Supplementary information

Ion transporter gene expression is linked to the thermal sensitivity of calcification in the reef coral *Stylophora pistillata*

Bernardet C^{1,2}, Tambutté E¹, Techer N¹, Tambutté S¹ and Venn AA^{1*}

- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1^{er}, Monaco 98000
- 2. Sorbonne Université, Collège Doctoral, F-75005 Paris, France

*Corresponding authors email: <u>avenn@centrescientifique.mc</u>

Telephone: + 377 97 77 44 72

Supplementary Table 1. List of *S. pistillata* ion transport genes with RT-PCR primers and product size. Further information can be obtained from the Cnidarian Database <u>www.data.centrescientifique.mc</u> (Karako Lampert et al. 2014).

Target gene	Reference		Real-time PCR primers	Product size		
Ca ²⁺	Zoccola et al.	F	TGCTACAAGATCGCCACCAACAC	9 2 h		
channel	(1999)	R	TCAGCCGCCAGCAGAATACTACTC	82 pb		
NUE	Capasso et al.	F	TCATTCTCCTTGGCTGTTTTACTG	120 ph		
NIL	(in prep)	R	CATGAAGAATCCGCACAAGAGGTT	138 pb		
DMC A1	Zoccola et al.	F	CCAAAACCTCCCAAAACCTTCCT	131 ph		
INCAI	(2004)	R	GACCCCTCGCAATCCTCTGG	131 po		
DMC A 2		F	GTACTGGCAAGAGCAACACC	125 ph		
T WICA2	Wang et al.	R	AAGACTGGCCCATCATTAGC	125 po		
DMC A3	(in prep)	F	TCACTGGAGATCCGCGTTTTTACA	140 pb		
FNICAS		R	ACCGGTTTGCTTTGGGAGACATT			
SpieSI C4B		F	CCAATGTTGCGTTCGGTAGTCTTT	1/3 ph		
spisslC4p		R	GCCCTGTAGCGCCAATAATAATCA	145 pb		
SpieSI C/w		F	CTTGGAGGGCTGTTTCTTGAT	152 ph		
зріззісчу		R	TATTTTCCGCTCCCTACCCTGTTC	152 pb		
SpieSI C48		F	TCTTGCTGGTGGAATTGGTGGAGT	150 mb		
SpisslC40		R	TAAACGGAATGGCATGTAGTCAAG	150 pb		
SpieSI C4c	Zoccola <i>et al.</i> (2015)	F	GGCTGCCTACCCACCAAACCA	113 nh		
Shisercas		R	GGGGCAAATCCAAATCCACATAG	113 pu		
SpisSLC26a		F	GCGAAATTTCCTGCCATCTA	133 nb		
		R	TCGCCACGGTTATCCCTCCTGCTA	135 bg		
SpieSI C26B	pisSLC26β		CATCGCGGCACTTGTCTGTAG	150 ph		
SpissLC20p			GTCCATAACGCGGTGCCTTCTGTC	139 po		
SpieSI C264		F	GATTGCCGCGTCATTTCACTG	121 1		
SpisSLC267		R	ATTCCCTGCATTTCCCCTGTAA	131 po		
Spie CA1	Moya <i>et al</i> .	F	GGAGGGACCCGACACGTGGAA	110 pb		
SpisCAI	(2008)	R	AGTCGGCAAGTCCCGGTTCG	110 pb		
Spie CA2	Bertucci <i>et al.</i>		TGCGGCCGAGTGACTGGAGA	01 ph		
SpiseA2	(2011)	R	CGCCACTGAGTTTAGCGCCTCC	ad 16		
SpisCA3	Del Prete et	F	TGGCTCTGGTGGCCCAAATGGT	136 ph		
SpiseAS	al. (2018)	R	TGCTGGGCACGGTGACAGAGGT	- 136 pb		
SpisCA4	Le Goff et al.	Le Goff et al.		GGTGCCGCTTGTTTTCAGCGCA		
SpiseA4	2016	R	TCCGGTTGCGCATGTCCCTGT	07 p0		
V_ATPase	Capasso et al.	F	GAGGAGTTTGATTTTGGGGAAGTA	07 ph		
v-AlPase (in prep)		R	AGTCGCAAATAAGAGGCTGTGTT	<i>) / p</i> 0		
1.22	Karako Lampert et	F	TGATGTGTCCATTGATCGTC			
L22	al. 2014	R	CATAGGTAGCTTGTGCAGATG	137 pb		
36R/	Moya et al.,	F	AACAAGGTGGCAGCCCCAGC	01 pb		
36B4	2008	R	GTCTTCTCGGGACCCAGGCCA	71 p0		

Supplementary Table 2. Results of two-way ANOVA tests on the effect of temperature and day/night on calcification and respiration rates (Figure 1A and B) and the results of one-way ANOVA tests on the effect of temperature on photosynthetic rate (Figure 1C) and symbiont density (Figure 1D).

Variable	Effect	df	F	Р	Post-hoc
	Temperature	9, 118	70.203	< 0.00001	See table S3
Calcification rate	Time	1, 118	285.72	< 0.00001	See table S3
	Temperature x Time	9, 118	7.386	< 0.00001	See table S3
	Temperature	9, 124	36.381	< 0.00001	See table S4
Respiration rate	Time	1, 124	115.537	< 0.00001	See table S4
	Temperature x Time	9, 124	2.292	< 0.05	See table S4
Photosynthetic rate	Temperature	9, 62	18.72	< 0.00001	21,23,25,27,29,31 > 21,27,19,32 > 17,33
Symbiont density	Temperature	4, 10	11.14	< 0.001	$25^{\circ}C \ge 31^{\circ}C \ge$ $19^{\circ}C > 17^{\circ}C, 32^{\circ}C$

Supplementary Table 3. Results of post-hoc pairwise t tests on calcification rate. Letters (x and y) indicate statistical differences (p < 0.05) with respect to 25 °C, and between night and day.

Tomporatura	Time	25°C		Difference between	
remperature	Time	Night	Day	night / day	
1700	Night	Х			
17 C	Day		Х	-	
10°C	Night	-			
19 C	Day		Х	-	
21°C	Night	-		¥.	
21 °C	Day		Х	У	
23°C	Night	-		¥.	
	Day		Х	У	
2700	Night	-		¥7	
27 C	Day		-	У	
20°C	Night	-		¥.	
29 C	Day		Х	У	
31°C	Night	-		¥.	
	Day		-	У	
32°C	Night	Х		у	

	Day		Х	
33°C	Night	Х		
	Day		Х	У

Supplementary Table 4. Results of post-hoc pairwise t tests on respiration rate. Letters (x and y) indicate statistical differences (p < 0.05) with respect to 25 °C, and between night and day.

Tommonotumo	Time	25°C		Difference between
remperature	Time	Night	Day	night / day
1700	Night	Х		
17 C	Day		Х	-
10°C	Night	Х		
19 C	Day		Х	-
21°C	Night	Х		X/
21 C	Day		Х	У
23°C	Night	Х		X/
25°C	Day		-	У
2700	Night	-		¥7
27 C	Day		-	У
20°C	Night	-		¥.
29 C	Day		-	У
21°C	Night	-		¥7
51 C	Day		-	У
32°C	Night	X		X/
	Day		X	У
22°C	Night	X		
55 C	Day		Х	У

Supplementary Table 5. Eigen values from descriptive discriminant analysis of transcellular transporter genes

	DF1	DF2	DF3	DF4	DF5
Eigen values	0.967	0.95	0.905	0.776	0.419
Proportion	24.081	23.638	22.536	19.313	10.434
Cumulative Proportion	24.081	47.718	70.254	89.566	100

	DF1	DF2	DF3	DF4	DF5
Ca ²⁺ channel	-1.25174	-0.50275	0.82883	0.92	1.50667
PMCA1	1.49177	2.30532	-2.37027	0.7289	-3.0821
PMCA2	0.84803	0.53783	2.229	-2.0158	-4.70668
PMCA3	-0.412	0.39785	1.07867	-0.6077	1.01399
NHE	-2.04806	-1.61509	-0.80468	-1.4671	-0.78038
SpisSLC4 _β	0.13748	0.39	-0.57168	1.2192	-3.02595
SpisSLC4g	-0.1545	-0.51738	0.27089	3.0924	1.27347
SpisSLC4 _y	0.55733	0.26041	0.22834	-1.1867	-1.45829
SpisSLC4e	0.61186	-0.91709	0.16733	-1.0479	4.7902
SpisSLC48	0.14967	-0.02118	-1.00771	1.0861	-1.40355
SpisSLC26b	-0.02647	0.06913	-0.23149	0.1728	0.12823
SpisSLC4 _ε	-0.41848	-0.03035	0.69804	0.9642	-0.71527
SpisCA1	-0.58458	-0.50437	1.3165	-2.7138	-0.08673
SpisCA2	0.19726	0.62296	-0.3189	0.2463	-1.87507
SpisCA3	0.77479	0.93835	-1.31863	1.9029	0.03303
SpisCA4	-1.0053	-0.57662	0.2773	-1.0983	1.76961
V-ATPase	0.23082	-1.08646	0.07618	-1.0984	6.54858

Supplementary Table 6. Discriminant variables from descriptive discriminant analysis of transcellular transporter genes

Supplementary Table 7. Results of three-way ANOVA tests on the effect of temperature (17, 25 and 32°C), time of day (day/nighttime) and gene identity on relative gene expressions (Figures 3 and 4 in main manuscript). Results of posthoc tests are given in main manuscript in Tables 1 and 2.

Variable	Effect	df	F	Р
	Temperature	2, 510	85.8017	< 0,00001
	Time	1, 510	46.8169	< 0,00001
gene expression	Genes	16, 510	4.1862	< 0,00001
	Temperature*Time	2, 510	12.3359	< 0,00001
	Temperature*Genes	32, 510	16.9948	< 0,00001
	Time*Genes	16, 510	4.0744	< 0,00001
	Temperature*Time*Genes	32, 510	2.8592	< 0,00001

Supplementary Figure 1. Correlation of (A) night respiration to night calcification ($p = 1.6 \ 10^{-10}$ and $R^2 = 0.47$), (B) day respiration to day calcification ($p = 3.1 \ 10^{-14}$ and $R^2 = 0.56$), (C) net photosynthesis to day calcification ($p = 3.1 \ 10^{-13}$ and $R^2 = 0.56$), (D) symbiont density to net photosynthesis ($p = 4.4 \ 10^{-4}$ and $R^2 = 0.60$).

Supplementary Figure 2. Photosynthetic rate normalized to symbiont density.

Supplementary Figure 3. Gene expression (mean \pm SD) of ion transport genes relative to geometric mean of expression of the reference genes L22 and 36B4. The same data is presented in the main manuscript as log10 transformation plots in Figure 3 and 4 relative to 25°C and nighttime.

Supplementary Figure 4. Abiotic precipitation rate of aragonite as a function of aragonite saturation state at 5°C, 25°C and 37°C in seawater (modified from Burton and Walter, 1987), and precipitation rate of aragonite in *S. pistillata* from 17°C to 33°C during night (blue circles) and day (orange circles).

References

- Bertucci A, Tambutté S, Supuran CT, Allemand D, Zoccola D (2011) A New Coral Carbonic Anhydrase in Stylophora pistillata. *Marine Biotechnology*, **13**, 992–1002.
- Del Prete S, Bua S, Zoccola D et al. (2018) Comparison of the Anion Inhibition Profiles of the α-CA Isoforms (SpiCA1, SpiCA2 and SpiCA3) from the Scleractinian Coral Stylophora pistillata. *International Journal of Molecular Sciences*, **19**, 2128.
- Le Goff C, Ganot P, Zoccola D, Caminiti-Segonds N., Allemand D, and Tambutté S. (2016). Carbonic Anhydrases in Cnidarians: Novel Perspectives from the Octocorallian Corallium rubrum. PloS ONE 11(8): e0160368. https://doi.org/10.1371/journal.pone.0160368

- Karako-Lampert S, Zoccola D, Salmon-Divon M et al. (2014) Transcriptome Analysis of the Scleractinian Coral Stylophora pistillata (ed Voolstra CR). *PLoS ONE*, **9**, e88615.
- Laurent J1, Venn A, Tambutté É, Ganot P, Allemand D, Tambutté S. Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis. FEBS J. 2014 Feb;281(3):683-95. doi: 10.1111/febs.12614. Epub 2013 Dec 10.
- Moya A, Tambutté S, Bertucci A et al. (2008) Carbonic anhydrase in the scleractinian coral Stylophora pistillata: Characterization, localization, and role in biomineralization. *Journal of Biological Chemistry*.
- Zoccola D, Tambutté E, Kulhanek E, Puverel S, Scimeca JC, Allemand D, Tambutté S (2004) Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral Stylophora pistillata. *Biochimica et Biophysica Acta - Biomembranes*.
- Zoccola D, Ganot P, Bertucci A et al. (2015) Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. *Scientific Reports*, **5**, 9983.
- Zoccola D, Tambutté E, Sénégas-Balas F, Michiels J-F, Failla J-P, Jaubert J, Allemand D (1999) Cloning of a calcium channel α1 subunit from the reef-building coral, Stylophora pistillata. *Gene*, **227**, 157–167.