Data Management and Statistical Analysis Supplement to "The Identification of Pretreatment Trajectories of Alcohol Use and Their Relationship to Treatment Outcome in Men and Women with Alcohol Use Disorder" by Stasiewicz, Bradizza, et al.

> Joseph F Lucke^{*} State University of New York at Buffalo

> > September 3, 2019

Abstract

This supplement documents the data management and statistical analyses of "The identification of pretreatment trajectories of alcohol use ...", by Stasiewicz, Bradizza, et al. I begin with a very brief introduction to reproducible research. I then follow with data acquisition, checking, summaries, and restructuring. An overview of the statistical models is presented, followed by the statistical procedures for estimating model parameters, and model checking. Finally, I present the statistical analyses, results, and graphs.

Contents

1	Approach	4
2	Setup	4
3	The Data	6
4	Data Acquisition	6
5	Data Checks 5.1 Duplicate Cases 5.2 Missing Data	7 7 7
6	Data Summaries	8
7	Data Restructuring	13
8	Overview of Statistical Models	15
	8.1 The Basic Model	15
	8.2 The Full Basic Model	15
	8.3 The Truncated Basic Model	16
	8.4 The Finite Mixture Model	16

*I thank Melanie Ruszczyk for providing the data. I also thank Braden Linn and Junru Zhao for reviewing this supplement.

9 Statistical Procedur	es		10
9.1 Full Model			 17
9.2 Truncated Model	for Determining the Number	of Classes	 17
9.3 Full Models for Ea	ach Class		 17
	es		
9.5 Additional Analys	ses		 17
10 Full Model			18
•	orrelation		
· · · · · · · · · · · · · · · · · · ·	e, and Quartic Models		
10.4 Full Model Spline	\mathbf{Fit}		
11 Determining the Nu			20
	ent Dataframe		
11.2 Finite Mixture M	odels		
12 Restructure Data fo			31
	and Fitted Means to NDA D		
12.3 Plot Results			 42
13 Analysis of Treatme			45
	Pretreatment Class		
	ne for Fitted and Observed M		
13.3 Plot Results			 56
14 Follow-up Analyses			57
	ıta		
-			
14.5 Observed Means			 62
15 Additional Analyses			65
	vsis of Proximal-Pretreatment		
15.2 Tests of Changes	from Basleline to Various En	d Points	 68
16 Publication Graphs			68
List of Tables			
1 R Session Informa	ation		

1	R Session Information	\mathbf{b}
2	Estimated Parameters the Full Cubic Spline Logistic-Binomial with AR(1) Correlation	23
3	Estimated Parameters the Naive Full Cubic Logistic-Binomial with AR(1) Correlation	24
4	Classification Results for Three-Class Binomial-Logistic Model	37
5	Parameter Estimates for Truncated Logistic-Binomial Model in Class 1	39
6	Parameter Estimates for Truncated Logistic-Binomial Model in Class 2	40
7	Parameter Estimates for Truncated Logistic-Binomial Model in Class 3	41
8	Parameter Estimates for Full Logistic-Binomial Model in Class 1	46
9	Parameter Estimates for Full Logistic-Binomial Model in Class 2	47
10	Parameter Estimates for Full Logistic-Binomial Model in Class 3	48

11	Parameter Estimates for Naive Full Logistic-Binomial Model in Class 1	49
12	Parameter Estimates for Naive Full Logistic-Binomial Model in Class 2	50
13	Parameter Estimates for Naive Full Logistic-Binomial Model in Class 3	51
14	Proximal-Pretest Polynomial for Class 1	69
15	Proximal-Pretest Polynomial for Class 2	70
16	Proximal-Pretest Polynomial for Class 3	71
17	Test of Differences from $B2$ to $S11$: The upper panel displays the absolute difference among	
	classes. The lower panel compares the relative difference among classes with Class 1 as the	
	reference	73
18	Test of Differences from $B2$ to $S11$: The upper panel uses Class 2 as reference. The lower	
	panel uses Class 3 as reference.	74
19	Test of Differences from $B2$ to $F3$: The upper panel displays the absolute difference among classes. The lower panel compares the relative difference among classes with Class 1 as the	
	reference.	75
20	Test of Differences from $B2$ to $F3$: The upper panel uses Class 2 as reference. The lower panel	
	uses Class 3 as reference.	76
21	Test of Differences from $B2$ to $F6$: The upper panel displays the absolute difference among	
	classes. The lower panel compares the relative difference among classes with Class 1 as the	
	reference	77
22	Test of Differences from $B2$ to $F6$: The upper panel uses Class 2 as reference. The lower panel	
	uses Class 3 as reference	78

List of Figures

1	Observed autocorrelations (black lines and points) with observed average autocorrelation (blue	
	line and points)	20
2	Fitted values from linear (purple line), quadratic (blue line), cubic (red line), and quartic	
	(green line) binomial regression splines plotted against the observed mean (black points).	22
3	Observed (black circles) means and full model fitted values (red line) together with the 95%	
	pointwise probability ribbon.	27
4	Observed average autocorrelations (blue points) with estimated autocorrelation (red line) with	
	2 standard error ribbon. Observed autocorrelations (gray lines) are presented in background.	28
5	Scree plot for the estimated number of classes based on 1000 boostrapped AICs. The point is	
	the median, the thick red line is the 50% probability interval, and the the thin line is the 95%	
	probability interval. The dashed blue line denotes the chosen number of classes	32
6	Visual comparison of regression coefficient estimates for the three classes	33
7	The assignment proportions to the three classes: Class 1	34
8	The assignment proportions to the three classes: Class 2	35
9	The assignment proportions to the three classes: Class 3	36
10	Observed and fitted pretreatment means for each class. The gray points and line are the	
	observed and fitted means for the entire sample.	43
11	Observed and fitted pretreatment means within each class. The lines are the actual data	44
12	Observed (points) and fitted (lines) means for pretreatment and treatment for each class with	
	corresponding 95% probability ribbons. The gray points, line, and ribbon show the results for	
	the entire sample	58
13	Observed (points) and fitted (lines) means for pretreatment and treatment within each class.	
	The ghosted lines are the actual data.	59
14	Observed and fitted means with 95% probability intervals for pretreatment, treatment, and	
	followup for each class	66
15	Observed means and quadratic polynomial fitted values for the three classes during the	
	Proximal-Pretreatment phase	72

16	Observed and fitted means with 95% probability intervals for Distal-, Proximal-pretreatment,	
	Treatment, and Follow-up phases for each class.	80
17	Observed (points) and fitted (lines) means for distal-, proximal-pretreatment, and treatment	
	for each class. The gray points and line show the results for the entire sample.	82

1 Approach

The statistical analysis of these data is complicated. Here I present the analysis is considerable detail so that the interested reader can follow, critique and indeed improve the analysis. The overall approach follows the recommended guidelines for reproducible research, (Barba, 2018; Gandrud, 2016; Gentleman & Lang, 2007; Peng, 2009). Donoho (2010) provides the motivation underlying this approach.

[E]rror is ubiquitous in scientific computing [and statistical analysis], and one needs to work very diligently and energetically to eliminate it. One needs a very clear idea of what has been done in order to know where to look for likely sources of error. I often cannot really be sure what a [researcher] has done from his/her own presentation, and in fact often his/her description does not agree with my own understanding of what has been done, once I look carefully at the scripts. Actually, I find that researchers quite generally forget what they have done and misrepresent their computations (p. 385).

Recent controversies (Baggerly & Coombes, 2009; Herndon, Ash & Pollin, 2013) in which research results could not be reproduced because of data mismanagement and statistical errors starkly highlight the issues involved.

This document comprises both IATEX text (Mittelbach & Goossens, 2004) and R code (R Core Team, 2019) woven into an Rweave (.rnw) file. The .rnw file was then executed by *Sweave* (Leisch, 2002; Leisch & R-Core, 2015), creating a pure IATEX (.tex) file. The IATEX file was then converted to a .pdf file by the program MiKTEX (Schenk, 2019). The .rnw and corresponding .R files are available from this author.

The presentation reflects changes in names, labels, etc. that have been made over the course of the study. I have tried to update the original names, labels, etc. to the revised names, etc., but I may have missed a few changes.

Finally, I make a distinction in usage between "we" and "I". All references to "we" mean that the enclosing statement refers to a mutual decision by all the authors. References to "I" mean that this author alone made the relevant decision or action.

2 Setup

All data management and analyses were conducted in R (Ihaka, 2010; Ihaka & Gentleman, 1996; R Core Team, 2019; Thieme, 2018; Venables, Smith & The R Development Core Team, 2019). The project was conducted within RStudio integrated development environment (IDE) (RStudio Team,, 2015). The current R session is given by Table 1 on the following page.

The required packages for this analysis are loaded here.

```
> library(flexmix)
```

- > library(geepack)
- > library(Hmisc)
- > library(MASS)
- > library(readxl)
- > library(splines)
- > library(tidyverse)
- > library(mice)

Table 1: R Session Information

- R version 3.6.1 (2019-07-05), x86_64-w64-mingw32
- Locale: LC_COLLATE=English_United States.1252, LC_CTYPE=English_United States.1252, LC_NUMERIC=C, LC_TIME=English_United States.1252
- Running under: Windows 10 x64 (build 17763)
- Matrix products: default
- Base packages: base, datasets, graphics, grDevices, methods, splines, stats, utils
- Other packages: dplyr 0.8.3, flexmix 2.3-15, forcats 0.4.0, Formula 1.2-3, geepack 1.2-1, ggplot2 3.2.0, Hmisc 4.2-0, lattice 0.20-38, MASS 7.3-51.4, mice 3.6.0, purr 0.3.2, readr 1.3.1, readxl 1.3.1, stringr 1.4.0, survival 2.44-1.1, tibble 2.1.3, tidyr 0.8.3, tidyverse 1.2.1
- Loaded via a namespace (and not attached): acepack 1.4.1, assertthat 0.2.1, backports 1.1.4, base64enc 0.1-3, boot 1.3-22, broom 0.5.2, cellranger 1.1.0, checkmate 1.9.4, cli 1.1.0, cluster 2.1.0, colorspace 1.4-1, compiler 3.6.1, crayon 1.3.4, data.table 1.12.2, digest 0.6.20, fansi 0.4.0, foreign 0.8-71, generics 0.0.2, glue 1.3.1, grid 3.6.1, gridExtra 2.3, gtable 0.3.0, haven 2.1.1, hms 0.5.0, htmlTable 1.13.1, htmltools 0.3.6, htmlwidgets 1.3, httr 1.4.0, jomo 2.6-9, jsonlite 1.6, knitr 1.23, labeling 0.3, latticeExtra 0.6-28, lazyeval 0.2.2, lme4 1.1-21, lubridate 1.7.4, magrittr 1.5, Matrix 1.2-17, minqa 1.2.4, mitml 0.3-7, modelr 0.1.4, modeltools 0.2-22, munsell 0.5.0, nlme 3.1-140, nloptr 1.2.1, nnet 7.3-12, pan 1.6, parallel 3.6.1, pillar 1.4.2, pkgconfig 2.0.2, R6 2.4.0, RColorBrewer 1.1-2, Rcpp 1.0.1, rlang 0.4.0, rpart 4.1-15, rstudioapi 0.10, rvest 0.3.4, scales 1.0.0, stats4 3.6.1, stringi 1.4.3, tidyselect 0.2.5, tools 3.6.1, utf8 1.1.4, vctrs 0.2.0, withr 2.1.2, xfun 0.8, xml2 1.2.0, zeallot 0.1.0

```
> #library(xtable)
```

```
> #library(ggpubr)
```

3 The Data

Study participants were 205 men and women between the ages of 18 to 65 years who (1) met DSM-5 criteria for an alcohol use disorder, (2) lived within commuting distance of the treatment site, and (3) provided written informed consent.

The data for the number of days abstinent (NDA) is a time series of 20 weekly intervals in which each interval, except the first, consists of the NDA for a participant for that week. The first interval is the mean of a participant's NDA's for the previous 19 weeks, i.e., NDA history. The response variable NDA is an integer value ranging from 0 to 7.

The 20-week time series was segmented into three phases anchored at Week 0, the start of treatment. The first phase was the *Distal Pretreatment* phase from Weeks -8 to -4, also denoted as H0 to H4. The second was the *Proximal Pretreatment* phase from Weeks -4 to 0, also denoted as P1, P2, B1, and B2. The third phase was the *Treatment* phase from Weeks 0 to 19, also denoted as S01 to S11

A fourth Follow-up phase was appended at Months 3 and 6, also denoted as F3 and F6. This phase was analyzed separately.

4 Data Acquisition

All data managment was undertaken with the package **tidyverse** (Wickham, 2017; Wickham & Grolemund, 2017). Data was imported from Excel[©] with the package **readxl** (Wickham & Bryan, 2018).

The working data file was imported from the Excel file ".../Working/PDAintervalsHxthruFU3-5-19. xlsx" and saved as the working data frame NDA0. Checks were made to ensure the working data frame was current. The data frame NDA1 was created from NDA0 The variable names were converted into simpler names.

```
> #options(warn=2)
> options(width=72)
> WorkFileName <- "Working/PDA intervals Hx thru FU 3-5-19.xlsx"
> if(!file.exists("NDA0.rds")){
   Status <- "Working data frame did not exist. All analyses will be computed from original data."
   file.remove(list.files(pattern="*.rds"))
} else if( file.mtime("NDAO.rds") < file.mtime(WorkFileName) ) {</pre>
   Status <- paste(</pre>
     "Working data frame had a younger date ",
     file.mtime("NDA0.rds"),
    "than original Excel file",
     file.mtime(WorkFileName),
     ". All analyses will be computed from new data.")
   file.remove(list.files(pattern="*.rds"))
} else {
   Status <- "Working data frame is current."
}
> if(!file.exists("NDA0.rds")){
   NDAO <- read_excel("Working/PDA intervals Hx thru FU 3-5-19.xlsx")
   saveRDS(NDA0, file="NDA0.rds")
}
> NDA0 <- readRDS("NDA0.rds")</pre>
> NDA1 <- NDAO
```

Working data frame is current.

5 Data Checks

An intial check was made for duplicate cases

5.1 Duplicate Cases

I check for duplicate cases

```
> if(anyDuplicated(NDAO$ID)){
    which(duplicated(NDAO$ID))
}
```

There were 0 duplicate case IDs.

5.2 Missing Data

The first table counts the amount of missingness. Thus 188 (91.7%) had no missing data. The rest had 1 to 11 missing, from 1 (0.5\%) with 1 missing point to 5 (2.4\%) with 11 missing data points.

The second shows the case numbers for the 17 cases with missing data.

The missing data patterns were examined with the function *md.pattern* from R's **mice** (van Buuren & Groothuis-Oudshoorn, 2011). The first table shows the missing data patterns with 1 denoting present data and 0 denoting missing data. The leftmost column counts the number of cases for each pattern, the rightmost column counts the number missing data points in that pattern (row). The bottom row counts the number of cases with missing data at each time point. The rightmost bottom cell counts the number of missing data points.

There was no missing data for the initial 9 data points, those data crucial to determining the finite mixture model. The missing data pattern is monotone.

```
> N <- nrow(NDA1)
> table(apply(is.na(NDA1[,2:21]),1,sum))
      1
          3
               4
                   6
                        8
                            9
                              10 11
  0
188
      1
           1
               1
                   2
                        2
                            1
                                 4
                                     5
> round(table(apply(is.na(NDA1[,2:21]),1,sum))/N,3)
    0
           1
                 3
                        4
                              6
                                     8
                                            9
                                                 10
                                                        11
0.917 0.005 0.005 0.005 0.010 0.010 0.005 0.020 0.024
> xmis <- which(apply(is.na(NDA1[,2:21]), 1,sum) >0)
> length(xmis)
[1] 17
> NDA1$ID[xmis]
 [1] 120 135 148 173 235 247 287 330 333 338 366 371 385 424 438 442 462
> md.pattern(NDA1[,2:21], plot=FALSE)
    H0 H1 H2 H3 H4 P1 P2 B1 B2 S01 S02 S03 S04 S05 S06 S07 S08 S09 S10
188
     1
        1
            1
               1
                  1
                      1
                         1
                            1
                                1
                                    1
                                         1
                                             1
                                                 1
                                                      1
                                                          1
                                                               1
                                                                   1
                                                                       1
                                                                            1
     1
                                                                            1
1
        1
            1
               1
                  1
                      1
                         1
                            1
                                1
                                    1
                                         1
                                             1
                                                 1
                                                      1
                                                          1
                                                               1
                                                                   1
                                                                       1
                                                                       0
1
     1
        1
            1
               1
                  1
                      1
                         1
                            1
                               1
                                    1
                                        1
                                             1
                                                 1
                                                      1
                                                          1
                                                               1
                                                                   1
                                                                            0
```

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	5	9	10	12	12	14	14	15	16	16
	S11																		
188	1		0																
1	0		1																
1	0		3																
1	0		4																
2	0		6																
2	0		8																
1	0		9																
4	0	1	0																
5	0	1	.1																
	17	14	0																
>																			

6 Data Summaries

We present two data summaries, each yielding slightly different information. The first data summary uses the R function *summary*.

```
> options(width=72)
> summary(NDA1)
       ID
                                                          H2
                      HO
                                        H1
Min.
         :103
                Min.
                        :0.000
                                  Min.
                                         :0.000
                                                   Min.
                                                           :0.000
 1st Qu.:194
                1st Qu.:0.000
                                  1st Qu.:0.000
                                                   1st Qu.:0.000
Median :290
                Median :0.170
                                  Median :0.140
                                                   Median :0.140
         :289
                        :0.269
                                          :0.266
                                                           :0.288
Mean
                Mean
                                  Mean
                                                   Mean
 3rd Qu.:384
                3rd Qu.:0.490
                                  3rd Qu.:0.430
                                                   3rd Qu.:0.570
Max.
         :478
                        :0.970
                                          :1.000
                                                           :1.000
                Max.
                                  Max.
                                                   Max.
                                          Ρ1
                                                            Ρ2
       HЗ
                         H4
Min.
         :0.000
                  Min.
                          :0.000
                                    Min.
                                            :0.000
                                                     Min.
                                                             :0.000
 1st Qu.:0.000
                  1st Qu.:0.000
                                    1st Qu.:0.000
                                                     1st Qu.:0.000
Median :0.140
                  Median :0.140
                                    Median :0.140
                                                     Median :0.250
         :0.272
                          :0.282
                                            :0.298
Mean
                  Mean
                                    Mean
                                                     Mean
                                                              :0.327
3rd Qu.:0.430
                  3rd Qu.:0.430
                                    3rd Qu.:0.570
                                                     3rd Qu.:0.500
Max.
         :1.000
                  Max.
                          :1.000
                                    Max.
                                            :1.000
                                                     Max.
                                                             :1.000
       Β1
                         B2
                                         S01
                                                          S02
         :0.000
                          :0.000
Min.
                  Min.
                                    Min.
                                           :0.00
                                                    Min.
                                                            :0.00
 1st Qu.:0.110
                  1st Qu.:0.140
                                    1st Qu.:0.29
                                                     1st Qu.:0.29
Median :0.370
                  Median :0.500
                                    Median :0.62
                                                    Median :0.59
Mean
         :0.435
                  Mean
                          :0.504
                                    Mean
                                            :0.57
                                                    Mean
                                                            :0.59
 3rd Qu.:0.800
                  3rd Qu.:1.000
                                    3rd Qu.:0.90
                                                    3rd Qu.:1.00
Max.
         :1.000
                          :1.000
                                           :1.00
                                                            :1.00
                  Max.
                                    Max.
                                                    Max.
```

		NA's :5	NA's :9
S03	S04	S05	S06
Min. :0.00	Min. :0.00	Min. :0.00	Min. :0.00
1st Qu.:0.33	1st Qu.:0.43	1st Qu.:0.40	1st Qu.:0.43
Median :0.69	Median :0.71	Median :0.71	Median :0.71
Mean :0.63	Mean :0.64	Mean :0.66	Mean :0.66
3rd Qu.:1.00	3rd Qu.:1.00		3rd Qu.:1.00
Max. :1.00	Max. :1.00		Max. :1.00
NA's :10	NA's :12	NA's :12	
	S08		
Min. :0.00	Min. :0.00	Min. :0.00	Min. :0.00
1st Qu.:0.40	1st Qu.:0.43		1st Qu.:0.43
Median :0.71	Median :0.71	Median :0.78	Median :0.86
Mean :0.66	Mean :0.66	Mean :0.68	Mean :0.68
3rd Qu.:1.00	3rd Qu.:1.00	3rd Qu.:1.00	3rd Qu.:1.00
Max. :1.00	Max. :1.00	Max. :1.00	
NA's :14		NA's :16	NA's :16
S11	F3	F6	
Min. :0.00			
1st Qu.:0.43	1st Qu.:0.44		
Median :0.83	Median :0.83		
Mean :0.69	Mean :0.67		
3rd Qu.:1.00	-	3rd Qu.:1.00	
	Max. :1.00		
NA's :17	NA's :26	NA's :31	

The second summary uses the function *describe* from Hmisc (Harrell, 2019).

```
> options(width=72)
> describe((NDA1))
(NDA1)
23 Variables 205 Observations
   ID
    n missing distinct Info Mean
05 0 205 1 288.7
25 .50 .75 .90 .95
                               Gmd .05
                                            .10
                              125.5 129.4 143.4
   205
   .25
       290.0
                   437.6
  194.0
             384.0
                         455.6
lowest : 103 106 108 110 111, highest: 472 474 476 477 478
_____
HO
                   Info Mean Gmd
    n missing distinct
                                     .05
                                            .10
      0 35 0.973 0.2689 0.3031
   205
                                      0.00
                                           0.00
   .25
        .50
             .75 .90
                        .95
        0.17 0.49
                    0.69
                          0.80
  0.00
lowest : 0.00 0.03 0.06 0.09 0.11, highest: 0.83 0.86 0.89 0.91 0.97
_____
H1
    n missing distinct
                    Info Mean
                                Gmd
```

Supplement to Pretreatment Trajectories

205 0 8 0.905 0.2661 0.3368 Value 0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00 Frequency 92 25 20 21 13 7 13 14 Proportion 0.449 0.122 0.098 0.102 0.068 0.063 0.034 0.063 _____ H2 Info Mean Gmd n missing distinct 205 0 8 0.925 0.288 0.3408 Value 0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00 Frequency 84 20 26 22 22 11 8 12 Proportion 0.410 0.098 0.127 0.107 0.107 0.054 0.039 0.059 _____ HЗ n missing distinct Info Mean Gmd 205 0 8 0.933 0.2719 0.3238 0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00 Value 30 20 Frequency 80 29 17 12 6 11 Proportion 0.390 0.141 0.146 0.098 0.083 0.059 0.029 0.054 _____ H4 Info n missing distinct Mean Gmd 0.921 205 0 8 0.2823 0.3426 Value 0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00 86 22 26 20 19 Frequency 11 7 14 Proportion 0.420 0.107 0.127 0.098 0.093 0.054 0.034 0.068 _____ Ρ1 n missing distinct Info Mean Gmd 0.934 0.2982 0.3557 205 0 8 0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00 Value Frequency 80 27 25 20 15 14 7 17 Proportion 0.390 0.132 0.122 0.098 0.073 0.068 0.034 0.083 _____ P2 n missing distinct Info Mean Gmd205 0 9 0.95 0.327 0.3691 0.00 0.13 0.25 0.38 0.50 0.63 0.75 0.88 1.00 Value 72 23 27 14 Frequency 21 14 8 7 19 Proportion 0.351 0.112 0.102 0.068 0.132 0.068 0.039 0.034 0.093 B1 n missing distinct Info Mean Gmd .05 .10 0.988 0.435 0.4155 0.00 0.00 205 0 51 .25 .75 .90 .95 .50 0.11 0.37 0.80 1.00 1.00

lowest : 0.00 0.04 0.05 0.06 0.07, highest: 0.88 0.89 0.92 0.94 1.00 _____ R2 n missing distinct Info Mean Gmd .05 .10 205 0 49 0.977 0.5041 0.4416 0.00 0.00 .25.50.75.90.950.140.501.001.001.00 lowest : 0.00 0.05 0.06 0.08 0.10, highest: 0.86 0.87 0.93 0.95 1.00 _____ S01 n missing distinct Info Mean Gmd .05 .10 200 5 58 0.985 0.5662 0.4065 0.0000 0.0000 .25 .50 .75 .90 .95 0.2857 0.6225 0.9023 1.0000 1.0000 lowest : 0.0000 0.0500 0.0556 0.0667 0.0700, highest: 0.9000 0.9091 0.9100 0.9500 1.0000 _____ S02 n missing distinct Info Mean Gmd .05 .10
 196
 9
 51
 0.973
 0.5902
 0.4062
 0.0000
 0.0000
 .25 .50 .75 .90 .95 0.2857 0.5900 1.0000 1.0000 1.0000 lowest : 0.0000 0.0357 0.0741 0.0909 0.1000, highest: 0.9000 0.9231 0.9300 0.9643 1.0000 _____ S03 n missing distinct Info Mean Gmd .05 .10 195 10 47 0.961 0.6297 0.392 0.0000 0.0000 .25 .50 .75 .90 .95 $0.3333 \quad 0.6875 \quad 1.0000 \quad 1.0000 \quad 1.0000$ lowest : 0.0000 0.0500 0.0714 0.1111 0.1400, highest: 0.8889 0.9000 0.9286 0.9400 1.0000 _____ S04 n missing distinct Info Mean Gmd .05 .10
 193
 12
 44
 0.961
 0.6393
 0.386
 0.0000
 0.0000

 .25
 .50
 .75
 .90
 .95
 0.4286 0.7143 1.0000 1.0000 1.0000 lowest : 0.0000 0.0370 0.0476 0.1429 0.1538, highest: 0.8571 0.8600 0.9286 0.9333 1.0000 _____ S05 n missing distinct Info Mean Gmd .05 .10
 193
 12
 39
 0.952
 0.6566
 0.3889
 0.0000
 0.0000
 .25 .50 .75 .90 .95 0.4000 0.7143 1.0000 1.0000 1.0000 lowest : 0.0000 0.0714 0.0909 0.1429 0.2500, highest: 0.8929 0.9000 0.9091 0.9500 1.0000

n missing distinct Info Mean Gmd .05 .10 191 14 38 0.949 0.6608 0.3831 0.0000 0.0500 .50 .75 .90 .95 .25 0.4286 0.7143 1.0000 1.0000 1.0000 lowest : 0.0000 0.0500 0.0588 0.0625 0.0952, highest: 0.8571 0.8800 0.8889 0.9286 1.0000 _____ S07 n missing distinct Info Mean Gmd .05 .10 191 14 34 0.946 0.6603 0.3849 0.0000 0.0000 .50 .75 .90 .95 .25 0.4043 0.7143 1.0000 1.0000 1.0000 lowest : 0.0000 0.0714 0.0909 0.1429 0.1667, highest: 0.8139 0.8182 0.8571 0.9286 1.0000 S08 n missing distinct Info Mean Gmd .05 .10 190 15 37 0.951 0.6573 0.3899 0.0000 0.0000 .75 .90 .95 .25 .50 0.4286 0.7143 1.0000 1.0000 1.0000 lowest : 0.0000 0.0714 0.1111 0.1429 0.1667, highest: 0.8667 0.9091 0.9286 0.9643 1.0000 _____ S09 n missing distinct Info Mean Gmd .05 .10 189 16 28 0.927 0.6789 0.3824 0.0000 0.0000 .50 .75 .90 .95 .25 0.4286 0.7778 1.0000 1.0000 1.0000 lowest : 0.0000 0.0714 0.1429 0.2857 0.3333, highest: 0.8571 0.8611 0.8889 0.9000 1.0000 _____ S10 n missing distinct Info Mean Gmd .05 .10 89 16 28 0.939 0.6784 0.387 0.0000 0.0000 189 .25 .50 .75 .90 .95 0.4286 0.8571 1.0000 1.0000 1.0000 lowest : 0.0000 0.0357 0.1429 0.2000 0.2692, highest: 0.8889 0.8929 0.9000 0.9048 1.0000 _____ S11 n missing distinct Info Mean Gmd .05 .10 188 17 72 0.945 0.6925 0.3735 0.00000 0.05849 .25 .50 .75 .90 .95 0.43000 0.83333 1.00000 1.00000 1.00000 lowest : 0.0000 0.0248 0.0504 0.0619 0.1071, highest: 0.9557 0.9565 0.9853 0.9903 1.0000 _____ F3 n missing distinct Info Mean Gmd .05 .10 179 26 57 0.991 0.6741 0.3808 0.000 0.008

Supplement to Pretreatment Trajectories

S06

.25 .50 .75 .90 .95 0.445 0.830 0.990 1.000 1.000 lowest : 0.00 0.01 0.03 0.04 0.08, highest: 0.96 0.97 0.98 0.99 1.00 _____ F6 n missing distinct Info Mean Gmd .05 .10 174 31 65 0.983 0.6646 0.3849 0.0000 0.0130 .75 .25 .50 .90 .95 0.7350 0.4225 0.9975 1.0000 1.0000 lowest : 0.00 0.01 0.02 0.04 0.05, highest: 0.96 0.97 0.98 0.99 1.00 _____

7 Data Restructuring

The data frame NDA1 was converted from wide to long format into NDA2. The new variable NDA, representing the number of days abstinent was created from the orginal proportion data by multiplying the latter by 7 and rounding to an integer. The week numbers 0 to 19 were appended.

```
> NDA2 <- gather(NDA1[,1:21], week, NDA, H0:S11)</pre>
> NDA2 <- arrange(NDA2, ID, factor(week, levels=c("HO", "H1", "H2", "H3", "H4",
                                                   "P1", "P2", "B1", "B2",
                                                   "S01", "S02", "S03", "S04", "S05", "S06",
                                                   "S07", "S08", "S09", "S10", "S11")))
> NDA2$NDA <- round(NDA2$NDA*7)</pre>
> NDA2$W <- 0:19
> as.data.frame(head(NDA2, n=20))
    ID week NDA
                 W
1 103
         HO
              3 0
2 103
         H1
              0
                 1
3 103
         H2
              6 2
4 103
         HЗ
              3 3
5 103
         H4
              3 4
6
  103
         P1
              4 5
7
  103
         P2
              4 6
8
  103
         B1
              2 7
9
  103
         B2
              6 8
10 103
        S01
              5 9
11 103
        S02
              5 10
12 103
        S03
              5 11
13 103
        S04
              5 12
14 103
        S05
              3 13
15 103
        S06
              5 14
16 103
        S07
              6 15
        S08
17 103
              5 16
              4 17
18 103
        S09
19 103
        S10
              6 18
20 103 S11
              6 19
> as.data.frame(tail(NDA2, n=20))
```

	ID	week	NDA	W
1	478	HO	1	0
2	478	H1	1	1
3	478	H2	1	2
4	478	HЗ	2	3
5	478	H4	1	4
6	478	P1	2	5
7	478	P2	1	6
8	478	B1	1	7
9	478	B2	1	8
10	478	S01	3	9
11	478	S02	4	10
12	478	S03	4	11
13	478	S04	4	12
14	478	S05	4	13
15	478	S06	4	14
16	478	S07	4	15
17	478	S08	4	16
18	478	S09	4	17
19	478	S10	4	18
20	478	S11	4	19

The data frame NDA2 was then reduced to all non-missing values. The cases with incomplete data are listed.

```
> NDA2 <- na.omit(NDA2)</pre>
> UID <- unique(NDA2$ID)
> table(NDA2$ID)
103 106 108 110 111 113 114 118 120 128 129 131 132 133 134 135 137
                                                                          138
20
     20
         20
             20
                  20
                      20
                           20
                                    16
                                        20
                                            20
                                                 20
                                                     20
                                                          20
                                                              20
                                                                  19
                                                                       20
                                                                           20
                               20
139 140 143 144 145 146 148 150 151 154 155 156 160 161 165 166 167
                                                                          168
 20
     20
                  20
                            9
                                    20
                                                         20
                                                                  20
         20
              20
                      20
                               20
                                        20
                                            20
                                                 20
                                                     20
                                                              20
                                                                       20
                                                                           20
170 171 173 175 176 178 179 181 182 186 187 188 189 191 193 194 195
                                                                          196
 20
     20
         12
              20
                  20
                       20
                           20
                               20
                                    20
                                        20
                                            20
                                                 20
                                                     20
                                                          20
                                                              20
                                                                  20
                                                                       20
                                                                           20
197 198 201 202 204 205 206 207 208 209 210
                                               211 214 215 217 218
                                                                     220
                                                                          223
20
     20
                           20
                                                                  20
         20
              20
                  20
                       20
                               20
                                    20
                                        20
                                            20
                                                 20
                                                     20
                                                          20
                                                              20
                                                                       20
                                                                           20
228 231 233 235 236 237 240 244 247 249 251
                                               252 253 256 257
                                                                 258 259
                                                                          263
20
     20
         20
                  20
                       20
                           20
                               20
                                     9
                                        20
                                            20
                                                 20
                                                     20
                                                          20
                                                              20
                                                                  20
                                                                       20
                                                                           20
              11
265 266 269 271 274 276 279 280 281 286 287 288 290 291 292 295 297
                                                                          300
 20
     20
         20
              20
                  20
                      20
                           20
                               20
                                    20
                                        20
                                            10
                                                 20
                                                     20
                                                          20
                                                              20
                                                                  20
                                                                       20
                                                                           20
301 302 306 307 308 309 311 314 315 317 319 322 323 324 326 327
                                                                     328
                                                                          330
20
     20
         20
              20
                  20
                      20
                           20
                               20
                                    20
                                        20
                                            20
                                                 20
                                                     20
                                                         20
                                                              20
                                                                  20
                                                                       20
                                                                            9
331 333 334 335 338 339 340 341 343 346 351
                                               353 355 356 361 364 366
                                                                          367
 20
     10
         20
              20
                  17
                       20
                           20
                               20
                                    20
                                        20
                                            20
                                                 20
                                                     20
                                                          20
                                                              20
                                                                  20
                                                                       14
                                                                           20
370 371 373 374 376 377 378 379 383 384 385 386 387 388 389 390 391
                                                                          395
20
      9
         20
              20
                  20
                       20
                           20
                               20
                                    20
                                        20
                                            10
                                                 20
                                                     20
                                                          20
                                                              20
                                                                  20
                                                                       20
                                                                           20
396 398 400 403 404 409 411 413 415 416 418 421 423 424 425 429 430 433
 20
     20
         20
              20
                  20
                      20
                           20
                               20
                                    20
                                        20
                                            20
                                                 20
                                                     20
                                                           9
                                                              20
                                                                  20
                                                                       20
                                                                           20
434 435 436 437 438 440 441 442 444 446 447 450 451 454 456 457 462
                                                                          463
20
     20
         20
              20
                  12
                       20
                           20
                               14
                                    20
                                        20
                                            20
                                                 20
                                                     20
                                                         20
                                                              20
                                                                  20
                                                                       10
                                                                           20
469 470 472 474 476 477 478
20
     20
         20
              20
                  20
                      20
                           20
```

```
> UID[which(table(NDA2$ID) < 20)]
[1] 120 135 148 173 235 247 287 330 333 338 366 371 385 424 438 442 462</pre>
```

8 Overview of Statistical Models

The statistical model was a finite mixture model (McLachlan & Peel, 2000) for which each basic model was a longitudinal binomial model with serial correlation. We postulated that the responses could exhibit different trajectories in the Distal-Pretreatment, and Proximal-Pretreatment, and Treatment phases. To accommodate these possibly different trajectories the binomial model used logistic link for a cubic spline with predetermined knots at Week -4 and Week 0. The knot at Week -4 corresponded to a possible change in trajectory based on previous findings, and the knot at Week 0 corresponded to a possible change in trajectory when participants began treatment. The spline model essentially allowed the estimation of three piecewise cubic polynomials smoothed at the two knots. The serial correlation was assumed to be first-order autoregressive [AR(1)] such that the correlation between responses diminishes diminished exponentially over time. To determine the number of classes, a second, truncated basic model was used in which considered only Weeks -8 to 0 were used with a single knot at -4 and for which responses were assumed independent. Once the number of classes was determined, the full basic model was re-estimated within each class.

8.1 The Basic Model

Random variables are underlined (Hemelrijk, 1966). Let $\underline{y}_{iw} \in \{0, ..., 7\}$ denote the number of days abstinent for Participant *i* during Week *w*, where i = 1, ..., N, and w = -8, ..., 11. Let $\theta(w)$ be the unkown propensity of a participant to be abstinent at Week *w*. The *basic model* was assumed to be the binomial function with AR(1) serial correlation:

$$\Pr(\underbrace{y}_{-iw} = y) = \begin{pmatrix} 7\\ y \end{pmatrix} [\theta(w)]^{y} [(1 - \theta(w)]^{7-y} \quad \text{with} \quad \operatorname{cor}(\underbrace{y}_{-iv}, \underbrace{y}_{-iv}) = \rho^{|v-u|}.$$
(1)

(The choice of AR(1) serial correlation was based on diagnostics given by Section 10.2 on page 18 and Figure 1 on page 20.) The mean of \underline{y}_{iw} is $E(\underline{y}_{iw}) = 7\theta(w)$, but the variance, which depends on ρ , is unknown. This model assumes independence of abstinence among the days within a week.

8.2 The Full Basic Model

We postulated that the responses could exhibit different trajectories in the Distal-Pretreatment, the Proximal-Pretreatment, and the Treatment phases. To accommodate these possibly different trajectories in $\theta(w)$, the *full basic model* used a logistic link of Equation (1) to a cubic spline with predetermined knots at Week -4 and Week 0. (The choice of a *cubic* spline over other possible degrees was based on model diagnostics given in Section 10.3 on page 19.) The knot at Week -4 corresponded to a possible change in trajectory when participants begin Proximal Pretreatment, and the knot at Week 0 corresponded to a possible change in trajectory when participants began treatment. The spline model essentially allowed the estimation of three piecewise cubic polynomials smoothed at the two knots separating each of the three phases of the time series. The *naive* parameterization of the full basic model is

logit
$$\theta(w) = \beta_0 + \beta_1 w + \beta_2 w^2 + \beta_3 w^3 + \delta_1 I_{[-4:\infty[}(w)(w+4)^3 + \delta_2 I_{[0:\infty[}(w)w^3, (2)$$

where I is the indicator function (Hastie, Tibshirani & Friedman, 2001, Chap. 5).

For computational purposes, the basic model is not parameterized as in Equation (2), but in a more general parametrization for splines (Hastie et al., 2001, Chap. 5). This reparameterization is accomplished with the R function bs from the package splines.

Marginal predicted values were obtained from

$$\underline{\hat{y}}_{\underline{w}} = 7\underline{\hat{\theta}}(w), \tag{3}$$

with

$$\operatorname{ogit} \underline{\hat{\theta}}(w) = \underline{\hat{\beta}}_0 + \underline{\hat{\beta}}_1 w + \underline{\hat{\beta}}_2 w^2 + \underline{\hat{\beta}} w^3 + \underline{\hat{\delta}}_1 I_{[-4:\infty[}(w)(w+4)^3 + \underline{\hat{\delta}}_2 I_{[0:\infty)[}(w)w^3$$
(4)

Because the estimators $\hat{\underline{\rho}}$'s and $\hat{\underline{\delta}}$'s in Equations (4) are asymptotically normal, 95% pointwise probability intervals for $\hat{\underline{y}}_{w} = 7\hat{\underline{\theta}}(w)$ were obtained by (1) extracting the estimated mean vector and covariance matrix from the GEE statistical, (2) simulating the coefficients by large number of multivariate normal deviates using the means and covariances, (3) transforming the simulated coefficients into $\hat{\theta}(w)$ by the inverse link of Equation (4), and then (4) finding the lower and upper 2.5% quantiles from the simulated distribution.

8.3 The Truncated Basic Model

To determine the number of classes K in the finite mixture model, detailed below, we confined the analysis to the two pretreatment phases. Thus we used a second *truncated* basic model, being Equation (1) but with independence between responses, i.e., $\operatorname{cor}(\underline{y}_{iu}, \underline{y}_{iv}) = 0$ and with Equation (2) truncated to $-8 \le w \le 0$ with a single knot at -4 i.e.,

logit
$$\theta(w) = \beta_0 + \beta_1 w + \beta_2 w^2 + \beta_3 w^3 + \delta_1 I_{[-4:\infty[}(w)(w+4)^3.$$
 (5)

Again, the predicted values were obtained using Equation (3) using the estimators of the parameters of Equation (5). Pointwise 95% probability intervals were likewise obtained by simulation as outlined above.

8.4 The Finite Mixture Model

We further postulated that the NDA would be better modeled as a finite mixture of the basic model, Equation (1). That is, we proposed that there were $K \ge 1$ classes, to be determined, such that

$$\Pr(\underline{y}_{-iw} = y) = \sum_{k=1}^{K} \pi_k {\binom{7}{y}} \left[\theta_k(w)\right]^y \left[(1 - \theta_k(w)\right]^{7-y},\tag{6}$$

where K is the number of classes, π_k is the probability of belonging in class k, and $\theta_k(w)$ has been specialized to class k (McLachlan & Peel, 2000)

To determine the number of classes K, I employed the truncated basic model, Equation (5). The number of classes K was determined by a combination of the Akaike Information Criterion (AIC) and heuristic reasoning. Each participant was then *hard-assigned* to the class showing maximum likelihood of membership (Fraley & Raftery, 2002).

Having determined K, the final mixture model was obtained by re-estimation of Equation (6) with Equation (2) for each class. Predicted values for each class k were obtained from

$$\underline{\hat{y}}_{wk} = 7 \left[\underline{\hat{\theta}}_k(w) \right]. \tag{7}$$

For each class, the predicted values were obtained using Equation (3) with 95% pointwise probability intervals obtained by simulation.

9 Statistical Procedures

The estimation of the finite mixture of the models proceeded in three steps. At all steps, missing responses were effectively assumed to be missing-completely-at-random (MCAR) (Little & Rubin, 2002). Attempts to analyze the data with monotone missing-at-random (MAR) using inverse probability of missing (Robins, Rotnitzky & Zhao, 1995) did not work. However, as seen in Sections 5.2 on page 7 and 6 on page 8, the amount of missing data was so small (8.3%) in 17 out of 205 subjects that including the missing data model with analytic model proved ineffective. Missing responses (not cases) were deleted from the data.

9.1 Full Model

The first step determined the adequacy of the cubic spline, binomial-logistic, AR(1) regression model. The cubic spline regression with knots at -4 and 0 weeks was fitted to the response variable for the entire 20 weeks of observations for all subjects without class structure by generalized estimating equations (GEE) (Diggle, Liang & Zeger, 1994; Hardin & Hilbe, 2013; Laird, 2004; Schafer, 2006). The GEE procedure was implemented in the R package geepack (Halekoh, Høisgaard & Yan, 2006; Yan, 2002; Yan & Fine, 2004). GEE yields consistent estimates of model parameters that are asymptotically normal. Predicted values were obtained from the estimated model along with pointwise 95% confidence intervals via simulation. GEE requires no assumptions regarding prior distributions of model parameters, allows specification of serial correlation, and is robust against model misspecification. The estimated parameters are marginal estimates, as in repeated-measures analysis of variance, rather than individual estimates as in multilevel models. The spline parameters do not have a simple interpretations. GEE also requires that missing data be missingcompletely-at-random rather than the more popular missing-at-random (Laird, 2004; Little & Rubin, 2002). Fortunately, the amount of missing data was small and monotone, with only 17 out of 205 subjects (8.3%)having any missing data, and the amount ranging from 1 to 11 missing responses per these 17 subjects. Model adequacy was determined by comparisons with mean responses at each data point, confidence intervals, data visualization, and assessing the serial correlation structure.

9.2 Truncated Model for Determining the Number of Classes

In the second step, the number of components in the mixture model (McLachlan & Peel, 2000) was determined from the first 8 weeks of observations, i.e., the combined Distal- and Proximal-Pretreatment phases. Thus the model was a cubic spline regression truncated at Week 0 with the single knot a -4 weeks. The finite mixture procedure assumed independence (zero serial correlation) of responses within subject. As seen in Section 6 on page 8, there was no missing data in this subset of the data. The mixture model was estimated with **flexmix** (Grün & Leisch, 2007; Grün & Leisch, 2007; Grün & Leisch, 2008; Leisch, 2004). The mixture was fitted for 1 to 10 possible classes. The choice of number of classes was based on information statistics (AIC, BIC) and their scree plots, heuristics, together with theoretical knowledge. The adequacy of the class separation was assessed by clustering diagnostics.

9.3 Full Models for Each Class

Once the number of classes was determined, the full cubic spline, binomial-logistic, AR(1) regression model was again used for all 20 observations within each class. Separate GEE analyses were used to estimate the parameters for each within-class model. Each model-based estimate was the expected value of the model belonging to its hard-assigned class (Fraley & Raftery, 2002). Point-wise 95% probability intervals were obtained by simulation. As previously mentioned, missing data was assumed to be MCAR.

9.4 Follow-up Analyses

The means and 95% confidence intervals were estimated for the follow-up responses at 3 and 6 months. The follow-up responses were analyzed separately and not incorporated into the 20-week analysis.

9.5 Additional Analyses

Two additional, post-hoc analysis were conducted. The first analysis compared the trajectories of the responses during the Proximal Pretreatment phase among the three classes. Models consisting of logisticbinomial, AR(1), quadratic polynomials with class-by-polynomial interactions were fitted to these data. Splines were unnecessary as there were no knots. There was no missing data.

The second analyses compared the change in NDAs from Week 0 to the end of treatment at Week 19, and to the two follow-up sessions among the three classes.

10 Full Model

10.1 Observed Means

I first obtain the observed means for the 20 weeks of observations.

10.2 Within-Subject Correlation

The correlation matrix displays a decay in correlations with respect to lags from 0 to 19.. Figure ?? on page ?? displays the observed autocorrelations as black lines and points together with the average observed autocorrelations as a blue line and points with respect to lags. The decay indicates that an AR(1) structure for the residuals should be included in the model.

```
> options(warn=-15)
> options(width=72)
> X <- NDA1[, 2:21]
> X <- round(7*X)
> R <- matrix(NA, nrow=205, ncol=20)
> for (i in 1:20){
   y <- X[, i]
   ok <- !is.na(y)
  m <- glm(cbind(y, 7-y) ~ 1, family=binomial)</pre>
  R[ok,i] <- residuals(m, type="pearson")</pre>
}
> X <- cor(R, method="pearson", use="pairwise.complete.obs")</pre>
> AR <- NA*X
> for(i in 1:20){
   j <- 21-i
   AR[1:j,i] <- X[i:20,i]
}
> AR
       [,1]
             [,2]
                  [,3] [,4] [,5] [,6]
                                           [,7] [,8] [,9] [,10] [,11]
 [1,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
 [2,] 0.894 0.830 0.873 0.857 0.836 0.854 0.747 0.654 0.735 0.862 0.803
 [3,] 0.927 0.782 0.817 0.789 0.791 0.614 0.524 0.633 0.695 0.693 0.801
 [4,] 0.910 0.707 0.725 0.734 0.574 0.386 0.547 0.623 0.539 0.715 0.751
 [5,] 0.866 0.612 0.688 0.584 0.391 0.438 0.548 0.446 0.509 0.659 0.724
 [6,] 0.761 0.612 0.539 0.388 0.413 0.428 0.388 0.481 0.495 0.631 0.686
 [7,] 0.734 0.483 0.364 0.433 0.412 0.305 0.411 0.428 0.466 0.601 0.686
 [8,] 0.568 0.310 0.401 0.430 0.307 0.327 0.357 0.405 0.459 0.604 0.621
 [9,] 0.384 0.345 0.403 0.332 0.323 0.266 0.346 0.388 0.453 0.531 0.622
[10,] 0.413 0.377 0.330 0.358 0.272 0.250 0.322 0.428 0.389 0.528 0.683
[11,] 0.438 0.308 0.350 0.315 0.262 0.228 0.362 0.364 0.392 0.567
                                                                       NΑ
[12,] 0.350 0.299 0.282 0.286 0.252 0.274 0.300 0.342 0.425
                                                                 NΑ
                                                                       NA
[13,] 0.363 0.235 0.281 0.261 0.291 0.209 0.271 0.410
                                                           NA
                                                                 NA
                                                                       NA
[14,] 0.300 0.272 0.240 0.312 0.256 0.198 0.346
                                                          NA
                                                                 NA
                                                    NA
                                                                       NA
[15,] 0.299 0.222 0.287 0.258 0.224 0.243
                                              NA
                                                    NA
                                                          NA
                                                                 NA
                                                                       NA
[16,] 0.261 0.248 0.241 0.249 0.267
                                        NΑ
                                              NΑ
                                                    ΝA
                                                          ΝA
                                                                 ΝA
                                                                       NΑ
```

```
[17,] 0.313 0.216 0.218 0.296
                                                       NA
                                                                     NA
                                    NA
                                          NA
                                                 NA
                                                              NA
                                                                           NA
[18,] 0.265 0.191 0.279
                                                                           NA
                             NA
                                    NA
                                          NA
                                                 NA
                                                       NA
                                                              NA
                                                                     NA
[19,] 0.247 0.225
                       NΑ
                             NA
                                    NA
                                          NA
                                                 NA
                                                       NA
                                                              NA
                                                                     NA
                                                                           NA
                                                 NA
[20,] 0.293
                                                              NA
                NA
                      NA
                             NA
                                    NA
                                          NA
                                                       NA
                                                                     NA
                                                                           NA
      [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19]
                                                           [,20]
 [1,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
                                                               1
 [2,] 0.918 0.891 0.894 0.919 0.903 0.901 0.880 0.865
                                                              NA
 [3,] 0.864 0.860 0.894 0.910 0.882 0.890 0.852
                                                       NΑ
                                                              NA
 [4,] 0.861 0.836 0.889 0.872 0.855 0.884
                                                 NA
                                                       NA
                                                              NA
 [5,] 0.835 0.841 0.855 0.855 0.815
                                          NA
                                                 NA
                                                       NA
                                                              NA
 [6,] 0.810 0.818 0.810 0.852
                                          NA
                                                 NA
                                                       NA
                                                              NA
                                    NA
 [7,] 0.775 0.804 0.844
                             NA
                                    NA
                                          NA
                                                 NA
                                                       NA
                                                              NA
 [8,] 0.763 0.840
                             NA
                                    NA
                                          NA
                                                 NA
                                                       NA
                                                              NA
                      NA
 [9,] 0.795
                NA
                       NA
                             NA
                                    NA
                                          NA
                                                 NA
                                                       NA
                                                              NA
[10,]
         NA
                NA
                      NA
                             NA
                                    NA
                                          NA
                                                 NA
                                                       NA
                                                              NA
[11,]
         NA
                NA
                       NA
                             NA
                                    NA
                                          NA
                                                 NA
                                                       NA
                                                              NA
[12,]
         NA
                NA
                       NA
                             NA
                                    NA
                                                 NA
                                                       NA
                                                              NA
                                          NA
[13,]
         NA
                                                       NA
                NA
                       NA
                             NA
                                    NA
                                          NA
                                                 NA
                                                              NA
[14,]
         NA
                NA
                      NA
                                    NA
                                          NA
                                                 NA
                                                       NA
                                                              NA
                             NA
[15,]
         NA
                NA
                       NΑ
                             NΑ
                                    NΑ
                                          NA
                                                 NΑ
                                                       NA
                                                              NA
[16,]
         NA
                NΑ
                      NA
                             NΑ
                                    NΑ
                                          NΑ
                                                 NA
                                                       NA
                                                              NA
[17,]
         NA
                NA
                      NA
                             NA
                                    NA
                                          NA
                                                 NA
                                                       NA
                                                              NA
[18,]
         NA
                NA
                      NA
                                    NA
                                                       NA
                                                              NA
                             NA
                                          NA
                                                 NA
[19,]
         NA
                NA
                      NA
                             NA
                                    NA
                                          NA
                                                 NA
                                                       NA
                                                              NA
[20,]
         NA
                NΑ
                       NΑ
                             NΑ
                                    NΑ
                                          NΑ
                                                 NΑ
                                                       NΑ
                                                              NΑ
> ARmean <- apply(AR,1,mean, na.rm=TRUE)</pre>
> ARmean <- data.frame(ARmean=ARmean, Lag=0:19)
> rm(X, R, y, ok, m)
> ARdata <- data.frame(AR)</pre>
> ARdata<-gather(ARdata, key=Week, value=ar, X1:X20)
> ARdata$Lag <- 0:19
> ARplot <- ggplot(data=ARdata) +</pre>
   xlab("Lag") + ylab("Autocorrelation") +
   geom_line(aes(x=Lag, y=ar, group=Week), alpha=.3) +
   geom_line(data=ARmean, aes(x=Lag,y=ARmean), col="blue") +
   geom_point(aes(x=Lag, y=ar, group=Week), size=1) +
   geom_point(data=ARmean, aes(x=Lag,y=ARmean), col="blue", size=2) +
   scale_x_continuous(limits=c(0,19), breaks = 0:19, minor_breaks = NULL)
> pdf("NDA/ARplot0.pdf")
> print(ARplot)
> dev.off()
RStudioGD
        2
```

10.3 Linear, Quadratic, and Quartic Models

The fitted valued from inear, quadratic, cubic, and quartic spline models with knots at $H4 \equiv -4$ and $B2 \equiv 0$ were compared to the observed means. The observed means and fitted means are presented in Figure 2 on page 22.

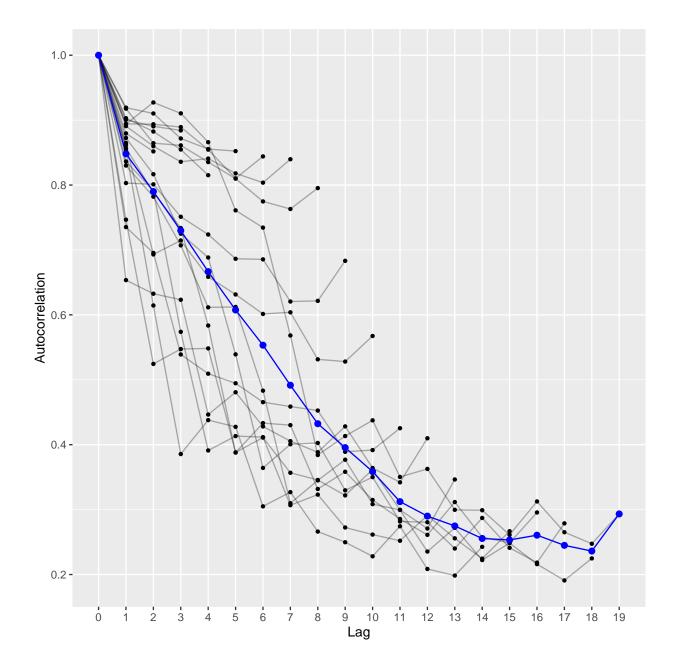


Figure 1: Observed autocorrelations (black lines and points) with observed average autocorrelation (blue line and points)

```
> NDA2$lin <- 7*fitted(geeglm(cbind(NDA, 7-NDA) ~ 1 + bs(W, knots=c(4,8), degree=1),
               id=ID, data=NDA2,
               family="binomial", waves=W, corstr = "ar1"))
> NDA2$quad <- 7*fitted(geeglm(cbind(NDA, 7-NDA) ~ 1 + bs(W, knots=c(4,8), degree=2),
                id=ID, data=NDA2,
                family="binomial", waves=W, corstr = "ar1"))
> NDA2$cub <- 7*fitted(geeglm(cbind(NDA, 7-NDA) ~ 1 + bs(W, knots=c(4,8), degree=3),
               id=ID, data=NDA2,
               family="binomial", waves=W, corstr = "ar1"))
> NDA2$quart <- 7*fitted(geeglm(cbind(NDA, 7-NDA) ~ 1 + bs(W, knots=c(4,8), degree=4),
                 id=ID, data=NDA2,
                 family="binomial", waves=W, corstr = "ar1"))
> ModelCompare <- ggplot(data=NDA2) +</pre>
    xlab("Weekly Interval") + ylab("Number of Days Abstinent per Week") +
    scale_x_continuous(limits=c(0,19), breaks = 0:19, minor_breaks = NULL,
    labels=c(paste0("H",0:4), "P1", "P2", "B1", "B2", paste0("S0", 1:9), "S10", "S11")) +
    scale_y_continuous(breaks=0:7, limits=c(0,7)) +
    geom_vline(xintercept = c(4,8), color="grav60") +
    geom_point(aes(x=W, y=Obs), size=3, alpha=.5) +
    geom_line(aes(x=W, y=lin), color="purple", size=1) +
    geom_line(aes(x=W, y=quad), color="blue", size=1) +
    geom_line(aes(x=W, y=cub), color="red", size=1) +
    geom_line(aes(x=W, y=quart), color="green", size=1) +
    theme minimal()
> pdf("NDA/ModelCompare.pdf")
> print(ModelCompare)
> dev.off()
RStudioGD
        2
> NDA2 <- NDA2[, -c(6:9)] #remove fit variables from data frame.
```

The linear model overestimated the means in the Proximal phase and underestimated them in the Treatment phase. The quadratic model both over- and underestimated the means in all phases. The cubic model estimated the means reasonably well. The quartic model did not improve estimation over the cubic.

10.4 Full Model Spline Fit

The model diagnostics conducted in Section 10.3 on page 19 step showed that the cubic spline was a reasonable model for the longitudinal, logistic-binomial regression and was thus chosen. The initial fit used the spline parameterization.

```
> G <- geeglm(cbind(NDA, 7-NDA) ~ 1 + bs(W, knots=c(4,8), degree=3), id=ID, data=NDA2,
family="binomial", waves=W, corstr = "ar1")
```

I also obtain for confirmation purposes the naive model paramaterized as Equation (2).

The spline model's parameters are given in the Table 2 on page 23.

The naive model's for Equation (2) parameters are given in the Table 3 on page 24.

Here I store the fitted values and obtain the lower and upper confidence bounds by simulation.

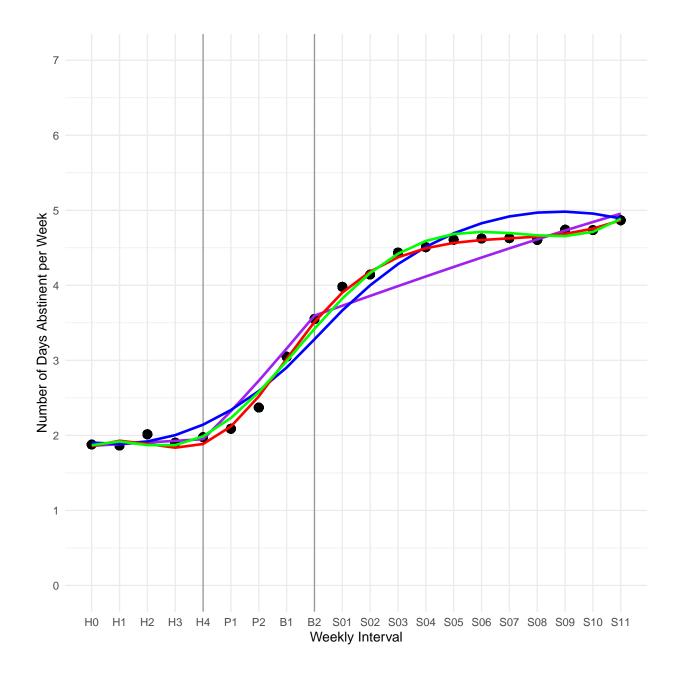


Figure 2: Fitted values from linear (purple line), quadratic (blue line), cubic (red line), and quartic (green line) binomial regression splines plotted against the observed mean (black points).

Table 2: Estimated Parameters the Full Cubic Spline Logistic-Binomial with AR(1) Correlation

```
Call:
geeglm(formula = cbind(NDA, 7 - NDA) \sim 1 + bs(W, knots = c(4, M))
    8), degree = 3), family = "binomial", data = NDA2, id = ID,
    waves = W, corstr = "ar1")
 Coefficients:
                                    Estimate Std.err
                                                      Wald Pr(>|W|)
(Intercept)
                                     -1.019 0.100 103.25 < 2e-16
bs(W, knots = c(4, 8), degree = 3)1
                                      0.160 0.080
                                                      3.99 0.04568
bs(W, knots = c(4, 8), degree = 3)2
                                     -0.379
                                              0.110 11.81 0.00059
bs(W, knots = c(4, 8), degree = 3)3
                                      2.141
                                               0.202 112.33 < 2e-16
bs(W, knots = c(4, 8), degree = 3)4
                                      1.503
                                              0.167 81.44 < 2e-16
bs(W, knots = c(4, 8), degree = 3)5
                                      1.845
                                              0.132 195.93 < 2e-16
(Intercept)
                                    ***
bs(W, knots = c(4, 8), degree = 3)1 *
bs(W, knots = c(4, 8), degree = 3)2 ***
bs(W, knots = c(4, 8), degree = 3)3 ***
bs(W, knots = c(4, 8), degree = 3)4 ***
bs(W, knots = c(4, 8), degree = 3)5 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
              0.526 0.0216
(Intercept)
Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
        0.903 0.0112
alpha
Number of clusters: 205
                           Maximum cluster size: 20
```

Table 3: Estimated Parameters the Naive Full Cubic Logistic-Binomial with AR(1) Correlation

```
Call:
geeglm(formula = cbind(NDA, 7 - NDA) ~ 1 + W + I(W^2) + I(W^3) +
   I((W > 4) * (W - 4)^3) + I((W > 8) * (W - 8)^3), family = "binomial",
   data = NDA2, id = ID, waves = W, corstr = "ar1")
Coefficients:
                      Estimate Std.err Wald Pr(>|W|)
(Intercept)
                      -1.01930 0.10031 103.25 < 2e-16 ***
                      0.11994 0.06002 3.99 0.04568 *
W
I(W^2)
                      -0.08052 0.03095 6.77 0.00929 **
I(W^3)
                       0.01296 0.00358 13.12 0.00029 ***
I((W > 4) * (W - 4)^3) -0.02213 0.00495 19.96 7.9e-06 ***
I((W > 8) * (W - 8)^3) 0.01084 0.00182 35.63 2.4e-09 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
              0.526 0.0216
(Intercept)
Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
alpha 0.903 0.0112
Number of clusters: 205 Maximum cluster size: 20
```

```
> NDA2$Fit <- as.numeric(7*predict(G, type="response"))</pre>
 > NDA2$UFit <- 0
 > NDA2$LFit <- 0
> b <- coef(G)
> names(b) <- NULL</pre>
 > Sigma <- G$geese$vbeta</pre>
> X <- cbind(1, G$model$`bs(W, knots = c(4, 8), degree = 3`)
> K <- 1000
 > R <- mvrnorm(K, mu=b, Sigma=Sigma)</pre>
 > U <- 7*plogis(X %*% (t(R)))
> u <- apply(U,1,quantile, prob=.025)</pre>
> v <- apply(U,1,quantile, prob=.975)</pre>
> NDA2$UFit <- u
 > NDA2$LFit <- v
 > head(as.data.frame(NDA2), n=20)
    ID week NDA W Obs Fit UFit LFit
              3 0 1.88 1.86 1.60 2.12
 1 103
         HO
 2 103
        H1
              0 1 1.86 1.93 1.66 2.23
 3 103
        H2
              6 2 2.01 1.89 1.61 2.19
 4 103
        H3 3 3 1.90 1.84 1.58 2.13
 5 103
        H4 3 4 1.98 1.88 1.62 2.17
 6 103
        P1 4 5 2.09 2.12 1.85 2.41
 7 103
        P2 4 6 2.37 2.52 2.23 2.82
 8 103
        B1 2 7 3.05 3.02 2.73 3.31
 9 103
        B2 6 8 3.55 3.51 3.20 3.81
 10 103 SO1
              5 9 3.98 3.90 3.58 4.21
 11 103 SO2 5 10 4.14 4.18 3.86 4.49
 12 103 S03 5 11 4.44 4.37 4.06 4.67
 13 103 S04 5 12 4.51 4.49 4.19 4.79
 14 103 S05 3 13 4.61 4.57 4.26 4.86
 15 103 S06 5 14 4.62 4.60 4.29 4.90
 16 103 S07 6 15 4.63 4.63 4.31 4.93
 17 103 S08 5 16 4.61 4.65 4.31 4.96
 18 103 S09
             4 17 4.74 4.69 4.35 5.00
 19 103 S10 6 18 4.74 4.76 4.43 5.06
 20 103 S11
              6 19 4.87 4.87 4.54 5.17
Here I generate the plot for the full model.
 > NDAPlot0 <- ggplot(data=NDA2) +</pre>
    xlab("Weekly Interval") + ylab("Number of Days Abstinent per Week") +
    scale_x_continuous(limits=c(0,19), breaks = 0:19, minor_breaks = NULL,
    labels=c(paste0("H",0:4), "P1", "P2", "B1", "B2", paste0("S0", 1:9), "S10", "S11")) +
    scale_y_continuous(breaks=0:7, limits=c(0,7)) +
    geom_vline(xintercept = c(4,8), color="gray60") +
    geom_point(aes(x=W, y=Obs), size=1.5) +
    geom_line(aes(x=W, y=Fit), color="red", alpha=.5) +
    geom_ribbon(aes(x=W, ymin=LFit, ymax=UFit), fill="red", alpha=.2) +
    theme_minimal()
 > pdf("NDA/NDAPlot0.pdf")
 > print(NDAPlot0)
 > dev.off()
```

null device 1

The observed means and the fitted means from the full model are presented in Figure 3 on the following page.

```
> ARdata <- data.frame(AR)</pre>
> ARdata <- gather (ARdata, key=Week, value=ar, X1:X20)
> ARdata$Lag <- 0:19
> alpha <- G$geese$alpha
> alpha.se <- sqrt(G$geese$valpha[1,1])</pre>
> Loalpha <- alpha-2*alpha.se
> Upalpha <- alpha+2*alpha.se
> ARdata$alpha <- alpha^(ARdata$Lag)</pre>
> ARdata$alphaLo <- Loalpha^(ARdata$Lag)
> ARdata$alphaUp <- Upalpha^(ARdata$Lag)
> ARdata <- na.omit(ARdata)</pre>
> ARplot <- ggplot(data=ARdata) +</pre>
   xlab("Lag") + ylab("Autocorrelation") +
   geom_line(aes(x=Lag, y=ar, group=Week), alpha=.2) +
   geom_point(data=ARmean, aes(x=Lag,y=ARmean), col="blue", size=2) +
   geom_line(aes(x=Lag, y=alpha), color="red", size=1) +
   geom_ribbon(aes(x=Lag, ymin=alphaLo, ymax=alphaUp), fill="red", alpha=.1) +
   scale_x_continuous(limits=c(0,19), breaks = 0:19, minor_breaks = NULL)
> pdf("NDA/ARplot.pdf")
> print(ARplot)
> dev.off()
null device
          1
```

Diagnostics for the autocorrelation are presented in Figure 4 on page 28, which updates Figure 1 on page 20 with the estimated autocorrelation. The observed autocorrelations follow the same pattern as the estimated autocorrelation. All but two of the average observed autocorrelations fall within the 95% probability ribbon for the estimated autocorrelation. These results indicate that the assumption of AR(1) autocorrelation should be adequate.

11 Determining the Number of Classes

We had reasons to believe that the data comprised different mixtures according to Equation (6) with Equation (5). The NDA3 was created for the pretreatment data by truncating NDA2 to the first 8 weeks. Recall that this data set had no missing data.

11.1 Create Pretreatment Dataframe

```
> NDA3 <- NDA2[NDA2$W<=8,]</pre>
> head(NDA3, n=9)
# A tibble: 9 x 8
    ID week
            NDA
                   W
                      Obs
                           Fit UFit LFit
 3
1
   103 HO
                   0 1.88
                          1.86
                               1.60
                                    2.12
2
   103 H1
              0
                   1 1.86
                         1.93 1.66 2.23
```

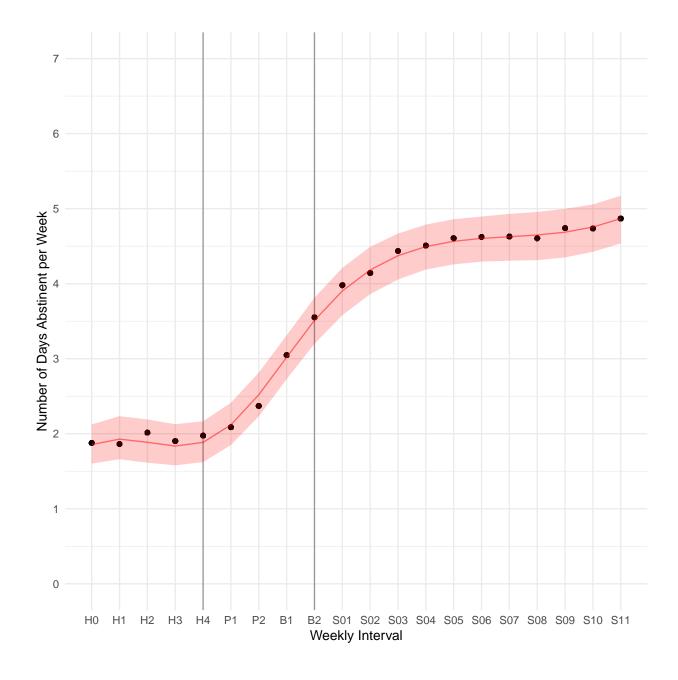


Figure 3: Observed (black circles) means and full model fitted values (red line) together with the 95% pointwise probability ribbon.

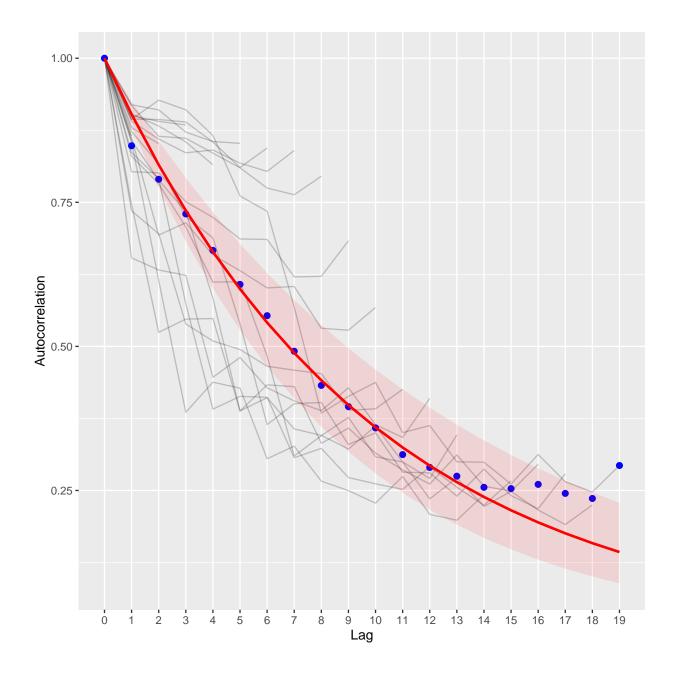


Figure 4: Observed average autocorrelations (blue points) with estimated autocorrelation (red line) with 2 standard error ribbon. Observed autocorrelations (gray lines) are presented in background.

3	103	H2	6	2	2.01	1.89	1.61	2.19			
4	103	HЗ	3	3	1.90	1.84	1.58	2.13			
5	103	H4	3	4	1.98	1.88	1.62	2.17			
6	103	P1	4	5	2.09	2.12	1.85	2.41			
7	103	P2	4	6	2.37	2.52	2.23	2.82			
8	103	B1	2	7	3.05	3.02	2.73	3.31			
9	103	B2	6	8	3.55	3.51	3.20	3.81			
>											
#	A tibb	ole: 9	x 8								
	ID	week	NDA	W	Obs	Fit	UFit	LFit			
	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<int></int>		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>			
1	<dbl> 478</dbl>		<dbl> 1</dbl>	<int> 0</int>		<dbl> 1.86</dbl>	<dbl> 1.60</dbl>	<dbl> 2.12</dbl>			
1 2		HO			<dbl></dbl>	1.86	1.60	2.12			
-	478	HO H1	1	0	<dbl> 1.88</dbl>	1.86 1.93	1.60 1.66	2.12 2.23			
2	478 478	HO H1 H2	1 1	0 1	<dbl> 1.88 1.86 2.01</dbl>	1.86 1.93 1.89	1.60 1.66	2.12 2.23			
2 3	478 478 478	HO H1 H2 H3	1 1 1	0 1 2	<dbl> 1.88 1.86 2.01</dbl>	1.86 1.93 1.89 1.84	1.60 1.66 1.61	2.12 2.23 2.19			
2 3 4	478 478 478 478	HO H1 H2 H3 H4	1 1 1 2	0 1 2 3	<dbl> 1.88 1.86 2.01 1.90</dbl>	1.86 1.93 1.89 1.84	1.60 1.66 1.61 1.58	2.12 2.23 2.19 2.13			
2 3 4 5	478 478 478 478 478	H0 H1 H2 H3 H4 P1	1 1 2 1	0 1 2 3 4	<dbl> 1.88 1.86 2.01 1.90 1.98</dbl>	1.86 1.93 1.89 1.84 1.88 2.12	1.60 1.66 1.61 1.58 1.62	2.12 2.23 2.19 2.13 2.17 2.41			
2 3 4 5 6	478 478 478 478 478 478 478	H0 H1 H2 H3 H4 P1 P2	1 1 2 1 2	0 1 2 3 4 5	<dbl> 1.88 1.86 2.01 1.90 1.98 2.09</dbl>	1.86 1.93 1.89 1.84 1.88 2.12 2.52	1.60 1.66 1.61 1.58 1.62 1.85	2.12 2.23 2.19 2.13 2.17 2.41 2.82			

11.2 Finite Mixture Models

```
> if (!file.exists("SFM.rds")) {
   SFM <- stepFlexmix(cbind(NDA,7-NDA)~1 + bs(W, knots=4) |ID, data=NDA3,
     model = FLXMRglm(family = "binomial"), k=1:10, nrep=10)
   SFM.rds <- saveRDS(SFM, file="SFM.rds")</pre>
 }
> SFM <- readRDS("SFM.rds")</pre>
> SFM
Call:
stepFlexmix(cbind(NDA, 7 - NDA) ~ 1 + bs(W, knots = 4) |
    ID, data = NDA3, model = FLXMRglm(family = "binomial"),
    k = 1:10, nrep = 10)
                                      BIC
                                            ICL
   iter converged k k0 logLik
                                AIC
             TRUE 1 1
1
     2
                       -5099 10208 10236 10236
2
             TRUE 2 2 -3450 6921 6982
     8
                                          6983
3
     13
             TRUE 3 3 -3113
                               6261
                                     6355
                                           6359
4
             TRUE 4 4
                       -2925
                               5896
                                     6023
     14
                                           6030
5
     24
             TRUE 5 5
                       -2779
                               5616
                                     5776
                                           5783
6
     36
             TRUE 6 6
                       -2697
                               5464
                                     5657
                                           5668
7
     21
             TRUE 7
                    7
                        -2645
                               5373
                                     5599
                                           5611
             TRUE 7 8
                       -2648
                               5378
                                     5604
8
     19
                                           5617
9
     51
             TRUE 8 9
                       -2608 5309
                                     5569
                                           5584
             TRUE 8 10 -2604 5302
                                     5561 5572
10
     22
> getModel(SFM, "AIC")
Call:
stepFlexmix(cbind(NDA, 7 - NDA) ~ 1 + bs(W, knots = 4) |
    ID, data = NDA3, model = FLXMRglm(family = "binomial"),
```

```
k = 10, nrep = 10
Cluster sizes:
 1 2 3 4 5 6 7 8
387 360 126 117 369 126 189 171
convergence after 22 iterations
> getModel(SFM, "BIC")
Call:
stepFlexmix(cbind(NDA, 7 - NDA) ~ 1 + bs(W, knots = 4) |
    ID, data = NDA3, model = FLXMRglm(family = "binomial"),
    k = 10, nrep = 10)
Cluster sizes:
  1
    2 3 4
                 56
                          7
                              8
387 360 126 117 369 126 189 171
convergence after 22 iterations
> AIC(SFM)
    1
          2
                3
                      4
                            5
                                  6
                                        7
                                              8
                                                    9
                                                         10
10208 6921 6261 5896 5616 5464 5373 5378 5309 5302
> BIC(SFM)
          2
                            5
                                  6
                                        7
                                              8
    1
                3
                      4
                                                    9
                                                         10
10236 6982 6355 6023 5776 5657 5599 5604 5569 5561
> if (!file.exists("AICB.rds")) {
  B <- 1000
  AICB <- BICB <- matrix(0, nrow=B, ncol=10)
  for (b in 1:B){
    XB1 <- NDA1[ ,2:10]
    XB1 <- XB1[sample(N, replace=TRUE), ]</pre>
    XB1$ID <- 1:205
                                            #create unique IDs for gather
    XB2 <- gather(XB1, week, NDA, H0:B2)
    XB2 <- arrange(XB2, ID, factor(week, levels=c("H0", "H1", "H2", "H3", "H4",
                                                  "P1", "P2", "B1", "B2")))
    XB2$NDA <- round(XB2$NDA*7)
    XB2$W <- 0:8
   #head(XB2, n=18)
   #tail(XB2, n=18)
    XFM <- stepFlexmix(cbind(NDA,7-NDA)~1 + bs(W, knots=4) |ID, data=XB2,
     model = FLXMRglm(family = "binomial"), k=1:10, nrep=10)
    AICB[b, ] <- AIC(XFM)
    BICB[b, ] <- BIC(XFM)
  }
 saveRDS(AICB, file="AICB.rds")
 saveRDS(BICB, file="BICB.rds")
 }
> AICB <- readRDS("AICB.rds")</pre>
> BICB <- readRDS("BICB.rds")</pre>
> AICQ <- apply(AICB, 2, quantile, prob=c(.025,.25, .5, .75, .975))
```

```
> AICQ <- t(AICQ)
> colnames(AICQ) <- c("Q025", "Q250", "Q500", "Q750", "Q975")</pre>
> AICQ <- data.frame(AICQ)</pre>
> AICQ$Classes <- 1:10
>
> #BICQ <- apply(BICB, 2, quantile, prob=c(.025,.25, .5, .75, .975))
> #BICQ <- t(BICQ)</pre>
> #colnames(BICQ) <- c("Q025", "Q250", "Q500", "Q750", "Q975")</pre>
> #BICQ <- data.frame(BICQ)</pre>
> #BICQ$Classes <- 1:10
>
> #ggplot(data=BICQ) +
> # xlab("Estimated Number of Classes") + ylab("BIC") +
> # scale_x_continuous(limits=c(1,10), breaks = 1:10, minor_breaks = NULL) +
    geom_pointrange(aes(x=Classes, y=Q500, ymin=Q025, ymax=Q975))
> #
>
```

The scree plot for the AICs is given in Figure 5 on the next page.

```
> ScreePlot <- ggplot(data=AICQ) +
    xlab("Estimated Number of Classes") + ylab("AIC") +
    scale_x_continuous(limits=c(1,10), breaks = 1:10, minor_breaks = NULL) +
    geom_linerange(aes(x=Classes, ymin=Q025, ymax=Q975), size=1, color="red")+
    geom_linerange(aes(x=Classes, ymin=Q250, ymax=Q750), size=2, color="red", alpha=.6) +
    geom_point(aes(x=Classes, y=Q500), size=3, color="red") +
    geom_vline(xintercept = 3, color="blue", linetype="dashed")
> pdf(file="NDA/ScreePlot.pdf")
> print(ScreePlot)
> dev.off()
null device
    1
```

The decision was made to use 3 classes. Participants were classified into their respective classes by *hard* assignment to the class with maximum posterior probability (Fraley & Raftery, 2002).

I refit the 3-class model to get model parameters.

The 3-class classification results are given in Table 4 on page 37.

A visual comparison of the regression coefficient estimates is given in Figure 6 on page 33.

The assignment diagnostics are given in Figure 7 to 9 on pages 34–36. The overlapping class assignments are given in orange. Note the assignments show very little overlap.

12 Restructure Data for Plotting

In what follows I create the appropriate data frames for plotting the data. The creation of these data frames is complicated by the fact that the 3 classes created from the analysis are not invariant with respect to names. Thus the same results found in Class 1 in one run could be found in Class 3 in another.

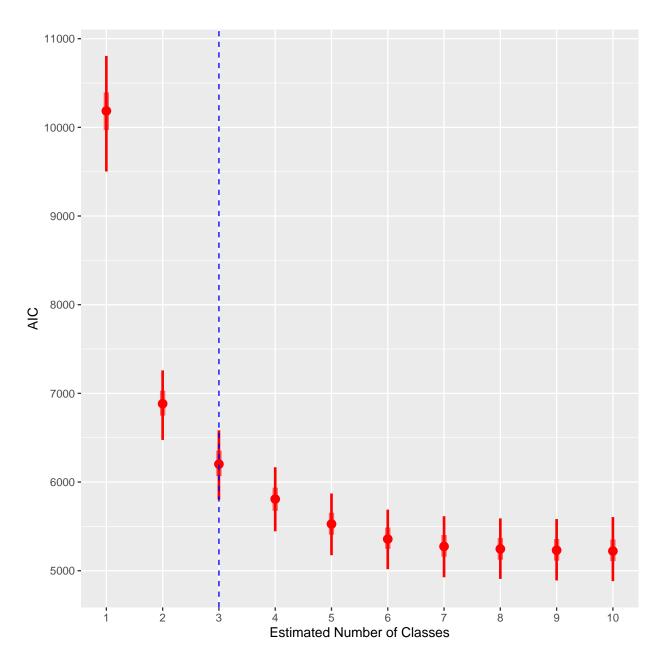


Figure 5: Scree plot for the estimated number of classes based on 1000 boostrapped AICs. The point is the median, the thick red line is the 50% probability interval, and the the thin line is the 95% probability interval. The dashed blue line denotes the chosen number of classes.

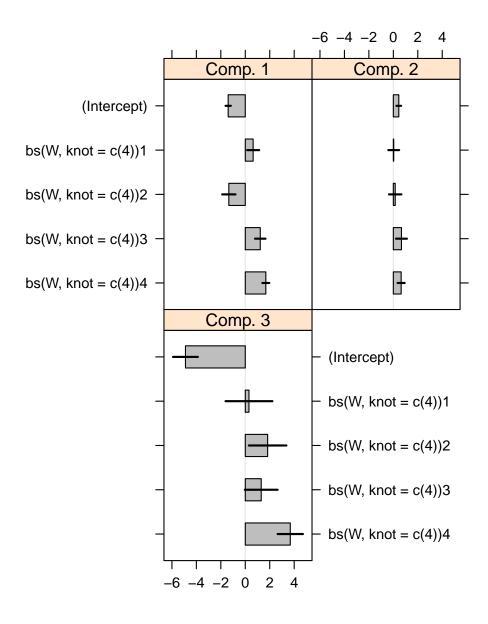
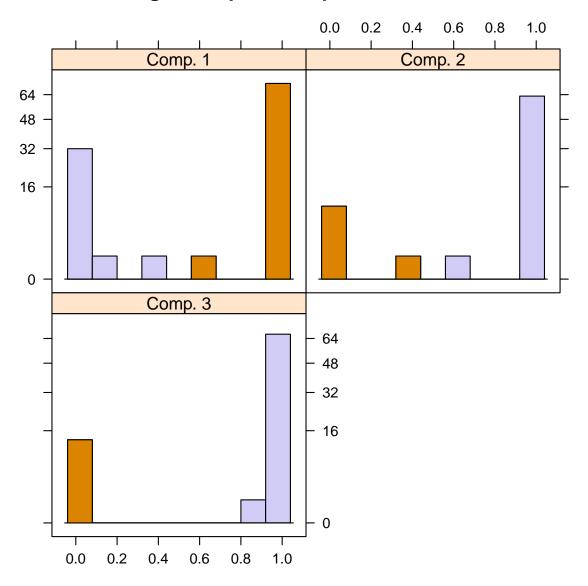
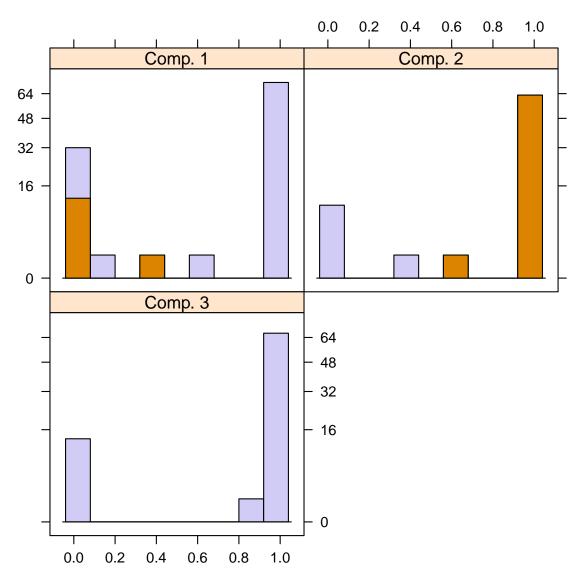




Figure 6: Visual comparison of regression coefficient estimates for the three classes

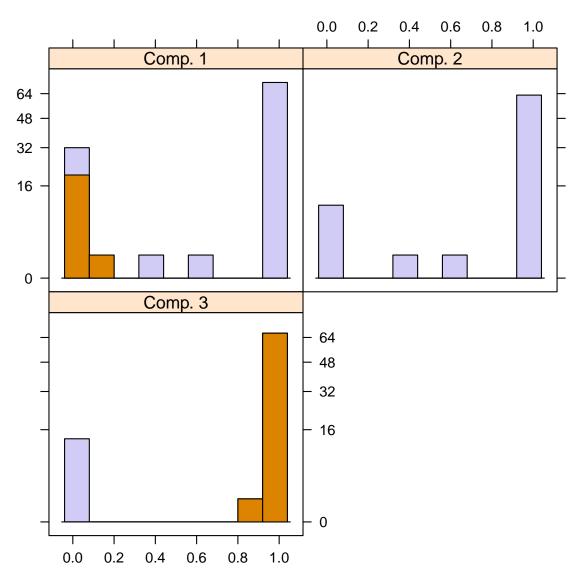

Rootogram of posterior probabilities > 1e–04

Figure 7: The assignment proportions to the three classes: Class 1

Rootogram of posterior probabilities > 1e–04

Figure 8: The assignment proportions to the three classes: Class 2

Rootogram of posterior probabilities > 1e–04

Figure 9: The assignment proportions to the three classes: Class 3

Table 4: Classification Results for Three-Class Binomial-Logistic Model

```
Call:
flexmix(formula = cbind(NDA, 7 - NDA) ~ 1 + bs(W, knot = c(4)) |
    ID, data = NDA3, k = 3, model = FLXMRglm(family = "binomial"))
    prior size post>0 ratio
Comp.1 0.357 657 963 0.682
Comp.2 0.313 576 675 0.853
Comp.3 0.331 612 729 0.840
'log Lik.' -3113 (df=17)
AIC: 6261 BIC: 6355
```

12.1 Append observed and Fitted Means to NDA Data Frame

Here I create the observed and fitted means for the quadratic binomial model. I order the classes from low to high in terms of estimated intercepts. In general, this may not the best way to identify the classes, but it works here.

```
> n <- nrow(NDA3)
> m <- g <- numeric(n)</pre>
> k <- FM3@cluster
> M1 <- geeglm(cbind(NDA, 7-NDA)~ 0 + factor(W), id=ID, data=NDA3, family="binomial",
              waves=W, subset=k==1)
> M2 <- geeglm(cbind(NDA, 7-NDA)~ 0 + factor(W), id=ID, data=NDA3, family="binomial",
              waves=W, subset=k==2)
> M3 <- geeglm(cbind(NDA, 7-NDA)~ 0 + factor(W), id=ID, data=NDA3, family="binomial",
              waves=W, subset=k==3)
> m[k==1] <- fitted(M1)</pre>
> m[k==2] <- fitted(M2)
> m[k==3] <- fitted(M3)
> G1 <- geeglm(cbind(NDA, 7-NDA)~1+ bs(W, knot=c(4)), id=ID, data=NDA3, family="binomial",
                          waves=W, corstr = "ar1", subset=k==1)
> G2 <- geeglm(cbind(NDA, 7-NDA)~1+ bs(W, knot=c(4)), id=ID, data=NDA3, family="binomial",
                          waves=W, corstr = "ar1", subset=k==2)
> G3 <- geeglm(cbind(NDA, 7-NDA)~1+ bs(W, knot=c(4)), id=ID, data=NDA3, family="binomial",
                          waves=W, corstr = "ar1", subset=k==3)
> g[k==1] <- fitted(G1)
> g[k==2] <- fitted(G2)
> g[k==3] <- fitted(G3)
> m <- m*7
> g <- g*7
> #ord <- order(c(max(m[k==1]),max(m[k==2]),max(m[k==3])))</pre>
> ord <- order( c(coef(G1)[1],coef(G2)[1],coef(G3)[1]) )</pre>
> NDA3$clus <- factor(FM3@cluster, levels=rev(ord), labels=paste0("Class", 1:3))
> NDA3$NDAobs <- m
> NDA3$NDAfit <- g
> head(NDA3[k==1,], n=9)
```

```
# A tibble: 9 x 11
                                                               NDAobs NDAfit
     ID week
                 NDA
                          W
                              Obs
                                     Fit
                                          UFit LFit clus
  <dbl> <chr> <dbl> <int>
                            <dbl> <dbl>
                                         <dbl> <dbl> <fct>
                                                                <dbl>
                                                                        <dbl>
    108 HO
                   0
                             1.88
                                    1.86
                                           1.60
                                                 2.12 Class2
                                                                 1.45
                                                                         1.43
1
                          0
2
    108 H1
                   0
                          1
                             1.86
                                    1.93
                                           1.66
                                                 2.23 Class2
                                                                 1.52
                                                                         1.66
3
    108 H2
                   0
                          2
                                    1.89
                                           1.61
                                                                 1.59
                             2.01
                                                 2.19 Class2
                                                                         1.47
4
    108 H3
                   0
                          3
                             1.90
                                    1.84
                                           1.58
                                                 2.13 Class2
                                                                 1.30
                                                                         1.21
5
    108 H4
                   0
                          4
                             1.98
                                    1.88
                                           1.62
                                                 2.17 Class2
                                                                 1.19
                                                                         1.16
6
    108 P1
                   0
                          5
                             2.09
                                    2.12
                                           1.85
                                                 2.41 Class2
                                                                 1.41
                                                                         1.49
7
                   4
                          6
                                                                 2.05
    108 P2
                             2.37
                                    2.52
                                           2.23
                                                 2.82 Class2
                                                                         2.24
8
    108 B1
                   3
                          7
                             3.05
                                    3.02
                                           2.73
                                                 3.31 Class2
                                                                 3.37
                                                                         3.19
    108 B2
                   3
                             3.55
                                    3.51
                                           3.20
                                                 3.81 Class2
                                                                 3.89
                                                                         3.91
9
                          8
> head(NDA3[k==2,], n=9)
# A tibble: 9 x 11
     ID week
                 NDA
                          W
                               Obs
                                     Fit
                                          UFit
                                                LFit clus
                                                               NDAobs NDAfit
  <dbl> <chr> <dbl> <int> <dbl> <dbl> <dbl>
                                         <dbl> <dbl> <fct>
                                                                <dbl>
                                                                        <dbl>
1
    103 HO
                   3
                          0
                             1.88
                                    1.86
                                           1.60
                                                 2.12 Class1
                                                                 4.30
                                                                         4.29
2
    103 H1
                   0
                          1
                             1.86
                                    1.93
                                           1.66
                                                 2.23 Class1
                                                                 4.17
                                                                         4.28
3
    103 H2
                   6
                          2
                             2.01
                                    1.89
                                           1.61
                                                 2.19 Class1
                                                                 4.53
                                                                         4.36
4
    103 H3
                   3
                          3
                             1.90
                                    1.84
                                           1.58
                                                 2.13 Class1
                                                                 4.45
                                                                         4.50
5
    103 H4
                   3
                          4
                                    1.88
                                           1.62
                                                 2.17 Class1
                                                                 4.72
                                                                         4.69
                             1.98
6
    103 P1
                   4
                          5
                             2.09
                                    2.12
                                           1.85
                                                 2.41 Class1
                                                                 4.84
                                                                         4.91
7
                                                                 5.08
    103 P2
                   4
                          6
                             2.37
                                    2.52
                                           2.23
                                                 2.82 Class1
                                                                         5.10
    103 B1
                   2
                          7
                                           2.73
                                                                         5.23
8
                             3.05
                                    3.02
                                                 3.31 Class1
                                                                 5.27
    103 B2
                   6
                          8
                             3.55
                                    3.51
                                           3.20
                                                 3.81 Class1
9
                                                                 5.27
                                                                         5.27
> head(NDA3[k==3,], n=9)
# A tibble: 9 x 11
     ID week
                 NDA
                          W
                               Obs
                                     Fit
                                           UFit
                                                 LFit clus
                                                               NDAobs NDAfit
  <dbl> <chr> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
                                                                <dbl>
                                                                       <dbl>
    106 HO
                   0
                          0
                             1.88
                                    1.86
                                           1.60
                                                 2.12 Class3 0.0588 0.0542
1
2
    106 H1
                   0
                          1
                             1.86
                                    1.93
                                           1.66
                                                 2.23 Class3 0.0588 0.0719
3
    106 H2
                   0
                          2
                             2.01
                                    1.89
                                           1.61
                                                 2.19 Class3 0.103
                                                                      0.103
4
    106 H3
                   0
                          3
                             1.90
                                    1.84
                                           1.58
                                                 2.13 Class3 0.147
                                                                       0.148
5
    106 H4
                   0
                          4
                                    1.88
                                           1.62
                                                 2.17 Class3 0.235
                             1.98
                                                                      0.192
6
    106 P1
                   0
                          5
                             2.09
                                    2.12
                                           1.85
                                                 2.41 Class3 0.221
                                                                      0.220
7
    106 P2
                   0
                          6
                             2.37
                                    2.52
                                           2.23
                                                 2.82 Class3 0.162
                                                                      0.279
    106 B1
                   0
                          7
                             3.05
                                    3.02
                                           2.73
                                                 3.31 Class3 0.618
                                                                      0.510
8
                   5
9
    106 B2
                          8
                             3.55
                                    3.51
                                           3.20
                                                 3.81 Class3 1.57
                                                                       1.59
```

Parameter estimates for the truncated logistic-binomial model within each class are given in Tables 5 to 7 on pages 39–41.

12.2 Get Tables

Assign class variable to original data frame and create tables.

```
> Cluster <- NDA3[NDA3$W==0,"clus"]
> table(Cluster)
Cluster
Class1 Class2 Class3
    64 73 68
```

 Table 5: Parameter Estimates for Truncated Logistic-Binomial Model in Class 1

```
Call:
geeglm(formula = cbind(NDA, 7 - NDA) ~ 1 + bs(W, knot = c(4)),
   family = "binomial", data = NDA3, subset = k == 1, id = ID,
   waves = W, corstr = "ar1")
Coefficients:
                   Estimate Std.err Wald Pr(>|W|)
(Intercept)
                    -1.357
                            0.107 161.2 < 2e-16 ***
bs(W, knot = c(4))1 = 0.589
                             0.163 13.1
                                            3e-04 ***
bs(W, knot = c(4))2 -1.438 0.321 20.1 7.5e-06 ***
bs(W, knot = c(4))3 1.249
                             0.270 21.5 3.6e-06 ***
bs(W, knot = c(4))4
                    1.592
                            0.244 42.4 7.4e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept) 0.266 0.0273
Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
        0.428 0.0375
alpha
Number of clusters: 73
                         Maximum cluster size: 9
```

Call: geeglm(formula = cbind(NDA, 7 - NDA) ~ 1 + bs(W, knot = c(4)), family = "binomial", data = NDA3, subset = k == 2, id = ID, waves = W, corstr = "ar1") Coefficients: Estimate Std.err Wald Pr(>|W|) (Intercept) 0.4619 0.0957 23.28 1.4e-06 *** bs(W, knot = c(4))1 - 0.0495 0.1996 0.060.8043 $bs(W, knot = c(4))2 \quad 0.1904 \quad 0.3302 \quad 0.33$ 0.5642 $bs(W, knot = c(4))3 \quad 0.6656 \quad 0.2804 \quad 5.63$ 0.0176 * $bs(W, knot = c(4))4 \quad 0.6490 \quad 0.2063 \quad 9.89$ 0.0017 ** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Estimated Scale Parameters: Estimate Std.err (Intercept) 0.279 0.0339 Correlation: Structure = ar1 Link = identity Estimated Correlation Parameters: Estimate Std.err 0.627 0.0447 alpha Number of clusters: 64 Maximum cluster size: 9

Table 6: Parameter Estimates for Truncated Logistic-Binomial Model in Class 2

Table 7: Parameter Estimates for Truncated Logistic-Binomial Model in Class 3

```
Call:
geeglm(formula = cbind(NDA, 7 - NDA) ~ 1 + bs(W, knot = c(4)),
   family = "binomial", data = NDA3, subset = k == 3, id = ID,
   waves = W, corstr = "ar1")
Coefficients:
                   Estimate Std.err Wald Pr(>|W|)
(Intercept)
                    -4.853 0.502 93.31 < 2e-16 ***
bs(W, knot = c(4))1 = 0.282 = 1.124 = 0.06
                                          0.802
bs(W, knot = c(4))2 1.781 0.855 4.34
                                            0.037 *
bs(W, knot = c(4))3
                     1.286 0.885 2.11
                                            0.146
bs(W, knot = c(4))4
                     3.631 0.555 42.85 5.9e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept) 0.241 0.231
Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
alpha 0.0974 0.0873
Number of clusters: 68 Maximum cluster size: 9
```

```
> NDA1$Cluster <- Cluster$clus
> table(NDA1$Cluster)
Class1 Class2 Class3
      64     73     68
> round(prop.table(table(NDA1$Cluster)),3)
Class1 Class2 Class3
      0.312      0.356      0.332
> saveRDS(NDA1, file="NDA/NDA1.rds")
> #write.csv(NDA1, file="NDA1.csv")
```

Here I present the observed and fitted means and proportions.

12.3 Plot Results

```
> NDAPlot1 <-ggplot(data=NDA3) + xlab("Weekly Interval") +</pre>
  ylab("Number of Days Abstinent per Week") +
  geom_vline(xintercept=4, color="grey60")+
  geom_line(aes(x=W, y=NDAfit, group=clus, color=clus)) +
  geom_point(aes(x=W, y=NDAobs, group=clus, color=clus)) +
  geom_line(aes(x=W, y=Fit), color="grey80") +
  geom_point(aes(x=W, y=Obs), color="grey80") +
  scale_color_manual(values=c("red","blue", "green")) +
  scale_x_continuous(limits=c(0,8), breaks = 0:8, minor_breaks = NULL,
     labels=c(paste0("H",0:4), "P1", "P2", "B1", "B2")) +
  scale_y_continuous(breaks=0:7, limits=c(0,7)) +
  theme_minimal()
> pdf("NDA/NDAPlot1.pdf")
> print(NDAPlot1)
> dev.off()
null device
          1
> NDAPlot2 <- ggplot(data=NDA3, aes(x=W, y=NDAfit, group=clus, color=clus)) +
   xlab("Weekly Interval") + ylab("Number of Days Abstinent per Week") +
   geom_vline(xintercept = 4, color="gray60") +
   geom_line(size=1) +
   facet_wrap(vars(clus), ncol=1) +
   geom_point(aes(x=W, y=NDAobs, group=clus, color=clus)) +
   geom_line(data=NDA3, aes(x=W, y=NDA, group=ID, color=clus), alpha=.1) +
  scale_color_manual(values=c("red","blue", "green")) +
  scale_x_continuous(limits=c(0,8), breaks = 0:8, minor_breaks = NULL,
     labels=c(paste0("H",0:4), "P1", "P2", "B1", "B2")) +
  scale_y_continuous(breaks=0:7, limits=c(0,7)) +
  theme_gray()
> pdf("NDA/NDAPlot2.pdf")
> print(NDAPlot2)
> dev.off()
null device
          1
```

The fitted and observed means for each cluster are displayed in Figure 10 on the following page. The fitted and observe data within each class are displayed in Figure 11 on page 44.

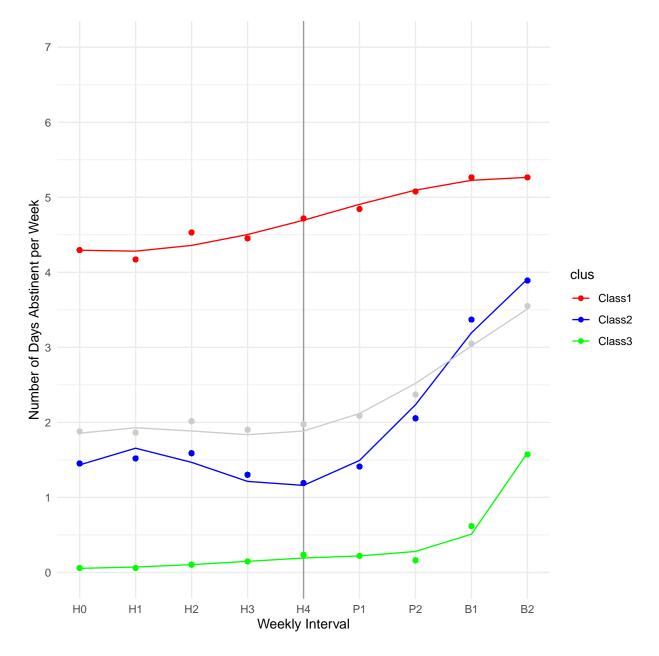


Figure 10: Observed and fitted pretreatment means for each class. The gray points and line are the observed and fitted means for the entire sample.

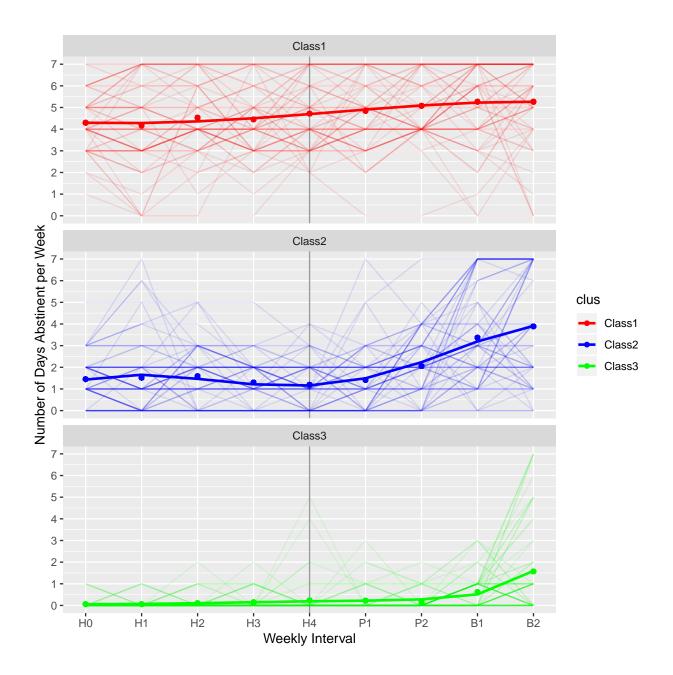


Figure 11: Observed and fitted pretreatment means within each class. The lines are the actual data.

13 Analysis of Treatment Effects

13.1 Dataframe with Pretreatment Class

Create a dataframe with pretreatment classification hard assignment. Assign class variable to original data frame and create tables.

```
> NDA2$K <- 0
> UID <- unique(NDA2$ID)</pre>
> N <- length(UID)
> KK <- table(NDA2$ID)
> for (i in 1:N){
   NDA2$K[which(NDA2$ID==UID[i])] <- rep(tapply(k,NDA3$ID, max)[i], KK[i])
 7
> NDA2$Cluster <- factor(NDA2$K, levels=rev(ord), labels=paste0("Class", 1:3))
> n <- nrow(NDA2)
> k <- NDA2$K
> MM1 <- geeglm(cbind(NDA, 7-NDA)~0 + factor(W), data=NDA2, subset=(Cluster=="Class1"),
               family="binomial", id=ID, waves=W)
> MM2 <- geeglm(cbind(NDA, 7-NDA)~0 + factor(W), data=NDA2, subset=(Cluster=="Class2"),
               family="binomial", id=ID, waves=W)
> MM3 <- geeglm(cbind(NDA, 7-NDA)~0 + factor(W), data=NDA2, subset=(Cluster=="Class3"),
               family="binomial", id=ID, waves=W)
> HH1 <- geeglm(cbind(NDA, 7-NDA)~1+ bs(W, knots=c(4, 8)), data=NDA2,
                subset=(Cluster=="Class1"), family="binomial", id=ID,
               waves=W, corstr = "ar1")
> #summary(HH1)
> HH2 <- geeglm(cbind(NDA, 7-NDA)~1+ bs(W, knots=c(4, 8)), data=NDA2,
                subset=(Cluster=="Class2"), family="binomial", id=ID,
                waves=W, corstr = "ar1")
> #summary(HH2)
> HH3 <- geeglm(cbind(NDA, 7-NDA)~1+ bs(W, knots=c(4, 8)), data=NDA2,
               subset=(Cluster=="Class3"), family="binomial", id=ID,
               waves=W, corstr = "ar1")
> #summary(HH3)
>
> #Alternative representations of above spline
> HH1_alt <- geeglm(cbind(NDA, 7-NDA) ~ 1 + W + I(W^2) + I(W^3) + I((W>4)*(W-4)^3) +
             I((W>8)*(W-8)^3), id=ID, data=NDA2,
             family="binomial", waves=W, corstr = "ar1", subset=(Cluster=="Class1"))
> HH2_alt <- geeglm(cbind(NDA, 7-NDA) ~ 1 + W + I(W^2) + I(W^3) + I((W>4)*(W-4)^3) +
             I((W>8)*(W-8)^3), id=ID, data=NDA2,
             family="binomial", waves=W, corstr = "ar1", subset=(Cluster=="Class2"))
> HH3_alt <- geeglm(cbind(NDA, 7-NDA) ~ 1 + W + I(W^2) + I(W^3) + I((W>4)*(W-4)^3) +
             I((W>8)*(W-8)^3), id=ID, data=NDA2,
             family="binomial", waves=W, corstr = "ar1", subset=(Cluster=="Class3"))
>
> #summary(HH1_alt)
> #summary(HH2_alt)
> #summary(HH3_alt)
>
```

Parameter estimates for the full logistic-binomial model within each class are given in Tables 8 to 10 on

Table 8: Parameter Estimates for Full Logistic-Binomial Model in Class 1

```
Call:
geeglm(formula = cbind(NDA, 7 - NDA) \sim 1 + bs(W, knots = c(4, M))
   8)), family = "binomial", data = NDA2, subset = (Cluster ==
   "Class1"), id = ID, waves = W, corstr = "ar1")
Coefficients:
                       Estimate Std.err Wald Pr(>|W|)
(Intercept)
                         0.4640 0.0958 23.48 1.3e-06 ***
bs(W, knots = c(4, 8))1 - 0.0611 0.1755 0.12
                                                 0.728
bs(W, knots = c(4, 8))2 0.2087 0.2268 0.85
                                                 0.357
bs(W, knots = c(4, 8))3
                         1.2148 0.3698 10.79
                                                 0.001 **
bs(W, knots = c(4, 8))4
                         0.7136 0.3279 4.74
                                                 0.030 *
bs(W, knots = c(4, 8))5
                         1.1197 0.2326 23.17 1.5e-06 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
             0.375 0.0538
Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
alpha
       0.856 0.0271
Number of clusters: 64
                          Maximum cluster size: 20
```

pages 46-48.

Parameter estimates for the naive full logistic-binomial model within each class are given in Tables 11 to 13 on pages 49-51.

```
> head(NDA2[NDA2$Cluster=="Class1",], n=20)
# A tibble: 20 x 10
```

# F	A CIDD.	Le: 20	X 10							
	ID	week	NDA	W	Obs	Fit	UFit	LFit	K	Cluster
	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>
1	103	HO	3	0	1.88	1.86	1.60	2.12	2	Class1
2	103	H1	0	1	1.86	1.93	1.66	2.23	2	Class1
3	103	H2	6	2	2.01	1.89	1.61	2.19	2	Class1
4	103	HЗ	3	3	1.90	1.84	1.58	2.13	2	Class1
5	103	H4	3	4	1.98	1.88	1.62	2.17	2	Class1
6	103	P1	4	5	2.09	2.12	1.85	2.41	2	Class1
7	103	P2	4	6	2.37	2.52	2.23	2.82	2	Class1
8	103	B1	2	7	3.05	3.02	2.73	3.31	2	Class1
9	103	B2	6	8	3.55	3.51	3.20	3.81	2	Class1
10	103	S01	5	9	3.98	3.90	3.58	4.21	2	Class1
11	103	S02	5	10	4.14	4.18	3.86	4.49	2	Class1

```
Call:
geeglm(formula = cbind(NDA, 7 - NDA) ~ 1 + bs(W, knots = c(4,
   8)), family = "binomial", data = NDA2, subset = (Cluster ==
   "Class2"), id = ID, waves = W, corstr = "ar1")
Coefficients:
                       Estimate Std.err
                                         Wald Pr(>|W|)
(Intercept)
                                  0.102 172.37 < 2e-16 ***
                         -1.333
bs(W, knots = c(4, 8))1
                          0.413
                                  0.137
                                         9.05
                                               0.0026 **
bs(W, knots = c(4, 8))2
                       -0.993 0.218 20.75 5.2e-06 ***
bs(W, knots = c(4, 8))3
                          3.731
                                  0.413 81.44 < 2e-16 ***
                                  0.244 33.45 7.3e-09 ***
bs(W, knots = c(4, 8))4
                          1.414
bs(W, knots = c(4, 8))5
                          2.366
                                  0.240 96.81 < 2e-16 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
             0.389 0.0366
(Intercept)
Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
         0.81 0.0217
alpha
Number of clusters: 73
                          Maximum cluster size: 20
```

Table 9: Parameter Estimates for Full Logistic-Binomial Model in Class 2

```
Call:
geeglm(formula = cbind(NDA, 7 - NDA) ~ 1 + bs(W, knots = c(4,
   8)), family = "binomial", data = NDA2, subset = (Cluster ==
    "Class3"), id = ID, waves = W, corstr = "ar1")
Coefficients:
                       Estimate Std.err
                                          Wald Pr(>|W|)
(Intercept)
                         -4.925
                                  0.450 119.98 <2e-16 ***
bs(W, knots = c(4, 8))1
                          0.728
                                         0.67
                                                   0.41
                                  0.891
bs(W, knots = c(4, 8))2
                          0.177
                                  0.485
                                         0.13
                                                   0.72
bs(W, knots = c(4, 8))3
                          5.960
                                  0.612 94.97
                                                 <2e-16 ***
bs(W, knots = c(4, 8))4
                          4.719
                                  0.563 70.17
                                                 <2e-16 ***
bs(W, knots = c(4, 8))5
                          5.021
                                  0.487 106.31
                                                 <2e-16 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
              0.414
                      0.152
Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
        0.781 0.0798
alpha
Number of clusters: 68
                          Maximum cluster size: 20
```

Table 10: Parameter Estimates for Full Logistic-Binomial Model in Class 3

Call: geeglm(formula = cbind(NDA, 7 - NDA) ~ 1 + W + I(W^2) + I(W^3) + I((W > 4) * (W - 4)^3) + I((W > 8) * (W - 8)^3), family = "binomial", data = NDA2, subset = (Cluster == "Class1"), id = ID, waves = W, corstr = "ar1") Coefficients: Estimate Std.err Wald Pr(>|W|) (Intercept) 0.464009 0.095759 23.48 1.3e-06 *** W -0.045821 0.131602 0.12 0.73 $I(W^2)$ 0.036748 0.066774 0.30 0.58 I(W^3) -0.002462 0.007581 0.11 0.75 $I((W > 4) * (W - 4)^3) 0.000421 0.010275 0.00$ 0.97 $I((W > 8) * (W - 8)^3) 0.003145 0.003624 0.75$ 0.39 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Estimated Scale Parameters: Estimate Std.err (Intercept) 0.375 0.0538 Correlation: Structure = ar1 Link = identity Estimated Correlation Parameters: Estimate Std.err alpha 0.856 0.0271 Number of clusters: 64 Maximum cluster size: 20

Table 11: Parameter Estimates for Naive Full Logistic-Binomial Model in Class 1

Call: geeglm(formula = cbind(NDA, 7 - NDA) ~ 1 + W + I(W^2) + I(W^3) + I((W > 4) * (W - 4)^3) + I((W > 8) * (W - 8)^3), family = "binomial", data = NDA2, subset = (Cluster == "Class2"), id = ID, waves = W, corstr = "ar1") Coefficients: Estimate Std.err Wald Pr(>|W|) (Intercept) -1.33268 0.10151 172.37 < 2e-16 *** W 0.30976 0.10299 9.05 0.00263 ** $I(W^2)$ -0.20923 0.05588 14.02 0.00018 *** I(W^3) 0.03070 0.00653 22.10 2.6e-06 *** I((W > 4) * (W - 4)^3) -0.05067 0.00913 30.82 2.8e-08 *** I((W > 8) * (W - 8)^3) 0.02441 0.00344 50.39 1.3e-12 *** ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Estimated Scale Parameters: Estimate Std.err (Intercept) 0.389 0.0366 Correlation: Structure = ar1 Link = identity Estimated Correlation Parameters: Estimate Std.err alpha 0.81 0.0217 Number of clusters: 73 Maximum cluster size: 20

Table 12: Parameter Estimates for Naive Full Logistic-Binomial Model in Class 2

Call: geeglm(formula = cbind(NDA, 7 - NDA) ~ 1 + W + I(W^2) + I(W^3) + I((W > 4) * (W - 4)^3) + I((W > 8) * (W - 8)^3), family = "binomial", data = NDA2, subset = (Cluster == "Class3"), id = ID, waves = W, corstr = "ar1") Coefficients: Estimate Std.err Wald Pr(>|W|) (Intercept) -4.92475 0.44961 119.98 < 2e-16 *** W 0.54563 0.66858 0.67 0.41 $I(W^2)$ -0.18804 0.22943 0.67 0.41 I(W^3) 0.02733 0.02225 0.22 1.51 $I((W > 4) * (W - 4)^3) - 0.04545 0.02594$ 3.07 0.08 . I((W > 8) * (W - 8)^3) 0.02137 0.00487 19.23 1.2e-05 *** ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Estimated Scale Parameters: Estimate Std.err (Intercept) 0.414 0.152 Correlation: Structure = ar1 Link = identity Estimated Correlation Parameters: Estimate Std.err alpha 0.781 0.0798 Number of clusters: 68 Maximum cluster size: 20

Table 13: Parameter Estimates for Naive Full Logistic-Binomial Model in Class 3

12	103	S03	5	11	4.44	4.37	4.06	4.67	2	Class1
13	103	S04	5	12	4.51	4.49	4.19	4.79	2	Class1
14		S05	3	13	4.61	4.57	4.26	4.86		Class1
15		S06	5	14	4.62	4.60	4.29	4.90		Class1
16		S07	6	15	4.63	4.63	4.31	4.93		Class1
17			5				4.31	4.96		
		S08		16	4.61	4.65				Class1
18		S09	4	17	4.74	4.69	4.35	5.00		Class1
19		S10	6	18	4.74	4.76	4.43	5.06		Class1
20	103	S11	6	19	4.87	4.87	4.54	5.17	2	Class1
> he	ead(NI	DA2[ND	A2\$Clus	ster=='	'Class2	2",], 1	1=20)			
# A	tibb]	Le: 20	x 10							
		week	NDA	W	Obs	Fit	UFit	LFit	к	Cluster
			<dbl></dbl>							
1	108		0	0	1.88	1.86	1.60	2.12		Class2
										Class2
2	108		0	1	1.86	1.93	1.66	2.23		
3	108		0	2	2.01	1.89	1.61	2.19		Class2
4	108		0	3	1.90	1.84	1.58	2.13		Class2
5	108		0	4	1.98	1.88	1.62	2.17		Class2
6	108		0	5	2.09	2.12	1.85	2.41		Class2
7	108		4	6	2.37	2.52	2.23	2.82	1	Class2
8	108	B1	3	7	3.05	3.02	2.73	3.31	1	Class2
9	108	B2	3	8	3.55	3.51	3.20	3.81	1	Class2
10	108	S01	3	9	3.98	3.90	3.58	4.21	1	Class2
11	108	S02	4	10	4.14	4.18	3.86	4.49	1	Class2
12	108	S03	2	11	4.44	4.37	4.06	4.67	1	Class2
13	108	S04	3	12	4.51	4.49	4.19	4.79	1	Class2
14		S05	5	13	4.61	4.57	4.26	4.86		Class2
15		S06	5	14	4.62	4.60	4.29	4.90		Class2
16		S07	6	15	4.63	4.63	4.31	4.93		Class2
17		S08	5	16	4.61	4.65	4.31	4.96		Class2
18		S09	7	17	4.74	4.69	4.35	5.00		Class2
19		S10	5	18	4.74	4.76	4.43	5.06		Class2
20	108	S11	7	19	4.87	4.87	4.54	5.17	1	Class2
> he	ead(NI	DA2[ND	A2\$Clus	ster=='	'Class3	3",], 1	n=20)			
# A	tibbl	Le: 20	x 10							
	ID	week	NDA	W	Obs	Fit	UFit	LFit	K	Cluster
										<fct></fct>
1	106		0	0	1.88					Class3
2	106		0	1	1.86	1.93				Class3
3	106		0	2	2.01	1.89	1.61			Class3
4	100			3						
			0		1.90	1.84	1.58			Class3
5	106		0	4	1.98	1.88	1.62			Class3
6	106		0	5	2.09	2.12	1.85	2.41		Class3
7	106		0	6	2.37	2.52	2.23	2.82		Class3
8	106		0	7	3.05	3.02	2.73	3.31		Class3
9	106	B2	5	8	3.55	3.51	3.20	3.81	3	Class3
10	106	S01	5	9	3.98	3.90	3.58	4.21	3	Class3
11	106	S02	5	10	4.14	4.18	3.86	4.49	3	Class3
12	106	S03	7	11	4.44	4.37	4.06	4.67		Class3
13		S04	5	12	4.51	4.49				Class3
14		S05	7	13	4.61	4.57	4.26			Class3
-							2		2	

15	106 S06	7	14	4.62	4.60	4.29	4.90	3 Class3
16	106 S07	7	15	4.63	4.63	4.31	4.93	3 Class3
17	106 S08	6	16	4.61	4.65	4.31	4.96	3 Class3
18	106 S09	7	17	4.74	4.69	4.35	5.00	3 Class3
19	106 S10	7	18	4.74	4.76	4.43	5.06	3 Class3
20	106 S11	5	19	4.87	4.87	4.54	5.17	3 Class3

13.2 Create Data Frame for Fitted and Observed Means

```
> NDA2$NDAobs <- 0
> NDA2$NDAfit <- 0
> NDA2$NDA1b <- 0
> NDA2$NDAub <- 0
> ok <- NDA2$Cluster=="Class1"</pre>
> NDA2$NDAobs[ok] <- 7*predict(MM1, type="response")</pre>
> NDA2$NDAfit[ok] <- 7*predict(HH1, type="response")</pre>
> b <- coef(HH1)
> names(b) <- NULL</pre>
> Sigma <- HH1$geese$vbeta</pre>
> X <- cbind(1, HH1$model$`bs(W, knots = c(4, 8))`)
> #X <- cbind(1, HH1$model$`bs(W`)</pre>
> K <- 1000
> R <- mvrnorm(K, mu=b, Sigma=Sigma)</pre>
> U <- 7*plogis(X %*% (t(R)))
> u <- apply(U,1,quantile, prob=.025)</pre>
> v <- apply(U,1,quantile, prob=.975)</pre>
> NDA2$NDA1b[ok] <- u</pre>
> NDA2$NDAub[ok] <- v</pre>
> ok <- NDA2$Cluster=="Class2"</pre>
> NDA2$NDAobs[ok] <- 7*predict(MM2, type="response")</pre>
> NDA2$NDAfit[ok] <- 7*predict(HH2, type="response")</pre>
> b <- coef(HH2)
> names(b) <- NULL</pre>
> Sigma <- HH2$geese$vbeta
> X <- cbind(1, HH2model'bs(W, knots = c(4, 8))))
> K <- 1000
> R <- mvrnorm(K, mu=b, Sigma=Sigma)</pre>
> U <- 7*plogis(X %*% (t(R)))
> u <- apply(U,1,quantile, prob=.025)</pre>
> v <- apply(U,1,quantile, prob=.975)</pre>
> NDA2$NDA1b[ok] <- u</pre>
> NDA2$NDAub[ok] <- v
> ok <- NDA2$Cluster=="Class3"
> NDA2$NDAobs[ok] <- 7*predict(MM3, type="response")</pre>
> NDA2$NDAfit[ok] <- 7*predict(HH3, type="response")</pre>
> b <- coef(HH3)
> names(b) <- NULL</pre>
> Sigma <- HH3$geese$vbeta
> X <- cbind(1, HH3$model$`bs(W, knots = c(4, 8))`)</pre>
> K <- 1000
```

> R <- mvrnorm(K, mu=b, Sigma=Sigma) > U <- 7*plogis(X %*% (t(R)))										
u <- apply(U,1,quantile, prob=.025)										
v <- apply(U,1,quantile, prob=.975)										
NDA2\$NDA1b[ok] <- u										
> NDA2\$NDAub[ok] <- v										
<pre>> head(as.data.frame(NDA2[NDA2\$Cluster=="Class1",]), n=20)</pre>										
ID week NDA W Obs Fit UFit LFit K Cluster NDAobs NDAfit NI	DAlb									
	3.99									
	3.81									
	3.93									
	1.18									
5 103 H4 3 4 1.98 1.88 1.62 2.17 2 Class1 4.72 4.69 4	1.37									
6 103 P1 4 5 2.09 2.12 1.85 2.41 2 Class1 4.84 4.90 4	1.57									
7 103 P2 4 6 2.37 2.52 2.23 2.82 2 Class1 5.08 5.09 4	1.78									
8 103 B1 2 7 3.05 3.02 2.73 3.31 2 Class1 5.27 5.27 4	1.94									
9 103 B2 6 8 3.55 3.51 3.20 3.81 2 Class1 5.27 5.40 5	5.03									
10 103 S01 5 9 3.98 3.90 3.58 4.21 2 Class1 5.44 5.49 5	5.08									
11 103 S02 5 10 4.14 4.18 3.86 4.49 2 Class1 5.71 5.54 5	5.12									
	5.13									
	5.14									
	5.11									
	5.08									
	5.05									
	5.04									
	5.10									
	5.20									
	5.29									
NDAub 1 4.63										
2 4.73										
3 4.78										
4 4.82										
5 4.99										
6 5.21										
7 5.39										
8 5.56										
9 5.72										
10 5.83										
11 5.89										
12 5.91										
13 5.94										
14 5.95										
15 5.96										
16 5.99										
17 6.01										
18 6.04										
19 6.10										
20 6.17										
<pre>> head(as.data.frame(NDA2[NDA2\$Cluster=="Class2",]), n=20)</pre>										
ID week NDA W Obs Fit UFit LFit K Cluster NDAobs NDAfit NI	DAlb									

,	100		~	~	4 00	1 00	1 00	0.40		a 2		4 4 6	4 6 4
1	108	HO	0			1.86						1.46	1.24
2	108	H1	0			1.93					1.52	1.62	1.32
3	108	H2	0			1.89				Class2	1.59	1.49	1.24
4	108	H3	0			1.84				Class2	1.30	1.32	1.13
5	108	H4	0			1.88				Class2	1.19	1.30	1.11
6	108	P1	0			2.12				Class2	1.41	1.59	1.36
7	108	P2	4			2.52				Class2	2.05	2.20	1.94
8	108	B1	3			3.02				Class2	3.37	3.05	2.71
9	108	B2	3			3.51				Class2	3.89	3.90	3.45
	108	S01	3			3.90				Class2	4.65	4.48	3.97
	108	S02				4.18				Class2	4.59	4.81	4.28
	108	S03				4.37				Class2	4.65	4.97	4.43
13	108	S04	3	12	4.51	4.49	4.19	4.79	1	Class2	4.81	5.00	4.47
14	108	S05	5	13	4.61	4.57	4.26	4.86	1	Class2	4.78	4.95	4.44
15	108	S06	5	14	4.62	4.60	4.29	4.90	1	Class2	4.78	4.87	4.35
16	108	S07	6	15	4.63	4.63	4.31	4.93	1	Class2	4.70	4.77	4.24
17	108	S08	5	16	4.61	4.65	4.31	4.96	1	Class2	4.74	4.72	4.18
18	108	S09	7	17	4.74	4.69	4.35	5.00	1	Class2	4.91	4.74	4.18
19	108	S10	5	18	4.74	4.76	4.43	5.06	1	Class2	4.96	4.88	4.33
20	108	S11	7	19	4.87	4.87	4.54	5.17	1	Class2	5.10	5.16	4.59
	NDAu	b											
1	1.7	С											
2	1.9	3											
3	1.7	5											
4	1.5												
5	1.5												
6	1.8												
7	2.4												
8	3.3												
9	4.3												
10	4.9												
11	5.2												
12													
13													
14													
15													
16	5.2												
17	5.2												
18													
19													
20	5.6												
			_ 4				۱ <u>.</u>			0121	1)		
/ 1										Class3"			
		week N		W						Cluster			NDAlb
1	106	HO	0			1.86						0.0505	
2	106	H1	0			1.93						0.0739	
3	106	H2	0			1.89						0.0877	
4	106	HЗ	0			1.84						0.0992	
5	106	H4	0			1.88						0.1257	
6	106	P1	0			2.12						0.2000	
7	106	P2	0			2.52						0.3721	
8	106	B1	0	7	3.05	3.02	2.73	3.31	3	Class3	0.6176	0.7167	0.5759

9	106	B2	5	8	3.55	3.51	3.20	3.81	3	Class3	1.5735	1.2684	1.0220
10	106	S01	5	9	3.98	3.90	3.58	4.21	3	Class3	1.9254	1.9118	1.5306
11	106	S02	5	10	4.14	4.18	3.86	4.49	3	Class3	2.1692	2.5046	2.0161
12	106	S03	7	11	4.44	4.37	4.06	4.67	3	Class3	3.1077	2.9675	2.4373
13	106	S04	5	12	4.51	4.49	4.19	4.79	3	Class3	3.0317	3.2821	2.7129
	106	S05				4.57						3.4661	
	106	S06				4.60						3.5504	
	106	S07				4.63						3.5689	
	106	S08				4.65						3.5557	
	106	S09				4.69						3.5452	
	106	S10				4.76						3.5715	
	106	S10 S11				4.87						3.6686	
20	NDAul		Ŭ	10	1.01	1.01	1.01	0.11	U	010000	0.0000	0.0000	0.0210
1	0.12												
2	0.13												
3	0.175												
4	0.173												
5	0.184												
6	0.272												
7	0.474												
8	0.889												
9	1.569												
	2.36												
	3.050												
	3.527												
	3.817												
	4.004												
	4.117												
	4.146												
	4.154												
	4.148												
	4.140												
19	4.100												

Here I present the observed and fitted means and proportions. First, the observed means. And then the observed proportions. Now the fitted means. And the fitted proportions.

```
> # cbind(week=1:19, round(tapply(NDA5$NDAObs, list(NDA5$W, NDA5$Cluster), mean),2))
```

```
> # cbind(week=1:19, round(tapply(NDA5$NDAObs/7, list(NDA5$W, NDA5$Cluster), mean),2))
```

```
> # cbind(week=1:19, round(tapply(NDA5$NDAfit, list(NDA5$W, NDA5$Cluster), mean),2))
```

```
> # cbind(week=1:19,round(tapply(NDA5$NDAfit/7, list(NDA5$W, NDA5$Cluster), mean),2))
```

13.3 Plot Results

20 4.326

Plot the fitted and observed means for each cluster.

```
> NDAPlot3 <-ggplot(data=NDA2) +
    xlab("Week Interval") + ylab("Number of Days Abstinent per Week") +
    geom_vline(xintercept = c(4,8), color="gray60") +
    geom_ribbon(aes(x=W, ymin=LFit, ymax=UFit), fill="gray40", alpha=.09) +
    geom_ribbon(aes(x=W, ymin=NDAlb, ymax=NDAub, group=Cluster, fill=Cluster), alpha=.1) +
    geom_line( aes(x=W, y=Fit), color="gray80") +</pre>
```

```
geom_line( aes(x=W, y=NDAfit,
                                                group=Cluster, color=Cluster)) +
   geom_point( aes(x=W, y=Obs), color="gray80") +
                                                group=Cluster, color=Cluster)) +
   geom_point( aes(x=W, y=NDAobs,
   scale_color_manual(values=c("red","blue", "green"), name="Class") +
   scale_fill_manual( values=c("red","blue", "green"), name="Class") +
   scale_x_continuous(limits=c(0,19), breaks = 0:19, minor_breaks = NULL,
         labels=c(paste0("H",0:4), "P1", "P2", "B1", "B2", paste0("S0", 1:9), "S10", "S11")) +
   scale_y_continuous(breaks=0:7, limits=c(0,7),
                      sec.axis=sec_axis(~./7, name="Percent Days Abstinent")) +
   guides(fill=guide_legend(title=NULL)) +
   guides(color=guide_legend(title=NULL)) +
   theme_minimal() +
   theme(legend.position=c(.8,.2), legend.text=element_text(lineheight = 2))
> pdf("NDA/NDAPlot3.pdf")
> print(NDAPlot3)
> dev.off()
null device
          1
```

Plot the results within cluster

```
> NDAPlot4 <- ggplot(data=NDA2, aes(x=W, y=NDAfit, group=Cluster, color=Cluster)) +
   xlab("Weekly Interval") + ylab("Number of Days Abstinent per Week") +
   geom_vline(xintercept = c(4,8), color="gray60") +
   geom_line(size=1) +
   facet_wrap(vars(Cluster), ncol=1) +
   geom_point(aes(x=W, y=NDAobs, group=Cluster, color=Cluster)) +
   geom_line(data=NDA2, aes(x=W, y=NDA, group=ID, color=Cluster), alpha=.1) +
  scale_color_manual(values=c("red","blue", "green")) +
  scale_x_continuous(limits=c(0,19), breaks = 0:19, minor_breaks = NULL,
     labels=c(paste0("H",0:4), "P1", "P2", "B1", "B2", paste0("S0", 1:9), "S10", "S11")) +
  scale_y_continuous(breaks=0:7, limits=c(0,7)) +
  theme_gray()
> pdf("NDA/NDAPlot4.pdf")
> print(NDAPlot4)
> dev.off()
null device
          1
```

The fitted and observed means for each cluster are displayed in Figure 12 on the following page. The fitted and observed data within each cluster are displayed in Figure 13 on page 59.

14 Follow-up Analyses

Here I conduct the analyses of the followup data at 3 and 6 months.

14.1 Get Follow-up Data

```
> NDA4 <- NDA1[, c(1, 22:24)]
> names(NDA4) <- c("ID", "F3", "F6", "Cluster")</pre>
```

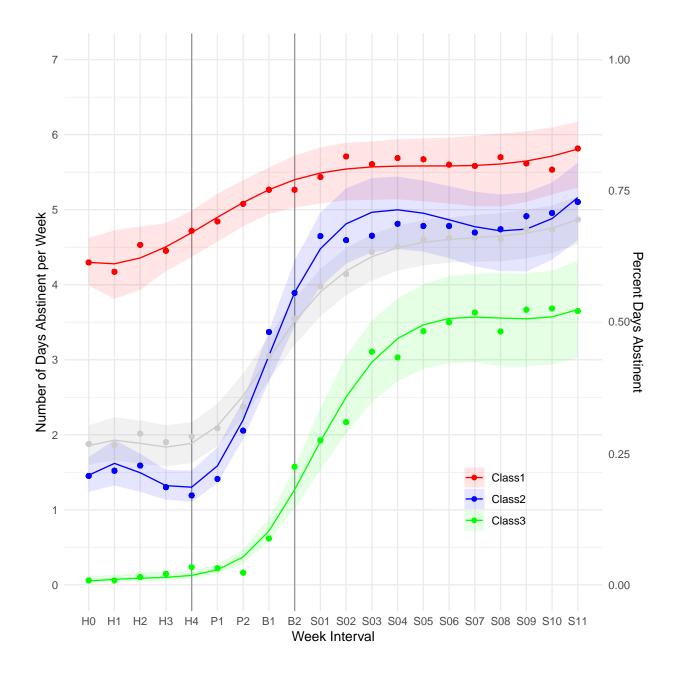


Figure 12: Observed (points) and fitted (lines) means for pretreatment and treatment for each class with corresponding 95% probability ribbons. The gray points, line, and ribbon show the results for the entire sample.

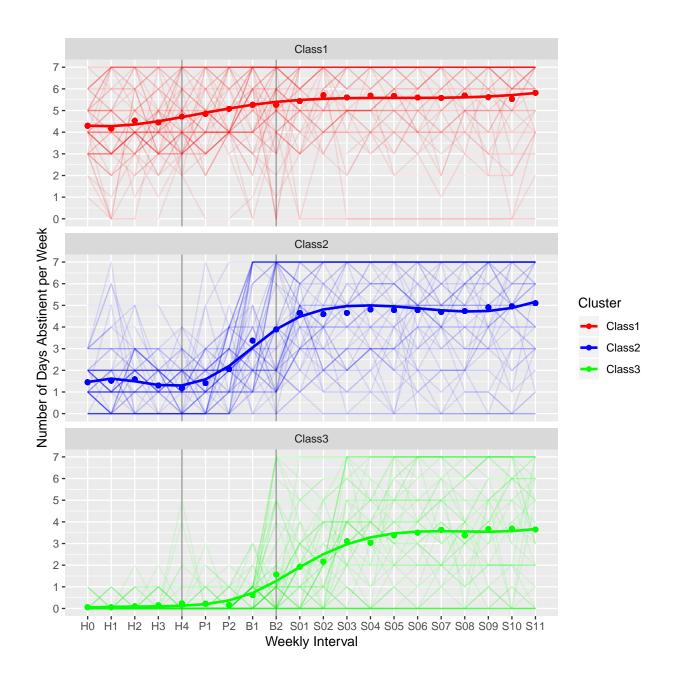


Figure 13: Observed (points) and fitted (lines) means for pretreatment and treatment within each class. The ghosted lines are the actual data.

14.2 Missing Data

14.3 Data Summaries

The first data summary is

```
> options(width=72)
> N <- nrow(NDA4)
> summary(NDA4)
     ID
               F3
                          F6
                                  Cluster
 Min. :103 Min. :0.00 Min. :0.00
                                Class1:64
 1st Qu.:194
          1st Qu.:0.44 1st Qu.:0.42
                                Class2:73
 Median :290
          Median :0.83
                     Median :0.74
                                Class3:68
 Mean :289
          Mean :0.67 Mean :0.66
 3rd Qu.:384
           3rd Qu.:0.99
                      3rd Qu.:1.00
                      Max. :1.00
 Max. :478
           Max. :1.00
           NA's
               :26
                     NA's
                         :31
The second summary is
> options(width=72)
> describe((NDA4))
(NDA4)
 4 Variables
            205 Observations
_____
TD
                                                .10
     n missing distinct Info Mean Gmd .05
                      1
                            288.7
                                  125.5 129.4 143.4
    205 0 205
                            .95
    .25
         .50 .75
                      .90
  194.0
         290.0
               384.0
                      437.6
                            455.6
lowest : 103 106 108 110 111, highest: 472 474 476 477 478
_____
F3
     n missing distinct
                     Info
                                   Gmd .05
                                                .10
                           Mean
    179
         26 57
                      0.991
                           0.6741
                                  0.3808
                                         0.000
                                               0.008
         .50
                .75
    .25
                      .90
                            .95
  0.445
         0.830
               0.990
                      1.000
                            1.000
lowest : 0.00 0.01 0.03 0.04 0.08, highest: 0.96 0.97 0.98 0.99 1.00
_____
F6
```

missing distinct Info .05 .10 Mean Gmd n 0.0000 0.0130 31 0.983 0.6646 174 65 0.3849 .25 .50 .75 .90 .95 0.7350 0.4225 0.9975 1.0000 1.0000 lowest : 0.00 0.01 0.02 0.04 0.05, highest: 0.96 0.97 0.98 0.99 1.00 _____ Cluster n missing distinct 205 0 3 Class1 Class2 Class3 Value Frequency 64 73 68 Proportion 0.312 0.356 0.332

14.4 Data Preparation

The dataframe NDA4 was created by converting NDA4 and converted from wide to long format. The variable NDA for the number of days abstinent as created from the orginal proportion data. The week number was appended. The data frame NDA4 was reduced to all non-missing values.

```
> NDA4 <- gather(NDA4, week, NDA, F3:F6)
> NDA4 <- arrange(NDA4, ID, factor(week, levels=c("F3", "F6")))</pre>
> NDA4$NDA <- round(NDA4$NDA*7)</pre>
> NDA4$W <- c(21,22)
> head(NDA4, n=12)
# A tibble: 12 x 5
      ID Cluster week
                           NDA
                                   W
   <dbl> <fct>
                  <chr> <dbl> <dbl>
     103 Class1
                             5
                  F3
                                  21
 1
                             5
2
     103 Class1
                  F6
                                  22
3
     106 Class3
                  F3
                            NA
                                  21
 4
     106 Class3
                  F6
                            NA
                                  22
5
     108 Class2
                            5
                                  21
                 F3
6
     108 Class2
                  F6
                             5
                                  22
7
     110 Class2
                             7
                                  21
                  F3
8
     110 Class2
                  F6
                             7
                                  22
9
     111 Class1
                  F3
                             7
                                  21
     111 Class1
                             6
10
                  F6
                                  22
                             7
                                  21
     113 Class1
11
                  F3
12
     113 Class1 F6
                            NA
                                  22
> tail(NDA4, n=12)
# A tibble: 12 x 5
                                   W
      ID Cluster week
                           NDA
   <dbl> <fct>
                  <chr> <dbl> <dbl>
     470 Class2
                  F3
                             7
                                  21
 1
2
     470 Class2
                  F6
                            NA
                                  22
3
     472 Class1
                  F3
                             6
                                  21
4
                             7
     472 Class1
                  F6
                                  22
5
     474 Class3
                 F3
                            NA
                                  21
```

```
6
     474 Class3
                  F6
                                   22
                              4
7
     476 Class2
                  F3
                              2
                                   21
8
     476 Class2
                  F6
                              1
                                   22
9
     477 Class3
                              0
                                   21
                  F3
10
     477 Class3
                  F6
                              0
                                   22
     478 Class2 F3
                              4
                                   21
11
     478 Class2 F6
12
                              4
                                   22
> NDA4 <- na.omit(NDA4)</pre>
> UID <- unique(NDA4$ID)
> table(NDA4$ID)
103 108 110 111 113 114 118 128 129 131 132 133 134 137 138 139 140 143
  2
                        2
                            2
                                 2
                                      2
                                          2
                                                   2
                                                                     2
                                                                         2
      2
           2
               2
                    1
                                              2
                                                       2
                                                            2
                                                                2
                                                                              2
144 145 146 150 151 154 155 156 160 161 165 166 167 168 170 171 175 176
                             2
                                 2
                                          2
                                                   2
                                                                2
  2
      1
           2
               2
                    2
                        2
                                      2
                                               2
                                                       2
                                                            2
                                                                     2
                                                                         2
                                                                              2
178 179 181 182 186 187 188 189 191 193 194 195 196 197 198 201 205 206
                                 2
                                          2
  2
      2
           2
               2
                    2
                        2
                             2
                                      2
                                               2
                                                   2
                                                       1
                                                            2
                                                                2
                                                                     2
                                                                         2
                                                                              2
207 208 209 210 211 214 215 217 218 223 228 231 233 236 237 240
                                                                       244
                                                                           249
  2
           2
               2
                    2
                        2
                             2
                                 2
                                      2
                                          2
                                               2
                                                       2
                                                            2
                                                                2
                                                                     2
                                                                         2
                                                                              2
      1
                                                   1
251 252 253 256 257 258 259 263 265 266 269 271 274
                                                         276 279 280 281
                                                                           286
  2
      2
           2
               2
                    2
                        2
                             2
                                 2
                                      2
                                          2
                                               2
                                                   2
                                                       2
                                                            2
                                                                2
                                                                     2
                                                                         2
                                                                              2
288 290 291 292 295 297 301 302 306 307 308 309 311 314 315 317 319 322
  2
               2
                    2
                        2
                                 2
                                      2
                                          2
                                               2
                                                   2
                                                       2
                                                            2
                                                                2
                                                                     2
                                                                         2
                                                                              2
           1
                             1
      1
323 324 326 327 328 330 331 334 335 339 340 341 343 346 351 353 355 356
  2
      2
           2
               2
                    2
                        2
                            2
                                 2
                                     2
                                                   2
                                                       2
                                                            2
                                                                2
                                                                     2
                                                                         2
                                                                              2
                                          1
                                               1
361 364 367 370 373 374 376 377 378 379 383 384 386 387 388 389 390 391
  2
      2
           2
               2
                    2
                        2
                            2
                                 2
                                      2
                                          2
                                              2
                                                   2
                                                       2
                                                            2
                                                                2
                                                                     2
                                                                         2
                                                                              2
395 396 398 400 403 404 411 413 415 416 418 421 423 425 429 430 433 434
  2
      2
           2
               2
                    2
                            2
                                 2
                                     2
                                          2
                                                   2
                                                            2
                                                                2
                                                                     2
                                                                         2
                                                                             2
                        2
                                              1
                                                       2
435 436 437 440 441 444 446 447 450 451 454 456 457 463 469 470 472 474
  2
                             2
                                 2
                                          2
                                                            2
      2
           2
               2
                    2
                        2
                                      2
                                              2
                                                   2
                                                       2
                                                                2
                                                                         2
                                                                     1
                                                                              1
476 477 478
  2
      2
           2
> UID[which(table(NDA4$ID) < 2)]</pre>
 [1] 113 145 196 208 231 290 291 301 339 340 418 470 474
```

14.5 Observed Means

Here I obtained the observed=fitted means and the respective 95% probability intervals. The within-subject observations are now assumed to be independent.

Coefficients:

Estimate Std.err Wald Pr(>|W|)

```
(Intercept)
                          1.5860 0.2201 51.92 5.8e-13 ***
                          0.1219 0.1876 0.42
factor(W)22
                                                0.5158
ClusterClass2
                         -0.8733 0.2862 9.31
                                                0.0023 **
ClusterClass3
                         -1.5704 0.3083 25.95 3.5e-07 ***
factor(W)22:ClusterClass2 -0.2516 0.2223 1.28
                                                0.2578
factor(W)22:ClusterClass3 -0.0283 0.2297 0.02
                                                0.9020
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
              0.507 0.0389
Correlation: Structure = independenceNumber of clusters: 183 Maximum cluster size: 2
> NDA4$Obs <- 7*fitted(M, type="response")</pre>
> NDA4$NDA1b <- 0
> NDA4$NDAub <- 0
> b <- coef(M)
> names(b) <- NULL</pre>
> Sigma <- M$geese$vbeta</pre>
> X <- model.matrix(M)</pre>
> K <- 1000
> R <- mvrnorm(K, mu=b, Sigma=Sigma)</pre>
> U <- 7*plogis(X %*% (t(R)))
> u <- apply(U,1,quantile, prob=.025)</pre>
> v <- apply(U,1,quantile, prob=.975)</pre>
> NDA4$NDA1b <- u
> NDA4$NDAub <- v
> head(as.data.frame(NDA4[NDA4$Cluster=="Class1",]), n=20)
   ID Cluster week NDA W Obs NDAlb NDAub
1 103 Class1 F3 5 21 5.81 5.32 6.19
2 103 Class1
                F6 5 22 5.93 5.48
                                     6.27
                   7 21 5.81 5.32
3 111 Class1 F3
                                     6.19
4 111 Class1
                F6 6 22 5.93 5.48 6.27
5 113 Class1
                F3 7 21 5.81 5.32 6.19
6
  114 Class1
                F3 6 21 5.81
                               5.32
                                     6.19
7
  114 Class1
                F6 6 22 5.93 5.48 6.27
8
 129 Class1 F3 7 21 5.81 5.32 6.19
9 129 Class1
                F6 4 22 5.93 5.48 6.27
10 140 Class1
                F3
                   7 21 5.81
                               5.32
                                     6.19
11 140 Class1 F6 5 22 5.93 5.48 6.27
12 144 Class1 F3 7 21 5.81 5.32 6.19
13 144 Class1 F6 6 22 5.93 5.48 6.27
14 145 Class1 F3
                   7 21 5.81 5.32 6.19
15 146 Class1 F3 7 21 5.81 5.32 6.19
16 146 Class1 F6 7 22 5.93 5.48 6.27
17 150 Class1
               F3
                    7 21 5.81 5.32 6.19
18 150 Class1
               F6
                    7 22 5.93 5.48 6.27
19 151 Class1
                F3
                   7 21 5.81 5.32 6.19
20 151 Class1
                F6
                   7 22 5.93 5.48 6.27
> head(as.data.frame(NDA4[NDA4$Cluster=="Class2",]), n=20)
```

108	Cluster Class2	week F3			0bs 4.70			
108	Class2	F6			4.49			
L10	Class2	F3			4.70		5.22	
L10	Class2	F6	7	22	4.49	3.90	5.09	
133	Class2	F3	6	21	4.70	4.15	5.22	
133	Class2	F6						
134	Class2	F3	7	21	4.70			
134	Class2	F6	7	22	4.49		5.09	
138	Class2	F3	7	21	4.70	4.15	5.22	
138	Class2						5.09	
143							5.22	
143			7	22	4.49			
154								
154		F6						
L60		F3						
L60		F6						
L61	Class2	F3	7	21	4.70			
L61	Class2	F6	7	22	4.49			
L65		F3	3	21	4.70		5.22	
L65	Class2	F6					5.09	
ead(as.data	frame	e(ND	A4 [1	NDA4\$0	Cluster	r=="Cla	ass3",]), n=20)
ID	Cluster	week	NDA	W	Obs	NDAlb	NDAub	
L18	Class3	F3	6	21	3.53	2.80	4.16	
L18	Class3	F6	6	22	3.69	2.99	4.37	
128	Class3	F3	0	21	3.53	2.80	4.16	
L28	Class3	F6	0	22	3.69	2.99	4.37	
L31	Class3	F3	4	21	3.53	2.80	4.16	
131	Class3	F6	5	22	3.69	2.99	4.37	
132	Class3	F3	0	21	3.53	2.80	4.16	
132	Class3	F6	2	22	3.69	2.99	4.37	
137	Class3	F3	7	21	3.53	2.80	4.16	
137	Class3	F6	7	22	3.69	2.99	4.37	
L39	Class3	F3	4	21	3.53	2.80	4.16	
L39	Class3	F6	5	22	3.69	2.99	4.37	
156	Class3	F3	1	21	3.53	2.80	4.16	
156	Class3	F6	5	22	3.69	2.99	4.37	
166	Class3	F3	0	21	3.53	2.80	4.16	
		F6						
168	Class3	F6						
	Class3					2.80		
178	Class3	F6	3	22	3.69	2.99	4.37	
	.33 .34 .38 .38 .43 .54 .60 .61 .65 .61 .65 .61 .65 .61 .65 .61 .65 .61 .65 .61 .65 .61 .65 .61 .65 .61 .65 .61 .65 .61 .65 .61 .65 .61 .65 .61 .65 .61 .62 .63 .64 .66 .66 .66 .66 .66 .66	.33 Class2 .34 Class2 .38 Class2 .38 Class2 .38 Class2 .43 Class2 .43 Class2 .43 Class2 .44 Class2 .45 Class2 .60 Class2 .61 Class2 .65 Class2 .66 Class2 .61 Class2 .65 Class2 .66 Class3 .67 Class3 .68 Class3 .69 Class3 .60 Class3 .61 Class3 .62 Class3 .63 Class3 .64 Class3 .65 Class3 .66 Class3	33 Class2 F6 34 Class2 F3 34 Class2 F3 38 Class2 F3 38 Class2 F3 43 Class2 F3 60 Class2 F3 60 Class2 F3 60 Class2 F3 61 Class2 F3 65 Class3 F3 65 Class3 F3 65 Class3 F3 78 Class3 F3 78 Class3 F3 79 Class3 F3 37 Class3 F3 37 Class3 F3 39	33 Class2 F6 7 34 Class2 F3 7 34 Class2 F3 7 38 Class2 F3 7 38 Class2 F3 7 38 Class2 F3 7 43 Class2 F3 7 43 Class2 F3 7 43 Class2 F3 7 54 Class2 F3 7 60 Class2 F3 7 60 Class2 F3 7 61 Class2 F3 3 65 Class3 F3 6 61 Class3 F3 6 62 Class3 F3 6 63 Class3 F3 0 73 Class3 F	33 Class2 F6 7 22 34 Class2 F3 7 21 34 Class2 F3 7 21 34 Class2 F3 7 21 38 Class2 F3 7 21 38 Class2 F6 7 22 43 Class2 F3 7 21 43 Class2 F6 7 22 43 Class2 F3 7 21 54 Class2 F3 7 21 54 Class2 F3 7 21 60 Class2 F3 7 21 61 Class2 F6 7 22 65 Class2 F3 3 21 65 Class2 F3 3 21 65 Class3 F3 6 21 10 Cluster week NDA W 18 Class3 F3 0 21	33Class2F67224.4934Class2F37214.7034Class2F37214.7038Class2F37214.7038Class2F37214.7038Class2F37214.7043Class2F37214.7043Class2F67224.4943Class2F37214.7054Class2F37214.7060Class2F37214.7061Class2F37214.7065Class2F67224.4965Class2F37214.7065Class2F37214.7065Class2F33214.7065Class2F64224.4965Class2F67224.4965Class2F67224.4965Class3F30213.5318Class3F36213.5318Class3F30213.5328Class3F37213.5331Class3F37213.5332Class3F37213.5333Class3F3<	33Class2F67224.493.9034Class2F37214.704.1534Class2F37214.704.1538Class2F37214.704.1538Class2F37214.704.1538Class2F37214.704.1543Class2F67224.493.9043Class2F67224.493.9054Class2F67224.493.9060Class2F37214.704.1560Class2F37214.704.1561Class2F67224.493.9065Class2F67224.493.9065Class2F67224.493.9065Class2F67224.493.9065Class2F67224.493.9065Class2F67224.493.9065Class2F67224.493.9065Class3F37214.704.1565Class3F37214.704.1565Class3F36213.532.807Class3F36213.532.80 </td <td>33 Class2 F6 7 22 4.49 3.90 5.09 34 Class2 F3 7 21 4.70 4.15 5.22 34 Class2 F6 7 22 4.49 3.90 5.09 38 Class2 F6 7 22 4.49 3.90 5.09 43 Class2 F6 7 22 4.49 3.90 5.09 43 Class2 F6 7 22 4.49 3.90 5.09 54 Class2 F6 7 22 4.49 3.90 5.09 60 Class2 F6 7 22 4.49 3.90 5.09 61 Class2 F6 7 22 4.49 3.90 5.09 61 Class2 F6 7 22 4.49 3.90 5.09 62 Class2 F6 7 22 4.49 3.90 5.09 63 Class2 F6 7 22 4.49 3.90</td>	33 Class2 F6 7 22 4.49 3.90 5.09 34 Class2 F3 7 21 4.70 4.15 5.22 34 Class2 F6 7 22 4.49 3.90 5.09 38 Class2 F6 7 22 4.49 3.90 5.09 43 Class2 F6 7 22 4.49 3.90 5.09 43 Class2 F6 7 22 4.49 3.90 5.09 54 Class2 F6 7 22 4.49 3.90 5.09 60 Class2 F6 7 22 4.49 3.90 5.09 61 Class2 F6 7 22 4.49 3.90 5.09 61 Class2 F6 7 22 4.49 3.90 5.09 62 Class2 F6 7 22 4.49 3.90 5.09 63 Class2 F6 7 22 4.49 3.90

+

```
scale_fill_manual( values=c("red","blue", "green"), name="Class") +
   scale_x_continuous(limits=c(0,22.5), breaks = c(0:19, 21, 22),
         minor_breaks = NULL, expand=expand_scale(add=c(.5,.1)),
         labels=c(paste0("H",0:4), "P1", "P2", "B1", "B2",
                  paste0("S0", 1:9), "S10", "S11", "F3", "F6")) +
   scale_y_continuous(breaks=0:7, limits=c(0,7),
                      sec.axis=sec_axis(~./7, name="Percent Days Abstinent")) +
   annotate("text", x=2, y=6.6, label="Distal") +
   annotate("text", x=6, y=6.6, label="Proximal") +
   annotate("text", x=14, y=6.6, label="Treatment") +
   annotate("text", x=21.5, y=6.6, label="Followup") +
   annotate("text", x=2, y=5.2, label="Class 1", fontface="italic") +
   annotate("text", x=2, y=2.2, label="Class 2", fontface="italic") +
   annotate("text", x=2, y=0.5, label="Class 3", fontface="italic") +
   geom_point(data=NDA2, aes(x=W, y=NDAobs, group=Cluster, color=Cluster)) +
   geom_ribbon(data=NDA2,
               aes(x=W, ymin=NDAlb, ymax=NDAub, group=Cluster, fill=Cluster), alpha=.1) +
   geom_line(data=NDA2, aes(x=W, y=NDAfit, group=Cluster, color=Cluster)) +
   geom_point(data=NDA4, aes(x=W, y=Obs, group=Cluster, color=Cluster),
              size=2, position=position_dodge(0.5)) +
   geom_linerange(data=NDA4, aes(x=W, ymin=NDA1b, ymax=NDAub, group=Cluster, color=Cluster),
                  position=position_dodge(0.5))+
   guides(color=FALSE) + guides(fill=FALSE)
> pdf("NDA/NDAPlot7.pdf")
> print(NDAPlot7)
> dev.off()
null device
          1
```

The fitted and observed data within each class are displayed in Figure 14 on the following page.

15 Additional Analyses

There were two additional analyses.

15.1 Polynomial Analysis of Proximal-Pretreatment Phase

Here I examime the trajectory structure of each class during the Proximal-Pretreatment phase, from w Week -4 to Week 0. Models consisting of logistic-binomial, AR(1), quadratic polynomials with class-bypolynomial interactions were fitted to these data. Splines were unnecessary as there were no knots. There was no missing data.

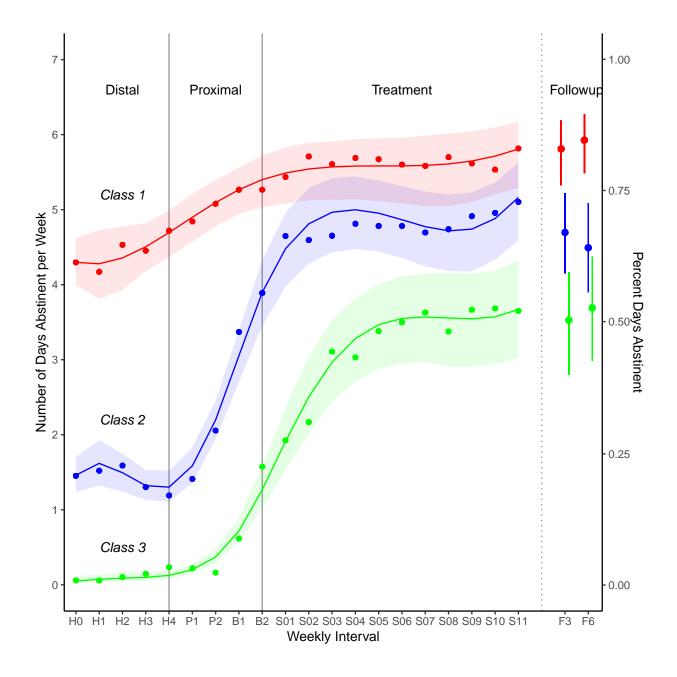


Figure 14: Observed and fitted means with 95% probability intervals for pretreatment, treatment, and followup for each class.

```
data=NDA5, subset=(Cluster=="Class2"),
             family="binomial", waves=W, corstr = "ar1")
> Q3 <- geeglm(cbind(NDA, 7-NDA)~1+poly(W,2), id= ID,
             data=NDA5, subset=(Cluster=="Class3"),
             family="binomial", waves=W, corstr = "ar1")
> summary(P0)
Call:
geeglm(formula = cbind(NDA, 7 - NDA) ~ 1 + factor(W) * Cluster,
   family = "binomial", data = NDA5, id = ID, waves = W)
Coefficients:
                        Estimate Std.err
                                           Wald Pr(>|W|)
(Intercept)
                          0.7268 0.1273 32.61 1.1e-08 ***
factor(W)5
                          0.0825 0.1193 0.48
                                                   0.489
factor(W)6
                                           3.54
                                                   0.060 .
                          0.2448 0.1301
                                           3.89
factor(W)7
                          0.3837 0.1946
                                                   0.049 *
                                           3.42
                                                   0.064 .
factor(W)8
                          0.3837 0.2074
ClusterClass2
                         -2.3106 0.1805 163.91 < 2e-16 ***
ClusterClass3
                         -4.0855 0.4669 76.58 < 2e-16 ***
                         0.1248 0.1979 0.40
factor(W)5:ClusterClass2
                                                   0.528
factor(W)6:ClusterClass2 0.4608 0.2074
                                           4.94
                                                   0.026 *
factor(W)7:ClusterClass2 1.1257 0.2839 15.72 7.4e-05 ***
factor(W)8:ClusterClass2
                         1.4241 0.3185 19.99 7.8e-06 ***
factor(W)5:ClusterClass3 -0.1492 0.5197 0.08
                                                   0.774
factor(W)6:ClusterClass3 -0.6303 0.5576
                                           1.28
                                                   0.258
factor(W)7:ClusterClass3
                          0.6395 0.5387
                                           1.41
                                                   0.235
                                                   0.002 **
factor(W)8:ClusterClass3
                          1.7369 0.5615
                                           9.57
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
               0.31
                      0.068
Correlation: Structure = independenceNumber of clusters:
                                                          205 Maximum cluster size: 5
> summary(P1)
Call:
geeglm(formula = cbind(NDA, 7 - NDA) ~ 1 + poly(W, 2) * Cluster,
   family = "binomial", data = NDA5, id = ID, waves = W, corstr = "ar1")
Coefficients:
                         Estimate Std.err
                                            Wald Pr(>|W|)
(Intercept)
                            0.945
                                    0.113 70.27 < 2e-16 ***
poly(W, 2)1
                            4.623
                                    2.283
                                            4.10
                                                   0.0428 *
poly(W, 2)2
                                                   0.7029
                           -0.671
                                    1.761
                                            0.15
ClusterClass2
                           -1.677
                                    0.136 151.82 < 2e-16 ***
ClusterClass3
                           -3.720 0.183 412.11 < 2e-16 ***
                                    3.661 22.00 2.7e-06 ***
poly(W, 2)1:ClusterClass2
                           17.171
                                                   0.4798
poly(W, 2)2:ClusterClass2
                            1.707
                                    2.416
                                            0.50
poly(W, 2)1:ClusterClass3
                           19.637
                                    6.229
                                            9.94
                                                   0.0016 **
                           13.206
                                                   0.0054 **
poly(W, 2)2:ClusterClass3
                                    4.743
                                            7.75
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
            Estimate Std.err
               0.311 0.0725
(Intercept)
Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
      Estimate Std.err
         0.345 0.0733
alpha
Number of clusters:
                       205
                             Maximum cluster size: 5
> NDA5$Pobs <- 7*fitted(P0)</pre>
> NDA5$Pfit <- 7*fitted(P1)</pre>
> NDAPlot9 <- ggplot(data=NDA5) +</pre>
   xlab("Weekly Interval") + ylab("Number of Days Abstinent per Week") +
   scale_x_continuous(limits=c(4,8), breaks = 4:8, minor_breaks = NULL,
         labels=c("H4", "P1", "P2", "B1", "B2")) +
   scale_y_continuous(breaks=0:7, limits=c(0,7)) +
   geom_point(aes(x=W, y=Pobs, group=Cluster, color=Cluster)) +
   geom_line(aes(x=W, y=Pfit, group=Cluster, color=Cluster))
> pdf("NDA/NDAPlot9.pdf")
> print(NDAPlot9)
> dev.off()
null device
```

The polynomial order of the Proximal-Pretest in each class is given in Tables 14 to 16 on pages 69–71: Class 1 shows a slight linear but no quadratic effect. Class 2 shows a larger linear effect but no quadratic effect. Class 3 shows both linear and quadratic effects.

The fitted and observed data withing each class are displayed in Figure 15 on page 72.

15.2 Tests of Changes from Basleline to Various End Points

The second analysis compared the change in NDAs from the beginning of treatment B2 to the end of treatment at S11, F3 and F6 among the three classes. These analyses use the orginal data frame NDA1.

The test of significance from B2 to S11 is given in Table 17 on page 73.

The tests with Class 2 and Class 3 as reference are given in Table 18 on page 74.

The test of significance from B2 to F3 is given in Table 19 on page 75.

The tests with Class 2 and Class 3 as reference are given in Table 20 on page 76.

The test of significance from B2 to F6 is given in Table 21 on page 77.

The tests with Class 2 and Class 3 as reference are given in Table 22 on page 78.

16 Publication Graphs

Here I collect some graphics that have been converted to black-and-white for publication. Figure 16 on page 80 is a modified version of Figure 14 on page 66.

```
> NDAPlot8 <- ggplot(data=NDA2) +
    theme_bw() +</pre>
```

```
Call:
geeglm(formula = cbind(NDA, 7 - NDA) ~ 1 + poly(W, 2), family = "binomial",
   data = NDA5, subset = (Cluster == "Class1"), id = ID, waves = W,
   corstr = "ar1")
Coefficients:
           Estimate Std.err Wald Pr(>|W|)
(Intercept) 0.945
                      0.113 70.24 <2e-16 ***
poly(W, 2)1
              4.465
                      2.312 3.73
                                    0.053 .
poly(W, 2)2
                      1.797 0.14
                                    0.709
           -0.670
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
             0.305 0.0392
Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
alpha
      0.613 0.0608
Number of clusters: 64
                          Maximum cluster size: 5
```

Table 14: Proximal-Pretest Polynomial for Class 1

```
Call:
geeglm(formula = cbind(NDA, 7 - NDA) ~ 1 + poly(W, 2), family = "binomial",
   data = NDA5, subset = (Cluster == "Class2"), id = ID, waves = W,
   corstr = "ar1")
Coefficients:
           Estimate Std.err Wald Pr(>|W|)
(Intercept) -0.7323 0.0762 92.3 < 2e-16 ***
poly(W, 2)1 21.8446 2.8690 58.0 2.7e-14 ***
poly(W, 2)2
            1.0505 1.6539 0.4
                                    0.53
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
             0.322 0.0293
Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
alpha
         0.32 0.0629
Number of clusters: 73
                          Maximum cluster size: 5
```

Table 15: Proximal-Pretest Polynomial for Class 2

```
Call:
geeglm(formula = cbind(NDA, 7 - NDA) ~ 1 + poly(W, 2), family = "binomial",
   data = NDA5, subset = (Cluster == "Class3"), id = ID, waves = W,
   corstr = "ar1")
Coefficients:
           Estimate Std.err Wald Pr(>|W|)
(Intercept) -2.786
                      0.144 373.23 < 2e-16 ***
poly(W, 2)1
             24.277
                      5.624 18.64 1.6e-05 ***
poly(W, 2)2
                            9.13 0.0025 **
             13.100
                      4.335
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
             0.304 0.207
Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
       0.128 0.0908
alpha
Number of clusters: 68
                          Maximum cluster size: 5
```

Table 16: Proximal-Pretest Polynomial for Class 3

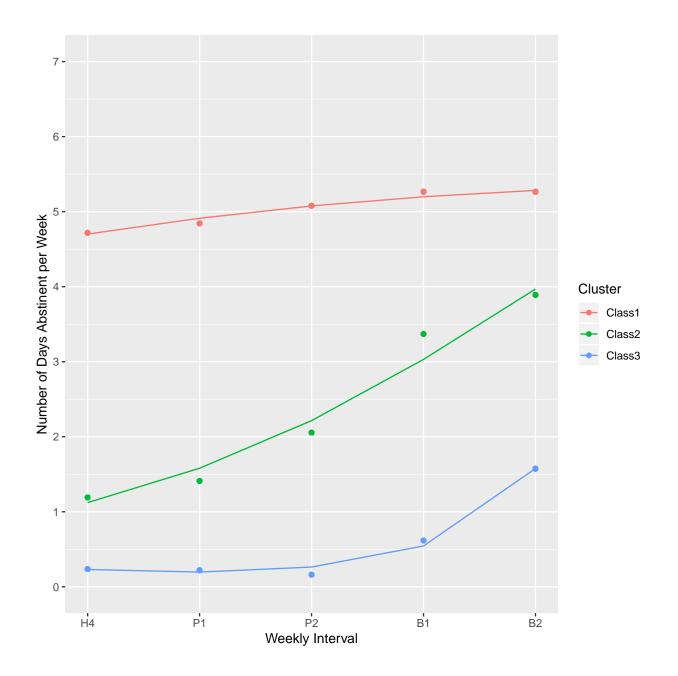


Figure 15: Observed means and quadratic polynomial fitted values for the three classes during the Proximal-Pretreatment phase.

Table 17: Test of Differences from B2 to S11: The upper panel displays the absolute difference among classes. The lower panel compares the relative difference among classes with Class 1 as the reference.

```
> summary(geeglm(I(round(7*S11))~offset(I(round(7*B2))) + 0 + Cluster, id=ID, data=NDA1))
Call:
geeglm(formula = I(round(7 * S11)) ~ offset(I(round(7 * B2))) +
   0 + Cluster, data = NDA1, id = ID)
Coefficients:
             Estimate Std.err Wald Pr(>|W|)
ClusterClass1
                0.550
                        0.266 4.27 0.03872 *
                1.221
                        0.323 14.24 0.00016 ***
ClusterClass2
ClusterClass3
                2.217
                        0.413 28.80
                                       8e-08 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
                7.2
                       0.78
Correlation: Structure = independenceNumber of clusters:
                                                          188 Maximum cluster size: 1
> summary(geeglm(I(round(7*S11))~offset(I(round(7*B2))) + 1 + Cluster, id=ID, data=NDA1))
Call:
geeglm(formula = I(round(7 * S11)) ~ offset(I(round(7 * B2))) +
   1 + Cluster, data = NDA1, id = ID)
Coefficients:
             Estimate Std.err Wald Pr(>|W|)
(Intercept)
                0.550 0.266 4.27 0.03872 *
ClusterClass2
                0.671
                        0.419 2.56 0.10933
ClusterClass3
                1.667
                        0.491 11.51 0.00069 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
                7.2
                       0.78
Correlation: Structure = independenceNumber of clusters:
                                                          188
                                                                Maximum cluster size: 1
```

Table 18: Test of Differences from B2 to S11: The upper panel uses Class 2 as reference. The lower panel uses Class 3 as reference.

```
> Cluster2 <- factor(NDA1$Cluster, levels=c(paste0("Class", c(2,1,3))))</pre>
> summary(geeglm(I(round(7*S11))~offset(I(round(7*B2))) + 1 + Cluster2, id=ID, data=NDA1))
Call:
geeglm(formula = I(round(7 * S11)) ~ offset(I(round(7 * B2))) +
   1 + Cluster2, data = NDA1, id = ID)
Coefficients:
              Estimate Std.err Wald Pr(>|W|)
(Intercept)
                 1.221
                         0.323 14.24 0.00016 ***
                -0.671
                         0.419 2.56 0.10933
Cluster2Class1
Cluster2Class3
                 0.996
                         0.525 3.61 0.05760 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
                7.2
                       0.78
Correlation: Structure = independenceNumber of clusters: 188 Maximum cluster size: 1
> Cluster3 <- factor(NDA1$Cluster, levels=c(paste0("Class", c(3,1,2))))</pre>
> summary(geeglm(I(round(7*S11))~offset(I(round(7*B2))) + 1 + Cluster3, id=ID, data=NDA1))
Call:
geeglm(formula = I(round(7 * S11)) ~ offset(I(round(7 * B2))) +
   1 + Cluster3, data = NDA1, id = ID)
Coefficients:
              Estimate Std.err Wald Pr(>|W|)
                         0.413 28.80
(Intercept)
                 2.217
                                      8e-08 ***
Cluster3Class1
                -1.667
                         0.491 11.51 0.00069 ***
Cluster3Class2 -0.996 0.525 3.61 0.05760.
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
                7.2
                       0.78
Correlation: Structure = independenceNumber of clusters: 188 Maximum cluster size: 1
```

Table 19: Test of Differences from B2 to F3: The upper panel displays the absolute difference among classes. The lower panel compares the relative difference among classes with Class 1 as the reference.

```
> summary(geeglm(I(round(7*F3))~offset(I(round(7*B2))) + 0 + Cluster, id=ID, data=NDA1))
Call:
geeglm(formula = I(round(7 * F3)) ~ offset(I(round(7 * B2))) +
   0 + Cluster, data = NDA1, id = ID)
Coefficients:
             Estimate Std.err Wald Pr(>|W|)
ClusterClass1
                0.569
                        0.287 3.94
                                      0.0471 *
ClusterClass2
                0.909
                        0.326 7.77
                                      0.0053 **
ClusterClass3
                2.236 0.394 32.19 1.4e-08 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
               6.76
                      0.679
Correlation: Structure = independenceNumber of clusters: 179 Maximum cluster size: 1
> summary(geeglm(I(round(7*F3))~offset(I(round(7*B2))) + 1 + Cluster, id=ID, data=NDA1))
Call:
geeglm(formula = I(round(7 * F3)) ~ offset(I(round(7 * B2))) +
   1 + Cluster, data = NDA1, id = ID)
Coefficients:
             Estimate Std.err Wald Pr(>|W|)
(Intercept)
                0.569 0.287 3.94 0.04708 *
ClusterClass2
                0.340
                        0.434 0.61 0.43340
ClusterClass3
                1.667
                        0.487 11.71 0.00062 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
               6.76
                     0.679
Correlation: Structure = independenceNumber of clusters:
                                                        179
                                                               Maximum cluster size: 1
```

Table 20: Test of Differences from B2 to F3: The upper panel uses Class 2 as reference. The lower panel uses Class 3 as reference.

```
> Cluster2 <- factor(NDA1$Cluster, levels=c(paste0("Class", c(2,1,3))))</pre>
> summary(geeglm(I(round(7*F3))~offset(I(round(7*B2))) + 1 + Cluster2, id=ID, data=NDA1))
Call:
geeglm(formula = I(round(7 * F3)) ~ offset(I(round(7 * B2))) +
   1 + Cluster2, data = NDA1, id = ID)
Coefficients:
              Estimate Std.err Wald Pr(>|W|)
(Intercept)
                 0.909
                         0.326 7.77
                                      0.0053 **
                -0.340
Cluster2Class1
                         0.434 0.61
                                      0.4334
                                      0.0095 **
Cluster2Class3
                 1.327
                         0.512 6.73
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
               6.76
                      0.679
Correlation: Structure = independenceNumber of clusters: 179 Maximum cluster size: 1
> Cluster3 <- factor(NDA1$Cluster, levels=c(paste0("Class", c(3,1,2))))</pre>
> summary(geeglm(I(round(7*F3))~offset(I(round(7*B2))) + 1 + Cluster3, id=ID, data=NDA1))
Call:
geeglm(formula = I(round(7 * F3)) ~ offset(I(round(7 * B2))) +
   1 + Cluster3, data = NDA1, id = ID)
Coefficients:
              Estimate Std.err Wald Pr(>|W|)
(Intercept)
                 2.236 0.394 32.19 1.4e-08 ***
                         0.487 11.71 0.00062 ***
Cluster3Class1
                -1.667
Cluster3Class2 -1.327 0.512 6.73 0.00948 **
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
               6.76
                     0.679
Correlation: Structure = independenceNumber of clusters: 179 Maximum cluster size: 1
```

Table 21: Test of Differences from B2 to F6: The upper panel displays the absolute difference among classes. The lower panel compares the relative difference among classes with Class 1 as the reference.

```
> summary(geeglm(I(round(7*F6))~offset(I(round(7*B2))) + 0 + Cluster, id=ID, data=NDA1))
Call:
geeglm(formula = I(round(7 * F6)) ~ offset(I(round(7 * B2))) +
   0 + Cluster, data = NDA1, id = ID)
Coefficients:
             Estimate Std.err Wald Pr(>|W|)
ClusterClass1
                0.630
                        0.269 5.49
                                       0.019 *
ClusterClass2
                        0.366 3.58
                0.692
                                       0.059 .
ClusterClass3
                2.309 0.400 33.34 7.7e-09 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
               7.24
                      0.782
Correlation: Structure = independenceNumber of clusters: 174 Maximum cluster size: 1
> summary(geeglm(I(round(7*F6))~offset(I(round(7*B2))) + 1 + Cluster, id=ID, data=NDA1))
Call:
geeglm(formula = I(round(7 * F6)) ~ offset(I(round(7 * B2))) +
   1 + Cluster, data = NDA1, id = ID)
Coefficients:
             Estimate Std.err Wald Pr(>|W|)
(Intercept)
               0.6296 0.2687 5.49 0.01913 *
ClusterClass2
               0.0627 0.4540 0.02 0.89020
ClusterClass3
               1.6795 0.4818 12.15 0.00049 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
               7.24 0.782
Correlation: Structure = independenceNumber of clusters:
                                                        174 Maximum cluster size: 1
```

Table 22: Test of Differences from B2 to F6: The upper panel uses Class 2 as reference. The lower panel uses Class 3 as reference.

```
> Cluster2 <- factor(NDA1$Cluster, levels=c(paste0("Class", c(2,1,3))))</pre>
> summary(geeglm(I(round(7*F6))~offset(I(round(7*B2))) + 1 + Cluster2, id=ID, data=NDA1))
Call:
geeglm(formula = I(round(7 * F6)) ~ offset(I(round(7 * B2))) +
   1 + Cluster2, data = NDA1, id = ID)
Coefficients:
              Estimate Std.err Wald Pr(>|W|)
(Intercept)
                0.6923 0.3660 3.58
                                      0.0585 .
Cluster2Class1 -0.0627 0.4540 0.02
                                      0.8902
Cluster2Class3
               1.6168 0.5421 8.90
                                      0.0029 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
               7.24
                      0.782
Correlation: Structure = independenceNumber of clusters: 174 Maximum cluster size: 1
> Cluster3 <- factor(NDA1$Cluster, levels=c(paste0("Class", c(3,1,2))))</pre>
> summary(geeglm(I(round(7*F6))~offset(I(round(7*B2))) + 1 + Cluster3, id=ID, data=NDA1))
Call:
geeglm(formula = I(round(7 * F6)) ~ offset(I(round(7 * B2))) +
   1 + Cluster3, data = NDA1, id = ID)
Coefficients:
              Estimate Std.err Wald Pr(>|W|)
(Intercept)
                2.309 0.400 33.3 7.7e-09 ***
Cluster3Class1
                -1.679 0.482 12.2 0.00049 ***
Cluster3Class2 -1.617 0.542 8.9 0.00286 **
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
               7.24
                     0.782
Correlation: Structure = independenceNumber of clusters: 174 Maximum cluster size: 1
```

```
scale_x_continuous(limits=c(0,22.5), breaks = c(0:19, 21, 22),
          minor_breaks = NULL, expand=expand_scale(add=c(.5,.1)),
           labels=c(paste0("-", 8:1), "0", paste0("+", 1:11), "F3", "F6")) +
    scale_y_continuous(breaks=0:7, limits=c(0,7),
                       sec.axis=sec_axis(~./7, name="Percent Days Abstinent per Week")) +
   xlab("Weekly Interval") + ylab("Number of Days Abstinent per Week") +
   geom_vline(xintercept = c(4,8), color="gray50", alpha=.4) +
   geom_rect(xmin=19.5, xmax=20.5, ymin=-Inf, ymax=Inf, fill="white") +
    geom_vline(xintercept = c(20), color="gray50", linetype="dotted") +
    theme(legend.position=c(.7,.2),
          legend.background = element_blank(), legend.key=element_rect()) +
    annotate("text", x=4.0, y=6.8, label="Pre-Treatment") +
    annotate("text", x=2, y=6.4, label="Distal") +
    annotate("text", x=6, y=6.4, label="Proximal") +
    annotate("text", x=14, y=6.6, label="Treatment") +
    annotate("text", x=21.5, y=6.6, label="Followup") +
    annotate("text", x=6, y=0, label="PS", size=3) +
    annotate("text", x=7, y=0, label="BL", size=3) +
     geom_ribbon(data=NDA2, aes(x=W, ymin=NDAlb, ymax=NDAub, group=Cluster, linetype=Cluster),
                color="grey60", fill="gray90", alpha=.2) +
    geom_point(data=NDA2, aes(x=W, y=NDAobs, group=Cluster, shape=Cluster), size=2) +
    geom_line(data=NDA2, aes(x=W, y=NDAfit, group=Cluster, linetype=Cluster)) +
   geom_point(data=NDA4, aes(x=W, y=Obs, group=Cluster, shape=Cluster),
               size=2, position=position_dodge(0.5)) +
    geom_linerange(data=NDA4, aes(x=W, ymin=NDA1b, ymax=NDAub, group=Cluster, linetype=Cluster),
                   position=position_dodge(0.5)) +
    scale_shape_discrete(
      labels=c("High Abstinence, Minimal Increase (n=64)",
               "Low Abstinence, Stable Increase (n=73)",
               "Non-abstinent, Accelerated Increase (n=68)"),
      guide=FALSE) +
   scale_linetype_discrete(
      labels=c("High Abstinence, Minimal Increase (n=64)",
               "Low Abstinence, Stable Increase (n=73)",
               "Non-abstinent, Accelerated Increase (n=68)"),
      guide=FALSE) +
    guides(linetype=guide_legend(title=NULL),
           shape=guide_legend(title=NULL))
 > pdf("NDA/NDAPlot8.pdf")
 > print(NDAPlot8)
 > dev.off()
null device
           1
Figure 17 on page 82 is a modification of Figure 12 on page 58.
```

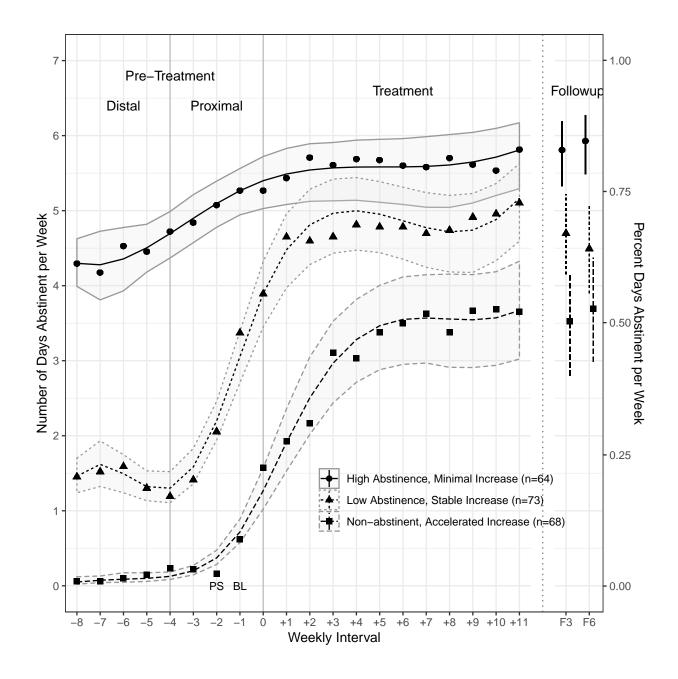


Figure 16: Observed and fitted means with 95% probability intervals for Distal-, Proximal-pretreatment, Treatment, and Follow-up phases for each class.

```
xlab("Weekly Interval") + ylab("Number of Days Abstinent per Week") +
   geom_vline(xintercept = c(4,8), color="gray50") +
   theme(legend.position=c(.7,.2), legend.background = element_blank(),
         legend.key=element_rect()) +
   annotate("text", x=4, y=6.8, label="Pre-Treatment") +
   annotate("text", x=2, y=6.4, label="Distal") +
   annotate("text", x=6, y=6.4, label="Proximal") +
   annotate("text", x=14, y=6.6, label="Treatment") +
   annotate("text", x=6, y=0, label="PS", size=3) +
   annotate("text", x=7, y=0, label="BL", size=3) +
   annotate("text", x=12.1, y=.2, label="0
                                            Combined N=205" ) +
   geom_line(data=NDA2, aes(x=W, y=Fit), linetype="solid", color="gray80" ) +
   geom_line(data=NDA2, aes(x=W, y=NDAfit, group=Cluster), color="gray80") +
   #scale_shape_manual(values=c(15,17,18)) +
  geom_point(data=NDA2, aes(x=W, y=NDAobs, group=Cluster, shape=Cluster), size=3) +
   geom_point(data=NDA2, aes(x=W, y=Obs), shape=1, size=3) +
   scale_shape_discrete(
     labels=c("High Abstinence, Minimal Increase (n=64)",
              "Low Abstinence, Stable Increase (n=73)",
              "Non-abstinent, Accelerated Increase (n=68)"),
     guide=FALSE) +
   scale_linetype_discrete(
     labels=c("High Abstinence, Minimal Increase (n=64)",
              "Low Abstinence, Stable Increase (n=73)",
              "Non-abstinent, Accelerated Increase (n=68)"),
     guide=FALSE) +
   guides(linetype=guide_legend(title=NULL), shape=guide_legend(title=NULL))
> pdf("NDA/NDAPlot10.pdf")
> print(NDAPlot10)
> dev.off()
null device
         1
```

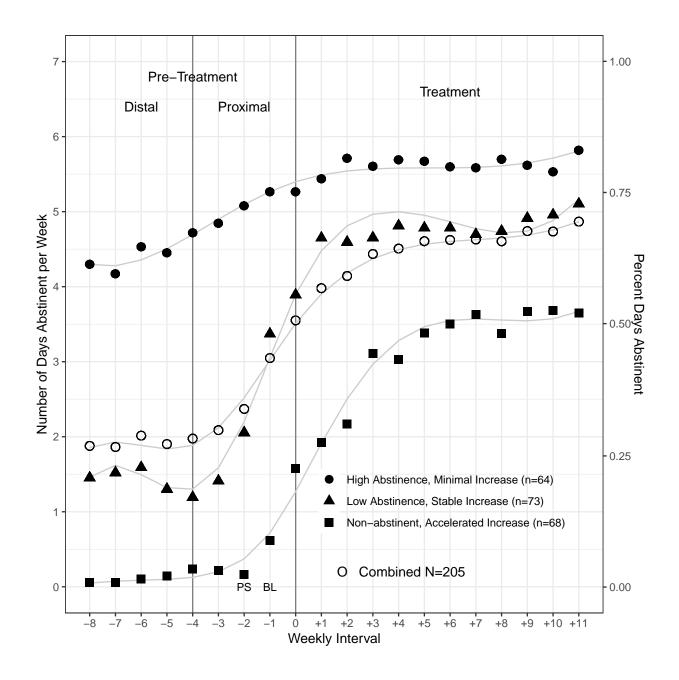


Figure 17: Observed (points) and fitted (lines) means for distal-, proximal-pretreatment, and treatment for each class. The gray points and line show the results for the entire sample.

References

- Baggerly, K. A. & Coombes, K. R. (2009). Deriving chemosensitivity from cell lines: forensic bioinformatics and reproducible research in high-throughput biology. *The Annals of Applied Statistics*, 3(4), 1309–1334.
- Barba, L. A. (2018). Terminologies for reproducible research. arXiv e-prints, arXiv:1802.03311.
- Diggle, P. J., Liang, K.-Y., & Zeger, S. L. (1994). Analysis of longitudinal data. Oxford, UK: Clarendon Press.
- Donoho, D. L. (2010). An invitation to reproducible computational research. *Biostatistics*, 11(3), 385–388.
- Fraley, C. & Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97(458), 611–631.
- Gandrud, C. (2016). *Reproducible research with R and RStudio* (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC.
- Gentleman, R. & Lang, D. T. (2007). Statistical analyses and reproducible research. Journal of Computational and Graphical Statistics, 16(1), 1–23.
- Grün, B. & Leisch, F. (2007). Fitting finite mixtures of generalized linear regressions in R. Computational Statistics & Data Analysis, 51(11), 5247–5252.
- Grün, B. & Leisch, F. (2007). FlexMix: An R package for finite mixture modelling. R News, 7(1), 8-13.
- Grün, B. & Leisch, F. (2008). FlexMix version 2: Finite mixtures with concomitant variables and varying and constant parameters. *Journal of Statistical Software*, 28(4), 1–35.
- Halekoh, U., Højsgaard, S., & Yan, J. (2006). The R package geepack for generalized estimating equations. Journal of Statistical Software, 15(2), 1–11.
- Hardin, J. W. & Hilbe, J. M. (2013). Generalized estimating equations (2nd ed.). Boca Raton, FL: CRC Press.
- Harrell, Jr, F. E. (2019). Hmisc: Harrell Miscellaneous. R package version 4.2-0.
- Hastie, T. J., Tibshirani, R. J., & Friedman, J. (2001). The elements of statistical learning: data mining, inference, and prediction. New York, NY: Springer.
- Hemelrijk, J. (1966). Underlining random variables. Statistica Neerlandica, 20(1), 1-7.
- Herndon, T., Ash, M., & Pollin, R. (2013). Does high public debt consistently stifle economic growth? a critique of Reinhart and Rogoff. Technical Report 322, Political Economy Research Institute, University of Massachusetts Amherst.
- Ihaka, R. (2010). R: lessons learned, directions for the future. In Proceedings of the 2010 Joint Statistical Meetings, Alexandria, VA. American Statistical Association, American Statistical Association.
- Ihaka, R. & Gentleman, R. (1996). R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314.
- Laird, N. (2004). Analysis of Longitudinal and Cluster-Correlated Data. Beachwood, OH: Institute of Mathematical Sciences and the American Statistical Association.
- Leisch, F. (2002). Sweave, part I: Mixing R and LATEX. R News, 2(3), 28–31.
- Leisch, F. (2004). Flexmix: A general framework for finite mixture models and latent class regression in r. Journal of Statistical Software, Articles, 11(8), 1–18.

Supplement to Pretreatment Trajectories

Leisch, F. & R-Core (2015). Sweave user manual.

- Little, R. J. A. & Rubin, D. B. (2002). *Statistical analysis with missing data* (2nd ed.). New York, NY: John Wiley & Sons.
- McLachlan, G. & Peel, D. (2000). Finite mixture models. New York, NY: Wiley.
- Mittelbach, F. & Goossens, M. (2004). The LATEX companion (2nd ed.). Boston, MA: Addison-Wesley.
- Peng, R. D. (2009). Reproducible research and Biostatistics. *Biostatistics*, 10(3), 405–408.
- R Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
- Robins, J. M., Rotnitzky, A., & Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. *Journal of the American Statistical Association*, 90(429), 106– 121.
- RStudio Team, (2015). Rstudio: integrated development environment for R. Boston, MA: RStudio, Inc.
- Schafer, J. L. (2006). Marginal modeling of intensive longitudinaldata by generalized estimating equations. In T. A. Walls & J. L. Schafer (Eds.), *Models for intensive longitudinal data*. New York: Oxford University Press.
- Schenk, C. (2019). MiKT_EX 2.9 Manual.
- Thieme, N. (2018). R generation 25. Significance, 15(4), 14–19.
- van Buuren, S. & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in r. Journal of Statistical Software, 45(3), 1–67.
- Venables, W. N., Smith, D. M., & The R Development Core Team (2019). An introduction to R. Notes on R: a programming environment for data analysis and graphics. (3.6.0 ed.).
- Wickham, H. (2017). tidyverse: Easily Install and Load the 'Tidyverse'. R package version 1.2.1.
- Wickham, H. & Bryan, J. (2018). readxl: Read Excel Files. R package version 1.1.0.
- Wickham, H. & Grolemund, G. (2017). R for data science: import, tidy, transform, visualize, and model data. Sebastopol, CA: O'Reilly Media.
- Yan, J. (2002). geepack: yet another package for generalized estimating equations. R-News, 2/3, 12-14.
- Yan, J. & Fine, J. (2004). Estimating equations for association structures. Statistics in Medicine, 23(6), 859–874.