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(a) First simulations (b) Second simulations

Figure S1: Histogram of INFO scores for the 1M variants used in the simulations.

Figure S2: Comparison between logistic regression and Cochran-Armitage additive test. Comparison
of estimated effect sizes (A) and Z-scores (B) if computed using a logistic regression with 10 principal
components as covariates, or with a simple Cochran-Armitage additive test. Phenotypes were simulated
using 100 causal variants only, allowing for large effects.
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Figure S3: Results of the 6 simulation scenarios with less well imputed variants. Scenarios are (100) 100
random causal variants; (10K) 10,000 random causal variants; (1M) all 1M variants are causal variants;
(2chr) 100 variants of chromosome 1 are causal and all variants of chromosome 2, with half of the
heritability for both chromosomes; (err) 10,000 random causal variants, but 10% of the GWAS effects are
reported with an opposite effect; (HLA) 7105 causal variants in a long-range LD region of chromosome
6. Mean and 95% CI of 104 non-parametric bootstrap replicates of the mean AUC of 10 simulations
for each scenario. The blue dotted line represents the maximum achievable AUC for these simulations
(87.5% for a prevalence of 10% and an heritability of 50% – see equation (3) of1). See corresponding
values in table S3.
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Figure S4: Results of the real data applications with small training size. Mean and 95% CI of 104 non-
parametric bootstrap replicates of the mean AUC of 6 random splits to define the training set. Training
SCT and choosing optimal hyper-parameters for C+T, LDpred and lassosum use 500 cases and 2000
controls only. See corresponding values in table S4.



(a) “100”: 100 random causal variants

(b) “10K”: 10,000 random causal variants



(c) “1M”: all 1M variants are causal variants

(d) “2chr”: Causal variants on chromosomes 1 & 2



(e) “err”: 10,000 random causal variants, but 10% of the GWAS effects are re-
ported with an opposite effect

(f) “HLA”: 7105 causal variants in a long-range LD region of chromosome 6

Figure S5: Effect sizes in simulations. New effect sizes resulting from SCT versus initial effect sizes of
GWAS in the first simulation of each simulation scenario. Only non-zero effects are represented. Red
line corresponds to the 1:1 line.



(a) “100”: 100 random causal variants

(b) “10K”: 10,000 random causal variants

(c) “1M”: all 1M variants are causal variants



(d) “2chr”: Causal variants on chromosomes 1 & 2

(e) “err”: 10,000 random causal variants, but 10% of the GWAS effects are reported with an opposite effect

(f) “HLA”: 7105 causal variants in a long-range LD region of chromosome 6

Figure S6: AUC results of all C+T scores in simulations with well imputed variants. AUC values (for
the training set) when predicting disease status for many parameters of C+T in the first simulation of
each simulation scenario when using well imputed variants. Facets are presenting different clumping
thresholds r2c from 0.01 to 0.95, window sizes wc from 52 to 50,000 kb, and imputation thresholds from
0.3 to 0.95. The x-axis corresponds to the remaining hyper-parameter, the p-value threshold pT ; here,
-log10(p-values) are represented using a logarithmic scale.



(a) “100”: 100 random causal variants

(b) “10K”: 10,000 random causal variants

(c) “1M”: all 1M variants are causal variants



(d) “2chr”: Causal variants on chromosomes 1 & 2

(e) “err”: 10,000 random causal variants, but 10% of the GWAS effects are reported with an opposite effect

(f) “HLA”: 7105 causal variants in a long-range LD region of chromosome 6

Figure S7: AUC results of all C+T scores in simulations with less well imputed variants. AUC values
(for the training set) when predicting disease status for many parameters of C+T in the first simulation of
each simulation scenario when using less well imputed variants. Facets are presenting different clumping
thresholds r2c from 0.01 to 0.95, window sizes wc from 52 to 50,000 kb, and imputation thresholds from
0.3 to 0.95. The x-axis corresponds to the remaining hyper-parameter, the p-value threshold pT ; here,
-log10(p-values) are represented using a logarithmic scale.



(a) Breast cancer

(b) Rheumatoid arthritis



(c) Type 1 diabetes

(d) Type 2 diabetes



(e) Prostate cancer

(f) Depression



(g) Coronary artery disease

(h) Asthma

Figure S8: Effect sizes in real data applications. New effect sizes resulting from SCT versus initial effect
sizes of GWAS in real data applications. Only non-zero effects are represented. Red line corresponds to
the 1:1 line.



(a) Breast cancer

(b) Rheumatoid arthritis

(c) Type 1 diabetes



(d) Type 2 diabetes

(e) Prostate cancer

(f) Depression



(g) Coronary artery disease
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Figure S9: AUC results of all C+T scores in real data applications. AUC values (for the training set)
when predicting disease status for many parameters of C+T in real data applications. Facets are pre-
senting different clumping thresholds r2c from 0.01 to 0.95, window sizes wc from 52 to 50,000 kb, and
imputation thresholds from 0.3 to 0.95. The x-axis corresponds to the remaining hyper-parameter, the
p-value threshold pT ; here, -log10(p-values) are represented using a logarithmic scale.



Figure S10: AUC results of all C+T scores for MDD when including MAF. AUC values (for the training
set) when predicting MDD status for many parameters of C+T in real data application. Facets are pre-
senting different MAF thresholds (top), and imputation thresholds from 0.3 to 0.95 (right). Parameter r2c
was fixed at 0.5 and wc at 1000 kb. The x-axis corresponds to the remaining hyper-parameter, the p-value
threshold pT ; here, -log10(p-values) are represented using a logarithmic scale.



Figure S11: Distribution of CAD predictions. Distribution of predicted probabilities of Coronary Artery
Disease (CAD) in the UK Biobank using SCT. Upper / lower panels corresponds to women / men. Left
panels correspond to a model using C+T scores and variable ‘sex’ when fitting penalized logistic regres-
sion in the stacking step. Right panels correspond to performing stacking of C+T scores without using
variable ‘sex’.



Scenario stdCT maxCT SCT lassosum LDpred
100 82.0 [81.6-82.5] 86.8 [86.4-87.2] 86.1 [85.7-86.5] 83.9 [83.5-84.4] 76.3 [75.7-77.0]
10K 72.4 [71.5-73.5] 75.6 [75.1-76.1] 76.4 [75.9-77.0] 75.0 [74.4-75.7] 71.2 [70.6-71.9]
1M 68.7 [68.1-69.2] 69.0 [68.3-69.6] 69.1 [68.6-69.6] 70.1 [69.5-70.6] 71.0 [70.3-71.6]
2chr 77.4 [76.9-78.0] 78.8 [78.3-79.4] 82.1 [81.6-82.7] 79.0 [78.3-79.8] 74.6 [73.6-75.8]
err 70.1 [69.3-70.9] 70.9 [70.5-71.5] 73.4 [72.8-74.1] 72.0 [71.3-72.9] 70.7 [70.1-71.4]
HLA 78.7 [78.0-79.5] 79.8 [79.2-80.3] 80.7 [80.2-81.3] 79.4 [78.7-80.2] 76.9 [76.3-77.4]

Table S1: Results of the 6 simulation scenarios with well imputed variants. Scenarios are (100) 100
random causal variants; (10K) 10,000 random causal variants; (1M) all 1M variants are causal variants;
(2chr) 100 variants of chromosome 1 are causal and all variants of chromosome 2, with half of the
heritability for both chromosomes; (err) 10,000 random causal variants, but 10% of the GWAS effects are
reported with an opposite effect; (HLA) 7105 causal variants in a long-range LD region of chromosome
6. Mean and 95% CI of 104 non-parametric bootstrap replicates of the mean AUC of 10 simulations for
each scenario. These results are plotted in figure 1.

Trait stdCT maxCT SCT lassosum
Breast cancer (BRCA) 62.1 [60.5-63.6] 63.3 [61.7-64.8] 65.9 [64.4-67.4] 57.9 [56.3-59.5]

6256 2572 670,050 322,003
Rheumatoid arthritis (RA) 59.8 [57.7-61.8] 60.3 [58.3-62.4] 61.3 [59.1-63.4] 59.5 [57.5-61.7]

12,220 88,556 317,456 672,922
Type 1 diabetes (T1D) 75.4 [72.4-78.4] 76.9 [73.9-79.7] 78.7 [75.7-81.7] 75.3 [72.2-78.3]

1112 267 135,991 204,785
Type 2 diabetes (T2D) 59.1 [58.1-60.1] 60.7 [59.8-61.7] 63.8 [62.9-64.7] 63.2 [62.3-64.1]

177 33,235 548,343 256,353
Prostate cancer (PRCA) 68.0 [66.5-69.5] 69.3 [67.8-70.8] 71.7 [70.2-73.1] 58.7 [57.1-60.3]

1035 356 696,575 121,660
Depression (MDD) 55.7 [54.4-56.9] 59.2 [58.0-60.4] 59.5 [58.2-60.7] 52.0 [50.8-53.3]

165,584 222,912 524,099 625,732
Coronary artery disease (CAD) 59.9 [58.6-61.2] 61.1 [59.9-62.4] 63.9 [62.7-65.1] 63.0 [61.8-64.2]

1182 87,577 315,165 290,204
Asthma 56.8 [56.2-57.5] 57.3 [56.7-58.0] 60.7 [60.0-61.3] 58.7 [58.1-59.4]

3034 360 446,120 75,965

Table S2: Results of the real data applications with large training size. AUC values on the test set
of UKBB (mean [95% CI] from 104 bootstrap samples) and the number of variants used in the final
model. Training SCT and choosing optimal hyper-parameters for C+T and lassosum use 63%-90% of
the individuals reported in table 1. These results are plotted in figure 2.



Scenario stdCT maxCT SCT lassosum
100 77.4 [76.0-78.8] 83.9 [83.4-84.4] 83.1 [82.6-83.6] 80.1 [79.5-80.8]
10K 69.4 [68.4-70.5] 73.0 [72.5-73.4] 72.9 [72.5-73.3] 71.2 [70.6-71.7]
1M 64.0 [63.6-64.4] 64.0 [63.6-64.4] 62.7 [62.3-63.0] 64.1 [63.3-64.8]
2chr 70.0 [68.8-71.2] 74.4 [73.6-75.2] 78.5 [77.9-79.1] 73.2 [72.5-73.8]
err 67.0 [66.0-68.1] 68.6 [67.7-69.5] 69.5 [68.9-70.1] 65.6 [64.9-66.3]
HLA 74.8 [72.9-76.3] 75.3 [73.5-76.9] 76.4 [74.5-78.0] 75.8 [74.2-77.2]

Table S3: Results of the 6 simulation scenarios with less well imputed variants. AUC values on the test
set for simulations with less well imputed variants (mean [95% CI] from 104 bootstrap samples). These
results are plotted in figure S3.

Trait stdCT maxCT SCT lassosum LDpred
Breast cancer (BRCA) 61.9 [61.8-62.0] 62.9 [62.6-63.2] 62.7 [62.4-63.1] 57.8 [57.1-58.5] 62.0 [62.0-62.1]
Rheumatoid arthritis (RA) 59.1 [59.0-59.2] 59.5 [59.3-59.7] 59.6 [59.3-59.8] 58.8 [58.2-59.3] 59.8 [59.7-59.8]
Type 1 diabetes (T1D) 75.4 [74.6-76.2] 76.0 [75.1-77.0] 78.4 [77.7-79.1] 75.5 [74.7-76.2] 75.5 [74.7-76.3]
Type 2 diabetes (T2D) 59.6 [59.5-59.7] 60.4 [60.2-60.7] 60.9 [60.6-61.1] 63.2 [62.9-63.5] 61.0 [60.6-61.3]
Prostate cancer (PRCA) 67.0 [66.8-67.2] 68.5 [68.3-68.7] 69.0 [68.5-69.4] 57.1 [56.3-58.1] 65.6 [65.5-65.7]
Depression (MDD) 54.1 [53.7-54.4] 58.7 [58.3-59.0] 54.7 [54.4-55.0] 52.9 [52.0-53.8] 60.0 [60.0-60.1]
Coronary artery disease (CAD) 59.7 [59.5-59.9] 61.1 [60.6-61.5] 60.8 [60.6-61.1] 62.8 [62.6-62.9] 61.0 [60.9-61.1]
Asthma 56.3 [56.2-56.5] 56.9 [56.8-56.9] 56.3 [55.6-56.9] 57.7 [57.3-58.0] 56.5 [56.3-56.7]

Table S4: Results of the real data applications with small training size. Mean and 95% CI of 104 non-
parametric bootstrap replicates of the mean AUC of 6 random splits to define the training set. Training
SCT and choosing optimal hyper-parameters for C+T, LDpred and lassosum use 500 cases and 2000
controls only. These results are plotted in figure S4.



Caution on using covariates

For example, because prevalence of CAD is much higher in men than in women in the UKBB (8-9% vs
2%), adding sex in the model amount to fitting two different intercepts, centering distributions of fitted
probabilities around disease prevalence (Figure S11). This increases the AUC from 63.9% to 74.4% but
results in a model that would classify all women as healthy. A possible solution would be to report AUC
figures for each gender separately, or even to fit a model for each gender separately (in the stacking step).
Fitting models separately would enable the use of sex chromosomes without introducing bias. As for
ancestry concerns, fitting different models for different ancestries might be a way to get more calibrated
results and to account for differences in effect sizes and LD. However, here for CAD, fitting two separate
models for each gender results in a slight loss of predictive performance, while using variable ‘sex’ does
not change results when they are reported for each gender separately, with an AUC of 64.9% [63.5-66.3]
for men and 62.5% [59.8-65.2] for women. Thus, adding ‘sex’ as a covariate in the model may provide a
model with similar discrimination and with better calibration of probabilities (if prevalence in the data is
representative of prevalence in the population). Yet, we would like to emphasize again that reporting one
AUC figure for all individuals would be misleading in the case of using variable ‘sex’ in the model.
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