Resonance Raman, EPR and MCD Spectroscopic Investigation of Diheme Cytochrome *c* Peroxidases from *Nitrosomonas europaea* and *Shewanella oneidensis*

Matthew W. Wolf, Kimberly Rizzolo, Sean J. Elliott*, and Nicolai Lehnert*

Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI 48109 Email: <u>lehnertn@umich.edu</u> Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 Email: <u>elliott@bu.edu</u>

Supporting Information

Table of Contents

Table of reductively-activated and constitutively-active bCcPs	S 3
MCD spectrum of Ferric Cytochrome b_5	S4
Power dependence resonance Raman spectra of NeCcP	S5
Power dependence resonance Raman spectra of NeH59G CcP	S 6
Room temperature resonance Raman spectra of NeCcP and NeH59G CcP	S7
MCD spectra NeH59G CcP	S 8
Power dependence resonance Raman spectra of SoCcP	S9
Power dependence resonance Raman spectra of SoH80G CcP	S10
Resonance Raman spectra of SoH80G CcP	S11
Room temperature resonance Raman spectra of SoCcP and SoH80G CcP	S12
MCD spectra SoH80G CcP	S13
Fit of the highly rhombic EPR signal in NeH59G CcP	S14
EPR spectra of semi-reduced SoCcP from pH 5.5-9	S15

Table S	51
---------	----

Bacterial CcPs that require reduction	Bacterial CcPs that are constitutively active
Paracoccus denitrificans ⁶	Nitrosomonas europaea ³
Pseudomonas aeruginosa ⁷	Methyloccocus casulatus ¹⁸
Paracoccus pantrophus ⁸	
Marinobacter hydrocarbonoclasticus ⁹	
Rhodobacter capsulatus ¹⁰	
Pseudomonas stutzeri ¹¹	
Geobacter sulfurreducens ¹²	
Shewanella Oneidensis ¹³	

Figure S1. Near-UV/visible-region MCD spectrum **of low-spin ferric** Cytochrome b_5 . The sample was 3.7 μ M with ~50% glycerol in a TIP7 buffer at pH 7. This spectrum was recorded at 2 K.

Figure S2. Power dependence resonance Raman spectra of **diferric** *Ne***CcP** from a) 1150 to 1400 cm⁻¹, and b) 1400 to 1750 cm⁻¹ and the power dependence spectra of **semireduced** *Ne***CcP** from c) 1150 to 1400 cm⁻¹, and d) 1400 to 1750 cm⁻¹. The diferric sample was 420 μ M and the semireduced sample was 490 μ M in protein. both with 30% glycerol in pH 7 TIP7 buffer. The sample was excited at 413.1 nm using a Krypton ion gas laser at 77 K.

Figure S3. Power dependence resonance Raman spectra of **diferric** *Ne*H59G CcP from a) 1150 to 1400 cm⁻¹, and b) 1400 to 1750 cm⁻¹ and the power dependence spectra of **semireduced** *Ne*H59G CcP from c) 1150 to 1400 cm⁻¹, and d) 1400 to 1750 cm⁻¹. The diferric sample was 419 μ M and the semireduced sample was 460 μ M in protein, both with 30% glycerol in pH 7 TIP7 buffer. The sample was excited at 413.1 nm using a Krypton ion gas laser at 77 K.

Figure S4. Room temperature resonance Raman spectrum of a) diferric *Ne*CcP and b) diferric *Ne*H59G CcP. The samples were ~420 μ M in protein with 30% glycerol in pH 7 TIP7 buffer. The samples were rotated and excited at 413.1 nm using a Krypton ion gas laser. Plasma lines are indicated with an asterisk.

Figure S5. Room temperature resonance Raman spectrum of a) semireduced *Ne*CcP and b) semireduced *Ne*H59G CcP. The samples were ~200 μ M in protein with 30% glycerol in pH 7 TIP7 buffer. The samples were excited at 406.7 nm using a tunable titanium:sapphire laser.

Figure S6. Near-UV/visible-region MCD spectra of the diferric and semi-reduced states of *Ne*H59G CcP. Samples were 2-2.6 μ M with ~50% glycerol in a TIP7 buffer at pH 7. Spectra were recorded at 2 K.at pH 7. Spectra were recorded at 2 K.

Figure S7. Power dependence resonance Raman spectra of **diferric SoCcP** from a) 1150 to 1400 cm⁻¹, and b) 1400 to 1750 cm⁻¹ and the power dependence spectra of **semireduced SoCcP** from c) 1150 to 1400 cm⁻¹, and d) 1400 to 1750 cm⁻¹. The diferric sample was 330 μ M and the semi-reduced sample was 230 μ M in protein, both with 30% glycerol in pH 7 TIP7 buffer. The sample was excited at 413.1 nm using a Krypton ion gas laser at 77 K.

Figure S8. Power dependence resonance Raman spectra of **diferric SoH80G CcP** from a) 1150 to 1400 cm⁻¹, and b) 1400 to 1750 cm⁻¹ and the power dependence spectra of **semireduced SoH80G CcP** from c) 1150 to 1400 cm⁻¹, and d) 1400 to 1750 cm⁻¹. The diferric sample was 280 μ M and the semi-reduced sample was 340 μ M in protein, both with 30% glycerol in pH 7 TIP7 buffer. The sample was excited at 413.1 nm using a Krypton ion gas laser at 77 K.

Figure S9. Resonance Raman spectrum of **diferric SoH80G CcP** from a) 200 to 1750 cm⁻¹, and b) enlarged view of the 1200 to 1750 cm⁻¹ region. The sample was 280 μ M in protein with 30% glycerol in pH 7 TIP7 buffer. The sample was excited at 413.1 nm using a Krypton ion gas laser at 77 K.

Figure S10. Resonance Raman spectrum of **semi-reduced SoH80G CcP** from 1200 to 1750 cm^{$^{-1}$} region. The sample was 280 μ M in protein with 30% glycerol in pH 7 TIP7 buffer. The sample was excited at 413.1 nm using a Krypton ion gas laser at 77 K.

Figure S11. Room temperature resonance Raman spectrum of a) diferric SoCcP and b) diferric SoH80G CcP. The samples were 280-330 μ M in protein with 30% glycerol in pH 7 TIP7 buffer. The samples were rotated and excited at 413.1 nm using a Krypton ion gas laser. Plasma lines are indicated with an asterisk.

Figure S12. Room temperature resonance Raman spectrum of a) semireduced SoCcP and b) semireduced SoH80G CcP. The samples were ~100 μ M in protein with 30% glycerol in pH 7 TIP7 buffer. The samples were excited at 406.7 nm using a tunable titanium:sapphire laser.

Figure S13. Near-UV/visible-region MCD spectra of the diferric and semi-reduced states of SoH80G CcP. Not all of the H-heme was reduced in the semi-reduced sample, some H-heme remained ferric. The samples were 1.2-1.4 μ M with ~50% glycerol in a TIP7 buffer at pH 7. Spectra were recorded at 2K.

Figure S14. Fit of the highly rhombic high-spin ferric signal in the EPR spectrum of diferric *Ne*H59G CcP (see Figure 3C). Top: fit using $g_x = 1.94$, $g_y = 1.90$, $g_z = 2.11$, D = +1 cm⁻¹, E/D = 0.28, T = 12 K. Bottom: fit with the same parameters, except that D = -2.5 cm⁻¹. Only the fit with a small, positive *D* value is able to reproduce the small signal around g ~ 9. In addition, using a larger, positive *D* increases the intensity of this feature, which is not in agreement with experiment. It can therefore be concluded that the highly rhombic species responsible for this signal must have a *D* of about +1 cm⁻¹.

