive linear associations

We tested which types of relationships treeClust detects by using a synthetic dataset consisting of 100 variables and 200 proteins
where 0.5% of all possible protein - protein combination have a defined relationship. (a) Precision - recall (PR) analyses show tha
treeClust separates linear from random relationships perfectly, resulting in an area under the PR curve (AUPRC) of 1. The same resul
is observed for the three tested correlation-based metrics: PCC, Spearman's rho and biweight midcorrelation (bicor). The four PR
curves overlap fully. (b) TreeClust completely fails to detect exponential or logistic relationships (AUPRC = 0). In contrast, although
these pairs receive lower correlation coefficients than linear pairs, they still score high enough with PCC, rho and bicor to be completely
separated from the pool of random associations. No metric detects quadratic relationships. (c) Anti-correlations are not identified wel
by treeClust.
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Supplementary Figure 4

Impact of data size and missing values on treeClust performance

We used synthetic data to assess the impact of various data characteristics on treeClust performance. This figure complements Figure
2. (a) Synthetic datasets of 50 samples and 500 proteins were created with increasing percentage of defined linear relationships. This
has no impact on the three correlation metrics (PCC, rho and bicor), so their curves overlap fully at AUPRC 1. Treeclust performance
needs > 0.3% linear relationships in the data in order to detect them successfully. Synthetic datasets were created in triplicate. Points
show the average area under the precision recall curve (AUPRC) obtained for each setting. Error bars show the standard error of the
mean. (b) Combinatorial impact of the number of samples and the percentage of defined linear relationships (N proteins = 500). Note
that for larger datasets lower percentages of "coexpressed" proteins can be detected. (¢) TreeClust, but not the three correlatior]
metrics, is also affected by the number of available observations (proteins). N samples = 20, 0.3% linear associations. (d, e) Adding
missing values to a small (n = 50 samples, n = 500 proteins) and medium (n = 100 samples, n = 1,000 proteins) dataset, respectively
has a different impact on treeClust performance. (f) Combinatorial impact of missing values and the number of proteins, showing tha
for large datasets with many proteins a larger percentage of missing values can be tolerated (N samples = 150).
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Supplementary Figure 5

Illustration of changing the goodness-of-fit and outlier occurrence in synthetic data

This figure illustrates the different conditions tested in Figure 2d, e. (a) Scatterplots illustrating the effect of increasing the difference
between variables, which decreases treeClust performance but not that of correlation metrics. (b) Scatterplots illustrating the effect o
adding outlier data points, which decreases treeClust performance less than that of the correlation metrics.
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Supplementary Figure 6

Outliers in ProteomeHD and their impact on coexpression metrics

(a) Co-regulated protein pairs in ProteomeHD were divided into those detected by treeClust but not by PCC and vice versa. Separate
comparisons were made for pairs detected by treeClust but not rho, and treeClust but not bicor. The pairs in the resulting groups were
annotated using Reactome into known, biologically relevant interactions (true positives) and pairs that were unlikely to have any
biological associations (false positives). Note that treeClust-specific pairs tend to be true positives, whereas correlation-specific pairs
tend to be false positives. (b) This panel complements Figure 2f. Outliers were detected in ProteomeHD via their Mahalanobis distance
i.e. these outliers are located far from the bulk of the data, but can be close to the regression line. The boxplots show that Mahalanobis
outliers are more frequent in protein pairs detected specifically by rho or bicor as opposed to pairs detected specifically by treeClust
The number of protein pairs shown corresponds to n for each group as indicated in (a). (c) Removing these Mahalanobis outliers hag
little impact on the PCC of treeClust- , rho- or bicor-specific protein pairs, in contrast to what was observed for Pearson's correlation
(see Figure 2g). For number of proteins shown, see panel (a). (d) A second type of outlier - regression outliers - were detected in
ProteomeHD via studentized residuals. These outliers are located far away from the regression line and will decrease correlatior
coefficients. An example of a true association is shown, where regression outliers affect the resulting correlation. Fold-changes have
been scaled to lie between 0 and 1. (e) The percentage of regression outliers is very similar in all six groups. See panel (a) for numbe
of proteins shown. (f) Removing regression outliers increases the correlation coefficient (PCC) of protein pairs that were previously
detected only by treeClust, suggesting PCC missed some of these pairs because of regression outliers. This is not the case for pairg
missed by rho or bicor. See panel (a) for number of proteins shown. For boxplots, lower and upper hinges correspond to the first ang
third quartiles, and lower and upper whiskers extend to the smallest or largest value no further than 1.5 * IQR (inter-quartile range) fron
the hinge, respectively. Notches give roughly a 95% confidence interval for comparing medians.
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Supplementary Figure 7

Goodness-of-fit partially explains different performance of PCC and treeClust

This figure complements Figure 2i. Systematic comparison of mean absolute errors (MAEs) from protein pairs that scored high with
either treeClust or with PCC (see Supplementary Figure S6a; n = 8,786 treeClust-specific protein pairs, n = 9,593 PCC-specific proteir
pairs). Protein pairs exclusively detected by PCC tend to have somewhat higher MAEs, possibly explaining why they are predominantly
false-positive hits, in addition to the impact of outliers.
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Supplementary Figure 8

Lack of genuine non-linear relationships in ProteomeHD

(a) Exponential and logistic (sigmoid) models were fitted to all protein pairs that scored high with treeClust or the three correlation
metrics. Model fit was compared through their residual sum of squares (RSS). Exponential models only fitted better than linear ones in
rare cases, but logistic models often did. Around half of the protein pairs detected specifically by PCC are better explained by a logistic
than a linear model. However, this is mainly driven by Mahalanobis-type outliers. Removing those strongly reduces the number o
logistic models ouffitting the linear ones. (b) Two example regressions where an exponential (left) or logistic (right) model fits bette
than a linear one. Note that this clearly reflects overfitting due to outliers rather than genuine non-linear relationships.
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Supplementary Figure 9

The protein co-regulation network satisfies scale-free topology but is difficult to visualize as an interaction network

(a) The "scale free plot" produced by the WGCNA R package using the treeClust-derived adjacency matrix. The log of the connectivity
k is plotted against the log of the frequency of this connectivity. There is a linear relationship between these two variables, as indicateq
by the square of the Pearson correlation, R2, being 0.91. This shows that the protein co-regulation network derived from ProteomeHD
using treeClust is at least approximately scale free. (b) Visualization of a weighted, undirected network with 5,013 nodes (proteins
detected in at least 95 experiments) and 62,812 edges (top scoring 0.5% of links), based on the co-regulation score. Four commori
algorithms were used to create different network layouts, but with so many edges it is difficult to avoid the "hairball" problem.
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Supplementary Figure 10

Microproteins in ProteomeHD and their connectivity

(a) Histogram showing the number of peptides identified per microprotein (proteins < 15 kDa) in ProteomeHD and the subset o
ProteomeHD used to make the co-regulation map. Dashed lines show the average number of peptides per microprotein. (b) Average
number of SILAC ratio counts (independent observations) per microprotein, broken down into the 294 input experiments. (c) Histogram
showing the cumulative SILAC ratio counts per microprotein across all experiments in ProteomeHD. (d) Sequence coverage o
microproteins in ProteomeHD. Dashed lines indicate the average. (e) The actual peptides for one example microprotein, MP68. The
numbers in brackets indicate in how many different experiments each peptide was observed. (f) Microproteins tend to have more co
regulation partners in ProteomeHD than larger proteins (median 27 vs 10 associations; n = 206 microproteins, n = 2505 other proteins)
Microproteins also have more functional protein - protein associations according to STRING (median 23 vs 14; n = 521 microproteins
n = 9,261 other proteins). However, larger proteins have considerably more physical interaction partners than microproteins, according
to BioGRID (median 10 vs 17; n = 815 microproteins, n = 14,918 other proteins). (g) The number of interaction partners o
microproteins identified by STRING and BioGRID, broken down by the evidence type available in each resource (n = 362 microproteins
for mRNA coexpression, 481 for curated databases, 505 for experimental, 908 for text mining, 636 for affinity capture, 251 for co




fractionation, 367 for in vitro and 533 for two-hybrid. We considered STRING interactions with a minimum score of 400 in the individua
evidence channels (e.g. mRNA coexpression). Two STRING evidence channels (gene neighborhood and evolutionary co-occurrence
were omitted because they contribute very little. For panel (f) we considered only the most reliable STRING interactions, i.e. those with
a combined interaction score above 900. For boxplots, lower and upper hinges correspond to the first and third quartiles, and lower and
upper whiskers extend to the smallest or largest value no further than 1.5 * IQR (inter-quartile range) from the hinge, respectively,
Notches give roughly a 95% confidence interval for comparing medians.
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Layout of www.proteomeHD.net

Screenshot of the core page of www.proteomeHD.net, an interactive web-based app to explore co-regulation data. The basic elements
are highlighted and explained. Note that the page also contains help and download sections.
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Supplementary Figure 12

Integration of co-regulation scores with STRING (https://string-db.org)




/A typical protein - protein association network in STRING, containing the Arp2/3 complex and tropomyosin 3, both of which are involveq
in actin cytoskeleton regulation. Network edges are colour-coded by the type of evidence available for the association. Protein co
regulation information is embedded in the gene coexpression channel. The channel view shows the channel-specific STRING score, &
re-calibrated version of our co-regulation score. It also contains a pre-computed link to www.proteomeHD.net, which uses the firs
protein as ProteomeHD query and highlights the second protein in the results. If more than one protein isoform is available in
ProteomeHD, STRING will link to the alphabetically first isoform, which is generally the main one. The link also contains a cut-off setting
to match the ProteomeHD cut-off to the equivalent one selected by the user in STRING. In cases where both mMRNA coexpression and
protein co-regulation evidence is available for an association, their relative contribution to the STRING coexpression score is indicateq
(shown here as point 3).
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Supplementary Figure 13

MIRO1-induced peroxisomal membrane protrusions depend on PEX118

(a-h) PEX5-deficient human skin fibroblasts were mock-treated (control), or transfected with Myc-Miro-PO, a peroxisome-targeted
Miro1 variant, in the presence of control- or PEX113-specific siRNA. Cells were processed for immunofluorescence using anti-Myc ang
anti-PEX14 antibodies (peroxisomal marker). Results are representative of three independent experiments. (b) Quantification of cells
with peroxisomal protrusions. The average result of 3 independent experiments is shown, error bars indicate the mean +/- standarq
deviation. (a, b) Control cells occasionally contain peroxisomes with membrane protrusions (< 5 per cell; up to 5 um in length). (c-e, b




Myc-Miro-PO induces the formation of peroxisomal membrane protrusions (> 5 per cell; > 5 ym in length). Results are representative o
three independent experiments. (f-h, b) Silencing of PEX11B by siRNA significantly reduces the number of cells with peroxisoma
membrane protrusions in controls and Myc-Miro-PO expressing cells. Results are representative of three independent experiments
Globular peroxisomes (arrows) with membrane protrusions (arrowheads) in (a) are highlighted. *** P < 0.001; ** P < 0.01 from a two

tailed unpaired t test; ns, not significant (p = 0.9695). Scale bars, 10 pm.
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Supplementary Figure 14

\Validation of treeClust and t-SNE on an independent proteomics dataset

(a) treeClust was applied to the TMT-based cancer proteomics dataset from Lapek et al (Nature Biotechnology, 2017). It outperforms
Pearson, Spearman and Bicor correlation, as shown by a Precision-Recall analysis using Reactome annotations as the gold standard




Note that treeClust builds only one decision tree per condition, i.e. 41 trees on this dataset, too few for a standard analysis. Therefore
treeClust was performed iteratively, obtaining the mean co-regulation score of 100 treeClust forests, each generated from 10 randon
experiments. (b) Co-regulation map for the Lapek et al dataset, made by t-SNE from treeClust scores. As in the correlation network o]
the original report (Fig. 2 in Lapek et al), CORUM protein complexes are colored. In contrast to a network, there is not a limited numbe
of arbitrarily arranged, pairwise links, but the position of each protein reflects its similarity or dissimilarity to all other proteins in the map
This makes it possible to place all proteins in a functional context, not just those that are directly linked to members of the core network
It also allows for a hierarchical analysis of protein associations, with increasing distances indicating weaker co-regulation. For example
the subunits of the protein complexes in the enlarged map area (inset) are clustered together, and the distances between the
complexes are larger. However, all complexes have roles in vesicular trafficking. n = 6,151 proteins shown in plot.




— 0%
08 59/2 % of data points
10% dropped randomly
150/" from ProteomeHD
o

0.6

Precision

0.4

0.2

random classifier

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Supplementary Figure 15

Information content of ProteomeHD has not reached saturation yet

We randomly removed 5%, 10% and 15% of the data points across the ProteomeHD matrix, in triplicate, and repeated treeClus
learning to predict protein associations. The Precision-Recall analysis shows that removing data points decreases performance
proportionally to the amount of removed data, suggesting that adding additional data would likely enhance performance further.
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