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THEORETICAL MODEL
We theoretically discuss the system of our device; especially we show the reason why the photocurrent appears under the THz
waves (Fig. 3(b)). This system consists of the two-level system (TLS) with trapped |1⟩ and de-trapped |2⟩ states, and external
THz waves (AC external electric field with THz frequency), which can be expresses by the following Hamiltonian Ĥ

Ĥ = ĤTLS + Ĥext (1)

where ĤTLS and Ĥext represent the Hamiltonian of the TLS and of its interaction with the external THz waves with the
frequency ωext, respectively. The wavefunction of this system is described as |Ψ(t)⟩ = c1 |1⟩+ c2e−iωextt |2⟩. The population
of each state is described using density matrix ρ(t) = |Ψ(t)⟩⟨Ψ(t)|, whose elements are ρmn = cmc∗n(m,n = 1,2).

The first term of Eq. (1) is given by ĤTLS = (h̄ω12/2)σz, where h̄ is Planck constant divided by 2π , ω12 is transition
frequency of the TLS, and σz = diag(1,−1) is Pauli matrix. The secound term of Eq. (1) is expressed as Ĥext = −µµµ ·
EEEext(t) = −µµµ ·EEE000eiωextt using dipole moment µµµ; where we used dipole approximation because this system is much smaller
than wavelength of the THz waves. To describe Ĥ with the interaction picture as Ĥi, we performed a unitary transformation
Û = exp(−iĤTLSt/h̄);

Ĥi = Û†(Ĥ − ĤTLS)Û (2)

=−∆ |1⟩⟨1|−Û†(µµµ ·EEE)Ûeiωextt (3)

=
1
2

(
0 −⟨1 |µµµ |2⟩ ·EEE0(1+ e−2iωextt)

−⟨2 |µµµ |1⟩ ·EEE0(1+ e2iωextt) −2h̄∆

)
(4)

where ∆ = ωext −ω12 is the detuning between the transition frequency of the TLS and of the external THz waves. By using
rotating-wave approximation, Ĥi is deformed into ĤRWA without time dependence

ĤRWA =
1
2

(
h̄∆ −⟨1 |µµµ |2⟩ ·EEE0

−⟨2 |µµµ |1⟩ ·EEE0 −h̄∆

)
(5)

=− h̄
2

(
−∆ Ω
Ω ∆

)
(6)

where Ω = ⟨1 |µµµ |2⟩ ·EEE0/h̄ is the Rabi rate, which is a positive real value owing to adequate adjustment of the phase of the
wavefunction.

In the TLS, damping processes have to be teken into account. To describe such processes phenomenologically, the motion
equation of ρ(t) is expressed with the Ĥ:

∂tρ(t) =− i
h̄

[
ĤTLS + ĤRWA,ρ(t)

]
(7)

Here, the two damping processes are conceivable: One is the THz-induced emission and absorption processes with rates Γ,
and another is intrinsic dephasing process with rates γ . These damping processes are phenomenologically introduced as:
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γa = Γ/2+ γ . By using these damping rate, Eq. (7) is transformed as

∂tρ(t) =

 −i
Ω
2
(ρ21 −ρ12)+Γρ22 −i

Ω
2
(ρ22 −ρ11)− (γa + i∆)ρ12

i
Ω
2
(ρ22 −ρ11)− (γa − i∆)ρ21 i

Ω
2
(ρ21 −ρ12)−Γρ22

 (8)

To discuss the occurence of the THz-induced current in the following section, the steady-state solution is solved by setting the
time derivatives to 0.

ρste
21 =

Ω
2

Γ(∆− iγα)

Γ(γ2
α +∆2)+ γα Ω2 (9)

Here, let us discuss the THz-induced photocurrent ITHz(t). Since in the intrinsic dephasing a typical dopant energy level
corresponds to a THz photon energy, we assume that complex conductivity σ(t) is expressed as σ(t) = σ0 exp{(−iωb −Γb)t},
where ITHz(t) is resonant with the frequency ωb and dephasing rate Γb. Through linear response theory, ITHz(t) is given by:

ITHz(t) =
∫ t

0
σ(t − t ′)E(t ′)dt ′ (10)

Through the time-derivative of Eq. (10), the motion equation of ITHz(t) can be obtained as:

∂t ITHz(t) =−(iωb +Γb)ITHz(t)+σ0E(t) (11)

E(t) is the total electric field having two contributions: one is the external THz field Eext(t) = E0 exp(iωextt), and another is
the field induced by the ionized dopants with polarization P(t):

P(t) = ⟨Ψ(t) |−µµµ |Ψ(t)⟩ (12)

= µρ21eiωextt (13)

P(t) effectively contains photon-assisted tunneling between donor levels, because this process requires the empty donor
levels created by de-trapping processes through Pauli exclusion principle. Substituting Eq. (13) into Eq. (11) yields

∂t ITHz(t) =−(iωb +Γb)ITHz(t)+σ0 (E0 +µρ21/εr)eiωextt (14)

where εr represents the dielectric function of highly doped Si. Introducing ĨTHz(t) = ITHz(t)e−iωextt removes the fast rotating
term eiωextt ; which transform the Eq. (14) to

∂t ĨTHz(t) = i(∆+δ )ĨTHz(t)−ΓbĨTHz(t)+σ0 (E0 +µρ21/εr) (15)

where, δ = ω12 −ωb is the frequency difference between the TLS and the background resonance. The steady current Iste can
be derived by setting the time derivatives to 0 in Eq. (15) as:

Iste
THz =

σ0

Γb − i(∆+δ )
(E0 +µρste

21 /εr) (16)

This result of Eq. (16) gives an analytical description of THz-induced photocurrent.
In the Coulomb blockade regions, THz-induced photocurrent is expressed by Eq. (16) with the second term of transition

processes ρste
21 governed by Eq. (9). Meanwhile, in the resonant transmission regions where the current peak is observed,

the eigenstates are almost governed by de-trapped states |2⟩. Since this situation leads to the strong suppression of transition
processes ρ21 ∼ 0, the second term in the Eq. (16) is negligible. The above-mentioned discussion suggests that the Fermi-level
dependence of ρ21 yields the gate-voltage dependence of the THz-induced photocurrent, thus indicating that the THz-induced
photocurrent observed in the Coulomb blockade regions mainly originates from the transition processes in the TLS of the
trap/de-trapped states.

Equation (16) also explains the difference of THz-induced photocurrent between the antenna-coupled and non-antenna
QD devices. Since the QD device without such an antenna can not couple with the THz waves efficiently, the THz electric
field on the non-antenna QD device is much weaker than that on the antenna-coupled QD device. This fact directly results in
the decrease in the contribution of the first term in Eq. (16). Additionally, such weak electric field hardly excites the electrons
trapped in individual dopant potentials; hence the eigenstates are almost determined by trapped states |1⟩ and consequently
ρ21 becomes very small. For this reason, the THz-induced photocurrent of Eq. (16) without the antenna is much smaller than
that with the antenna.
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