Cell Reports, Volume 29

Supplemental Information

Polymorphic Immune Mechanisms

Regulate Commensal Repertoire

Aly A. Khan, Leonid Yurkovetskiy, Kelly O'Grady, Joseph M. Pickard, Renée de Pooter, Dionysios A. Antonopoulos, Tatyana Golovkina, and Alexander Chervonsky

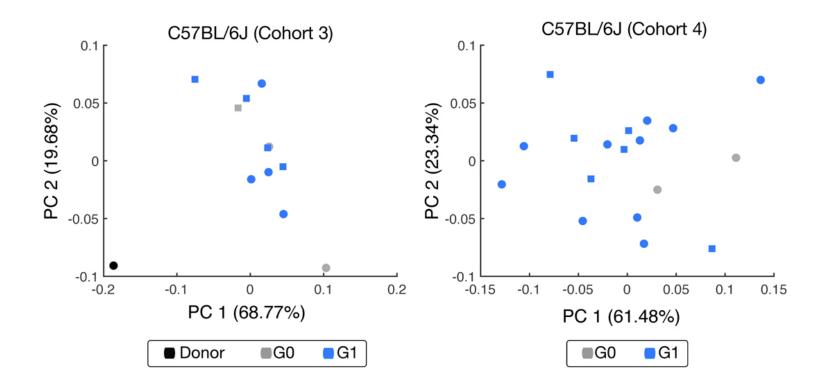
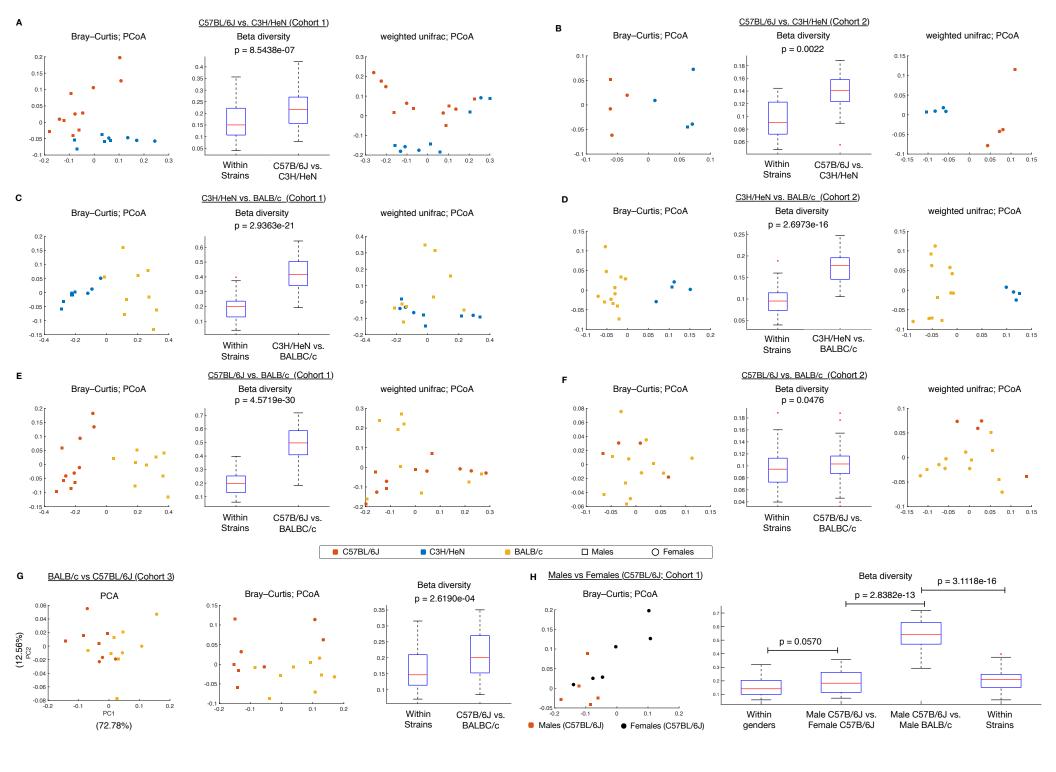
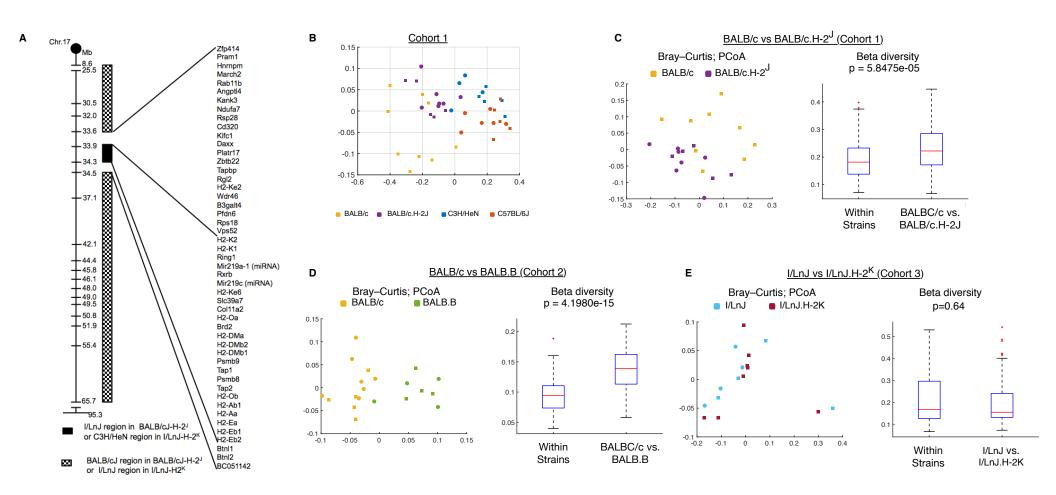



Figure S1. PCA showing that G0 microbiomes are not separable from G1 in two independent experiments. Related to Figure 1. Donor - B6 microbiota. Circles, females; squares, males.


Figure S2. Principal coordinate analysis (PCoA) and comparison of β diversity between various strains colonized with C57BL/6J microbiota. Related to Figure 2.

A-F. PCoA was performed using Bray–Curtis distance (left) and Weighted UniFrac distance (right), demonstrating reproducible separation of strains using two different distance metrics; a non-phylogenetic based metric (Bray–Curtis) and a phylogenetic based metric (Weighted UniFrac).

One-sided non-parametric Wilcoxon rank sum test was used to determine if the β diversity estimated using Bray-Curtis distance metric between strains was greater than differences within a strain. The following comparisons are shown: C57BL/6J vs. C3H/HeN (Cohort 1) (A); C57BL/6J vs. C3H/HeN (Cohort 2)(B); C3H/HeN vs. BALB/c (Cohort 1) (C); C3H/HeN vs. BALB/c (Cohort 2) (D); C57BL/6J vs. BALB/c (Cohort 1) (E); C57BL/6J vs. BALB/c (Cohort 2) (F).

G. Comparison of the microbiomes of two ex-GF strains (BALB/c vs C57BL/6J) colonized with the same microbiotas from Cohort 3 shown as PCA (left), PCoA using Bray-Curtis distance (center), and β diversity estimated using Bray-Curtis distance metric between strains (right).

H. Comparison of the microbiomes of male and female ex-GF C57BL/6J mice from Cohort 1 shown as PCoA using Bray–Curtis distance. Males are represented by red rectangles, females by black circles (left). One-sided non-parametric Wilcoxon rank sum tests were used to examine if strain differences are greater than gender differences (right). β diversity found between male C57B/6J and female C57B/6J mice showed a strong trend for being greater than β diversity found within gender among C57B/6J mice (p = 0.0570). The β diversity found between male C57B/6J and male BALB/c mice was significantly greater than β diversity found between male C57B/6J and female C57B/6J and male BALB/c mice is significantly greater than β diversity found among male mice within strains (p = 3.1118e-16).

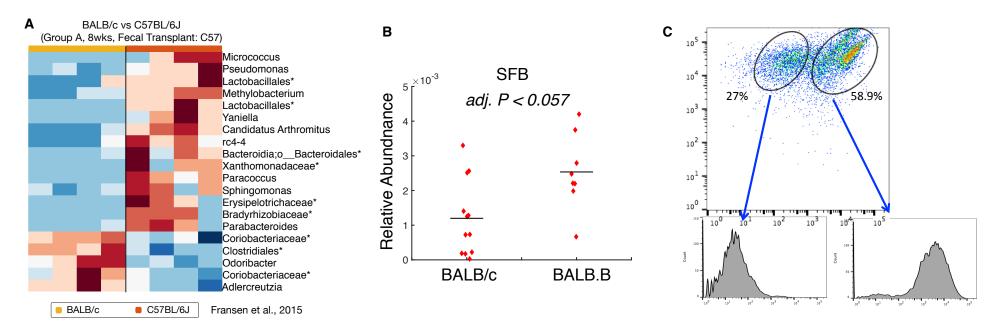


Figure S3. Additional analyses of microbiomes of MHC-congenic strains of mice. Related to Figure 3.

A. Schematic map of the congenic BALB/cJ line containing the MHC locus from I/LnJ mice and I/LnJ mice containing the MHC locus from C3H/HeN mice. The replacement was achieved by crossing the two strains followed by multiple back-crossings to BALB/cJ mice and I/LnJ mice respectively. At generation N10 mice in both back-crosses were intercrossed. Open areas upstream and downstream on the the MHC locus - regions of undefined origin.

B. 2-D PCA analysis of the microbiomes of BALB/cJ (yellow), BALB/c-H-2j (magenta), C3H/HeN (blue) and C57BL/6J (red) mice. Dots – females, squares – males. 3-D plot of the same data analysis is shown in Figure 3A.

C-E. Principal coordinate analysis (PCoA) visualizations and comparison of β diversity between various strains colonized with C57BL/6J microbiota. PCoA performed using Bray– Curtis distance (left) and one-sided non-parametric Wilcoxon rank sum tests used to examine if strain differences are greater than gender differences (right): BALB/c vs BALB/c.H-2J (Cohort 1) (C); BALB/c vs BALB.B (Cohort 2) (D); I/LnJ vs I/LnJ.H-2K (Cohort 3) (E).

Figure S4. Additional analyses of the microbiomes. Related to Figure 3

A. Data from Fransen et al., 2015 reanalyzed. Heat map showing statistically significant lineage differences (P < .05, FDR adjusted t-test) of bacterial lineages between ex-GF BALB/c vs. C57BL/6J 8 weeks after fecal transplant with B6 microbiota. Notably, *Candidatus Arthromitus* (SFB) was higher in C57BL/6J.

B. Relative abundance of SFB bacteria in BALB/cJ (H-2^d) and BALB.B (H-2^b) mice from our high throughput sequencing experiment (Cohort 3).

C. An example of sorting of colonic bacteria for IgA-seq experiments. Colonic contents free of debris was stained with anti-IgA antibodies conjugated to the APC fluorochrome and sorted into + and - populations, which were reanalyzed before extracting DNA for sequencing.

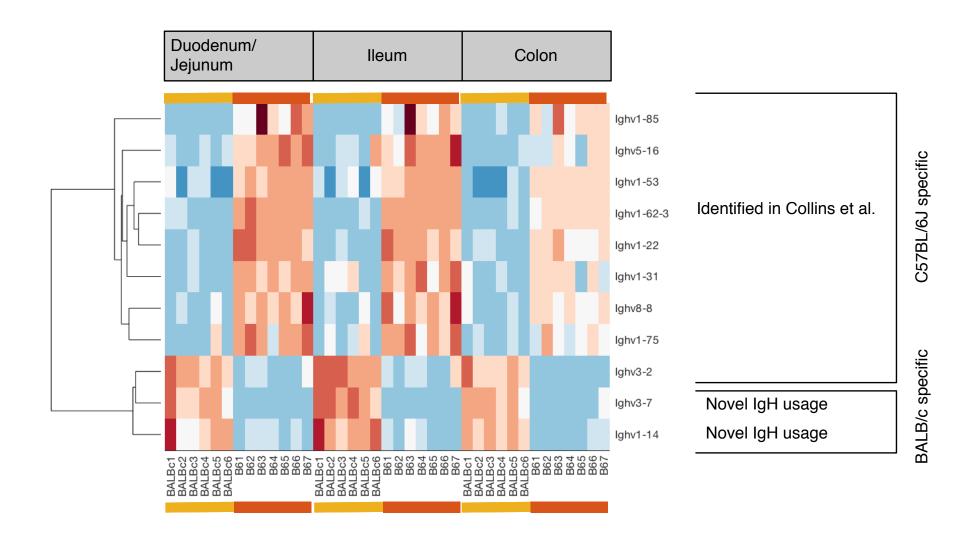


Figure S5. BALB/cJ and C57BL/6J mice utilize different families of the variable regions of the heavy chain of immunoglobulins. Related to Figure 4. Some of these differences were reported before (Collins et al, 2015), some are reported here.

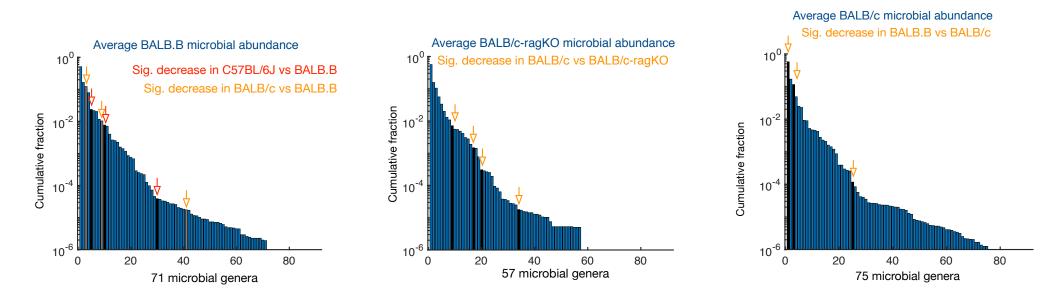


Figure S6. Limited number of bacterial lineages is controlled by polymorphic innate and adaptive mechanisms. Related to Figure 3. Arrows show abundances of bacterial lineages significantly different between indicated strains of mice. Abundance itself was not a factor for controlling mechanisms – lineages with higher and very low abundances were selectively controlled.

Cohort	o Figures 1-4. Source of	G0		G1		Total number of
	microbiota	strains		F	М	mice per group per experiment
1	B6 UC (JAX)	B6	1F	2	1	11
		B6	1F	4	4	-
		BALB/cJ	1F	0	10	10
		BALB.H-2 ^j	1F	7	5	12
		C3H/HeN	1F	4	5	9
2	B6 TAC	BALB/cJ Rag1 ^{-/-}	1F	1	2	5
		BALB/cJ Rag1 ^{-/-}	1F	1	1	
		C57BL/6J	1F	1	1	4
		C57BL/6J	1F	2	0	
		BALB.H-2 ^j	1F	0	4	7
		BALB.H-2 ^j	1F	3	0	
		BALB/cJ	1F	2	3	12
		BALB/cJ	1F	5	2	
		l/LnJ	1F	1	2	12
		l/LnJ	1F	1	4	
		l/LnJ	1F	2	2	
		C3H/HeN	1F	1	1	4
		C3H/HeN	1F	2	0	
		BALB.H-2 ^b	1F	2	2	8
		BALB.H-2 ^b	1F	2	2	•
3	B6 TAC	I/LnJ.H-2 ^k	1F	0	4	8
		I/LnJ.H-2 ^k	1F	0	4	
		BALB/cJ	1F	2	4	10

Table S1. Input microbiota, cohort structure and mouse numbers in the current study. Related to Figures 1-4.

		BALB/cJ	1F	1	3	
		l/LnJ	1F	2	3	8
		l/LnJ	1F	2	1	
		B6	1F	2	2	8
		B6	1F	2	2	
4	B6 JAX	B6	1F	3	2	16
		B6	1F	2	2	
		B6	1F	5	2	

Sources of microbiota for GF mice repopulation: Cohort 1 - B6 (UC) JAX originated from The Jackson Laboratory, but were bred and housed at the University of Chicago for several generations; Cohorts 2 and 3 – donors arrived straight from Taconic; B6 JAX – donors arrived straight from The Jackson Laboratory.

Each line shows the size and gender break of the progeny of a particular G0 female.

Last column summarizes mouse numbers used for statistical analysis in each experiment (cohort).

Table S2. Selected genes with differential expression in BALB/c and B6 gut chosen by relevant gene ontology (GO) categoryand relevance to immunity and/or inflammatory conditions in the gut. Related to Figure 4.

Physiological function Gene name	GO ID	GO process association	Association with immunity and disease	References
Complement activation				
C1rb	0006956	Complement activation		
C1s2	0006956	Complement activation		
Mucosal pentraxins				
Mptx1 Mptx2			Microbial dysbiosis Antimicrobial peptide expressing Paneth cells	(van der Meer- van Kraaij et al., 2007) (Haber et al.,
Inactivators of xenobiotics and toxins				2017)
Ces1b	0016042	Lipid catabolic process	Enzymatic hydrolysis	(Hosokawa,
Fmo4	0055114	TMAO inactivation	Gut microbiota cardio-vascular disease	(Nosokawa, 2008) (Wang et al.,
Gsta1	0006749	Glutathione metabolism		2011)
NK cell differentiation and activation				
H60c	0001913	Cell mediated cytotoxicity		
ll11ra2	0004896	Cytokine receptor activity		
Raet1e	0001913	Cell mediated cytotoxicity		
Glycosyltransferases				
St3gal4	0006486	Protein glycosylation	Intestinal inflammation and microbial dysbiosis	(Huang et al., 2015)
Trim proteins – regulators of			· · · · ·	
inflammation and anti-viral immunity <i>Trim30d</i> <i>Trim34b</i>			Innate immunity and pathogen recognition	(Ozato et al., 2008)
Trim80				(Ozato et al., 2008) (Ozato et al., 2008)
Gasdermins Gsdmc3 Gsdms4	0012501 0012501	Programmed cell death Programmed cell death	Inflammatory bowel disease Inflammatory bowel disease	(Yuan et al., 2018) (Yuan et al., 2018)

Reactive oxygen species production/Oxidation of microbial metabolites Duox1	0019221	Cytokine-mediated signaling pathway	Gastric colonization by <i>H. Felis</i>	(Grasberger et
Neutrophil function Prg2 Padi4 Tmem116	0002376 0002376	Immune system process Immune system process	Crohn's disease Septic shock mortality	al., 2013) (Han et al., 2013) (Costa et al., 2018)
Intestinal barrier function Afm Tjap1 Pianp	0008431 0005923 0050776	Vitamin E binding Bicellular tight junction	Intestinal homeostasis	(Mihara et al., 2016)
Peptidase inhibitors Serpina10 Serpina1a Serpina1b Serpina3a Serpina3h	0010466 0010466 0010466	Negative regulation of peptidase activity Negative regulation of peptidase activity Negative regulation of peptidase activity		
Interferon-induced genes Ifi44I Ifi202b Gvin1	0006955 0045087	Immune response Innate immune response	Microbial diversity correlated with expression of these genes Immunity to intracellular pathogens	(Brodziak et al., 2013) (MacMicking, 2004)
Inflammasome regulation <i>NIrp1b</i>	0045087	Innate immune response	Colitis	(Williams et al., 2015)
Macrophage phagocytic function <i>Spp1</i>	0006954	Inflammatory response		(Toyonaga et al., 2015)
Metabolic genes Eno1b (retrotransposed)			<i>H. Pylori</i> -mediated gastric diseases	(Chen et al., 2014)

Table S3. Complete list of genes with significant difference in expression between BALB/cand B6 gut. Related to Fig.4. Variable regions of immunoglobulin genes are shown separately. DJ-duodenum/jejunum.

	Host Genes			Immunoglobulin (
Duodenum/Jejunum	lleum	Colon	IG-DJ	IG-lleum	IG-Colon
1700011H14Rik	1700011H14Rik	2010005H15Rik	lghv1-14	lghv1-13	lghv1-14
2200002J24Rik	2200002J24Rik	5830417I10Rik	lghv1-15	lghv1-14	lghv1-15
5830417I10Rik	5830417I10Rik	9530053A07Rik	lghv1-22	lghv1-15	lghv1-2
9530053A07Rik	9530053A07Rik	Actc1	lghv1-31	lghv1-22	lghv1-20
Acta1	A930018M24Rik	Afm	lghv1-39	lghv1-23	lghv1-22
Actc1	Acta1	AK157302	lghv1-53	lghv1-27	lghv1-23
AK157302	Actc1	Apoa2	lghv1-56	lghv1-31	lghv1-25
BC035947	AK157302	Atp8b5	lghv1-58	lghv1-36	lghv1-27
Camk2b	Akt2-ps	BC025446	lghv1-62	lghv1-38	lghv1-30
Clec2j	Apoa2	C1rb	lghv1-62-2	Ighv1-43	lghv1-31
Cyp2c29	BC035947	C1s2	Ighv1-62-3	lghv1-53	lghv1-33
Cyp2c67	C1rb	Cib3	lghv1-71	lghv1-58	lghv1-36
СурЗа59	C1s2	Col4a6	lghv1-75	lghv1-62	lghv1-37
Defa-ps18	Ces1b	Cyp2c67	Ighv1-76	lghv1-62-2	lghv1-43
Defa2	Clec2j	Cyp2r1	lghv1-78	lghv1-62-3	lghv1-53
Defa20	Col4a6	Dynlt1a	lghv1-81	lghv1-71	lghv1-62-3
Defa21	Cyp2c67	Ear-ps3	lghv1-84	lghv1-75	lghv1-67
Defa22	Cyp3a44	Eno1b	lghv1-85	lghv1-84	lghv1-75
Defa26	Defa-ps18	ENSMUST00000012440.12	lghv10-3	lghv1-85	lghv1-81
Defa27	Defa-ps5	ENSMUST00000160663.1	lghv14-4	lghv1-86	lghv1-83
Defa28	Defa-ps8	Fmo4	Ighv2-9	lghv2-9	lghv1-85
Defa32	Defa2	Gbp10	lghv3-1	lghv3-1	lghv1-86
Defa33	Defa20	Gbp2b	lghv3-2	lghv3-2	lghv14-4
Defa35	Defa21	Gvin1	lghv3-7	lghv3-7	lghv2-4
Dynlt1a	Defa22	H2-Ea-ps	lghv5-16	Ighv4-2	lghv2-6
Eno1b	Defa26	H2-Q3	lghv7-2	Ighv5-16	Ighv2-6-8
ENSMUST00000116					
434.9	Defa27	H60c	lghv8-8	lghv7-2	lghv2-9
Gsdmc3	Defa28	Hist1h2aa	lgkv1-99	lghv8-11	lghv3-1
Gsdmc4	Defa32	Hist1h2ao	lgkv4-62	lghv8-8	Ighv3-2
Gvin1	Defa33	Hmga1-rs1		lgkv7-33	Ighv3-7
H2-Ea-ps	Duox1	1830127L07Rik		lgkv8-31	Ighv4-2
Н2-К2	Dynlt1a	lfi202b			lghv5-16
Hist1h2aa	Eno1b	Ifi44l			Ighv5-2
Hist3h2bb-ps	ENSMUST0000001 2440.12 ENSMUST0000009	ll11ra2			Ighv6-6
Hmga1-rs1	0860.6	Klk15			lghv6-7
Hmgb1-ps8	Gsdmc4	Lrmda			lghv7-2
lfi202b	Gsdmcl2	Marcksl1-ps4			lghv7-4
lfi44l	Gsta1	Mptx2			lghv8-11
tpa-ps1	Gvin1	Mrpl48-ps			Ighv8-2
Mcoln3	H2-Ea-ps	Mrto4-ps2			Ighv8-8

Mptx1	H2-Q3	Mup-ps23
Mrpl48-ps Msantd1	Hist1h2aa Hist1h2ao	Nlrp1b
	Hist2h2aa2	Nxpe4
NIrp1b		Nxpe5
Nlrp1c-ps	Hmga1-rs1	Oas2
Pnp2	Hmgb1-ps8	Padi4
Prg2	1830127L07Rik	Pkhd1
Rbpsuh-rs3	lfi202b	Pnp2
Rpl15-ps1	Ifi44I	Raet1e
Rpl3-ps1	ll11ra2	Rbpsuh-rs3
Rplp0-ps1	Insl3	Rpl3-ps1
Rps12-ps9	Mptx1	Rpl35a-ps2
Rps3a2	Mrpl48-ps	Rpl35a-ps3
Serpina3a	Nlrp1b	Rpl35a-ps4
Skiv2l-ps1	Nlrp1c-ps	Rpl35a-ps6
Sprr2a1	Nr0b2	Rpl36-ps2
Sspo	Nudc-ps1	Rplp0-ps1
St3gal4	Pianp	Rps12-ps9
Sycp1	Pik3c2g	Rps3a2
Tdg-ps	Pnp2	Serpina1a
Them7	Rbpsuh-rs3	Serpina1b
Tjap1	Rpl3-ps1	Skiv2l-ps1
Tmem116	Rpl35a-ps2	Slc22a29
Tpm3-rs7	Rpl35a-ps3	Sycp1
Trbv29	Rpl35a-ps4	Tdg-ps
Trim34b	Rpl35a-ps6	Tdpx-ps1
Trim80	Rplp0-ps1	Tpm3-rs7
Vmn1r212	Rps12-ps9	Trim30c
Wsb2-ps	Rps2-ps6	Trim30d
	Rps3a2	Trim34b
	Serpina10	Unc5a
	Serpina3h	Wsb2-ps
	Sh2d6	
	Sh2d7	
	Skiv2l-ps1	
	Spp1	
	Sprr2a1	
	Sspo	
	St3gal4	
	Sycp1	
	Tdg-ps	
	Tdpx-ps1	
	Them7	
	Tjap1	
	Tmem116	
	Tpm3-rs7	
	Trbv29	

lgkv1-88 lgkv3-2 lgkv4-50 lgkv4-79 lgkv4-92 lgkv7-33 Trim34b Trim80 Wsb2-ps