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Lung metastasis is a common and deadly occurrence in many
types of solid tumors. Chemokine receptor CXCR4 and tran-
scription factor signal transducer and activator of transcrip-
tion 3 (STAT3) are among potential therapeutic targets in
lung metastatic cancer. Both CXCR4 and STAT3 play impor-
tant roles in the proliferation, angiogenesis, and metastasis of
cancer cells. Here, we report on the development of a pulmo-
nary delivery (p.d.) system based on perfluorocarbon (PFC)
nanoemulsions for combined delivery of a partially fluori-
nated polymeric CXCR4 antagonist (FM) and anti-STAT3
small interfering RNA (siRNA). We have prepared FM-stabi-
lized PFC (FM@PFC) as a delivery system of therapeutic
siRNA adsorbed on the surface of the emulsion. These
FM@PFC/siRNA nanoemulsions inhibited both CXCR4 and
STAT3, as demonstrated by effective anti-invasive ability
in vitro and related antimetastatic activity in vivo. The com-
bined nanoemulsions provided a comprehensive anticancer
effect in the model of established lung metastasis of breast car-
cinoma, which was dependent on induction of cancer cell
apoptosis, anti-angiogenic effect, anti-invasive activity, and
overcoming of the immunosuppressive tumor microenviron-
ment. Direct comparison with intravenous (i.v.) injection
showed superior activity of pulmonary administration as indi-
cated by significantly increased animal survival. Overall, this
work established the suitability of the PFC nanoemulsions
for p.d. of combination anticancer treatments and as a prom-
ising method to treat lung metastasis.
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INTRODUCTION
The vast majority of deaths caused by solid cancers is the result of
metastatic spread of the primary disease.1 Lung metastasis is a
common occurrence and lethal determinant in many cancers.
The most common primary tumors in adults that metastasize to
the lungs include breast cancer, renal cell carcinoma, colon can-
cer, and head and neck cancer. In the pediatric population, the
most common primary tumors that develop lung metastases are
osteosarcoma, rhabdomyosarcoma, and Ewing sarcoma.2–5

Despite the efforts in the development of better therapies, prog-
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ress in the treatment of advanced pulmonary metastatic disease
remains limited.

Direct pulmonary delivery (p.d.) emerged as an attractive approach to
treat lung metastases due to the direct access to the disease site and
minimization of the systemic exposure in patients subjected to prior
or concurrent systemic chemotherapy.6,7 Multiple types of delivery
vectors showed promise in the treatment of both lung metastasis
and primary lung cancer. For example, codelivery of a chemotherapy
doxorubicin and anti-Bcl-2 small interfering RNA (siRNA) to the
lungs provided a local treatment strategy for lung cancer.8 In lung
metastatic melanoma and Lewis lung carcinoma, intratracheal
administration of therapeutic siRNA by cationic lipid particles
showed promising activity.9 p.d. provides enhanced retention of the
active ingredients in the lungs and decreased absorption into the sys-
temic circulation, making it suitable for the treatment of advanced
lung metastasis.

The process of metastasis is complex and involves various factors,
including multiple chemokines and chemokine receptors that are
responsible for cancer cell migration and invasion. CXCR4 is a prom-
inent chemokine receptor that, together with its ligand CXCL12, plays
a crucial role in breast cancer metastasis to the lung.10,11 CXCR4 acti-
vation leads to the initiation of multiple signaling pathways that regu-
late cell adhesion, invasion, angiogenesis, and proliferation.12,13

Recent evidence also shows that CXCR4 inhibition decreases tumor
fibrosis, increases T cell infiltration, and helps to overcome immuno-
suppression in metastatic breast cancer models, suggesting the
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Figure 1. Preparation and Mechanism of Action of

the FM@PFC/siSTAT3 Nanoemulsions

(A) Michael-addition copolymerization of AMD3100

with HMBA resulted in the formation of M, which

was subsequently fluorinated with HFBA to obtain FM.

PFC nanoemulsion was stabilized with FM through

fluorous interactions before loading siSTAT3 by electro-

static adsorption. (B) Treatment with FM@PFC/siSTAT3

inhibits CXCR4 and silences expression of STAT3 to

inhibit tumor metastasis by promoting apoptosis,

decreasing MMP9/VEGF expression, blocking tumor ne-

ovascularization, and activating antitumor immunity in the

tumor microenvironment.
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CXCR4 axis as a promising target for combined immunotherapy
strategies.14,15

Signal transducer and activator of transcription 3 (STAT3) is a tran-
scription factor that provides important support for the proliferation
of cancer cells andmetastasis. Activated STAT3 regulates the function
of many non-transformed cells that affect metastatic sites and consti-
tute the tumor microenvironment. Specifically, STAT3 is involved in
the infiltration and activation of immunosuppressive cells, such as
T-regulatory cells (Tregs), T helper 17 cells, and myeloid-derived
suppressor cells (MDSCs).16–18 STAT3 induces the expression of
various cytokines, growth factors, and pro-angiogenic factors,
whose receptors then in turn activate STAT3 in a feed-forward
loop between cancer cells and immune cells in the tumor microenvi-
ronment.19–21 Thus, activation of STAT3 contributes both to the
tumor-promoting inflammation and the suppression of anti-tumor
immunity. Persistent activation of STAT3 is associated with malig-
nant properties,22,23 which makes it an attractive target for cancer
therapy. Combining CXCR4 and STAT3 inhibition is a promising
approach for antimetastatic and tumor immune microenviron-
ment-modulating therapies.

We have previously reported the development of fluorinated polyca-
tions with enhanced cell association and gene transfection effi-
cacy.24,25 In the present study, we aimed to investigate a fluorinated
polymer with CXCR4 antagonist properties, named FM, as a vector
for pulmonary siRNA delivery in advanced lung metastatic disease.
To that end, we have prepared perfluorocarbon (PFC) nanoemulsions
stabilized with FM as a functional vector for p.d. of therapeutic
STAT3-silencing siRNA (siSTAT3) (Figure 1A). CXCR4 and
STAT3 are closely involved in the formation of lung metastasis,
and we have previously reported that p.d. of CXCR4 and STAT3 com-
bined inhibitors achieved good anti-lung metastasis efficacy in osteo-
sarcoma.26 Here, we further expanded the use of this treatment strat-
Molecula
egy to pulmonary metastases of different origin
(breast cancer) and conducted direct head-to-
head comparison of p.d. with intravenous (i.v.)
treatment using the same therapeutic targets
(Figure 1B). This study clearly demonstrates
the benefits of local p.d. treatment when
compared with the i.v. administration. The FM-stabilized PFC
(FM@PFC) nanoemulsion opens up the opportunity and establishes
a therapeutic pulmonary siRNA delivery nanoplatform for the treat-
ment of advanced lung metastasis.

RESULTS
Preparation and Characterization of Nanoemulsions

We have previously developed CXCR4 antagonistic polycations for
delivery of therapeutic nucleic acids.24,27,28 Here, we have used poly-
cations based on commercial CXCR4 antagonist AMD3100 (PAMD),
which were fluorinated by reaction with heptafluorobutyric anhy-
dride as before to obtain F-PAMD.24 The resultant polymer, which
will for simplicity be named FM in this study, had molecular weight
13.5 kDa and contained 5 weight % fluorine (Figure S1). We used FM
as a stabilizer at the surface and perfluorodecalin as an emulsion core
following a similar approach described in our recent studies.26 The
approach utilizes the high-affinity fluorous interactions between
PFC and the heptafluorobutyryl moieties in FM for coating and sta-
bilization of the FM@PFC. The hydrodynamic diameter of the pre-
pared FM@PFC was �200 nm with a polydispersity index of 0.109
(Figure 2A). The zeta potential of the FM@PFC was highly positive
53 mV (Figure 2C), and the emulsions presented as regular spherical
structures in the transmission electron microscopy (TEM)
(Figure 2B).

The highly positive surface charge of the FM@PFC was then used to
bind siRNA to form nanoemulsion FM@PFC/siRNA as validated by a
gel retardation assay (Figure 2E). In this study, we compared the
nanoemulsions with polycation/siRNA polyplexes prepared with
either fluorinated F-PAMD (FM) or the non-fluorinated parent
PAMD (M). The FM@PFC showed similar siRNA binding ability
as M and FM when considering only the content of the M. Binding
of the siRNA to the emulsion (M/siRNA w/w = 2) decreased zeta po-
tential to�28 mV and slightly decreased the hydrodynamic diameter
r Therapy Vol. 27 No 12 December 2019 2101

http://www.moleculartherapy.org


Figure 2. Physicochemical Characterization of

FM@PFC/siRNA Nanoemulsions

(A) Hydrodynamic size distribution of FM@PFC. (B) TEM of

FM@PFC. (C) Zeta potential of the formulations (polymer/

siRNA w/w ratio 2). (D) Cytotoxicity of PEI, M, FM, and

FM@PFC in L929 cells. (E) Agarose gel retardation assay at

varying M/siRNA w/w ratios. (F) Cell association of poly-

plexes (M/siRNA and FM/siRNA) and nanoemulsions

(FM@PFC/siRNA) analyzed by flow cytometry in 4T1.Luc

cells after 4 h incubation with the formulations prepared

with FAM-siRNA at w/w ratio 2 (siRNA 100 nM). Data are

presented as the mean ± SD with unpaired t test, n R 3,

**p < 0.01, ***p < 0.001. (G) Extent of endosomal escape at

1–6 h.
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to �190 nm with polydispersity index of 0.117 (Figure S2). We then
evaluated the initial cytotoxicity of the polymers in mouse fibroblasts
L929 (Figure 2D).We found that fluorination alone had no significant
effect on cytotoxicity and both FM and FM@PFC showed lower cyto-
toxicity when compared with a benchmark 25 kDa PEI.

Intracellular Trafficking and Gene Silencing

We evaluated cell association and intracellular trafficking of the nano-
emulsions formulated with fluorescently labeled siRNA in 4T1 breast
cancer cells stably expressing luciferase (4T1.Luc). The cell associa-
tion of the FM@PFC/siRNA nanoemulsion was higher than the
FM/siRNA polyplexes, which exceeded the cell association of non-
fluorinated M/siRNA polyplexes (Figure 2F). Endosomal escape is a
notorious bottleneck for intracellular delivery of polyplexes.29

Confocal microscopy analysis found that 1 h after incubation, the ma-
jority of the endocytosed siRNA (green) was localized in Lyso-
Tracker-positive vesicles (Figure 2G). However, endosomal escape
of the siRNA was evident as early as 3 h after incubation and further
increased at 6 h.

We next validated the ability of the nanoemulsions to silence the Luc
reporter gene expression in 4T1.Luc cells. FM/siLuc polyplexes
showed better silencing ability than M/siLuc polyplexes, thus con-
2102 Molecular Therapy Vol. 27 No 12 December 2019
firming beneficial effects of fluorination on
increasing polyplex transfection. With incorpo-
ration of FM into emulsions, the FM@PFC/siLuc
showed the best Luc gene silencing ability of all
the tested samples (Figure 3A). Taken together,
FM@PFC/siRNA nanoemulsions can enter the
cancer cells and facilitate efficient endosomal
escape.

Anticancer and Anti-invasive Activity of

Nanoemulsions

In Figure 3B, we found that blocking CXCR4
with the polyplexes inhibited the colony forma-
tion of 4T1.Luc cells and the number of colonies
was the lowest after the FM@PFC/siSTAT3
treatment. As shown in Figure 3C, FM@PFC/si-
STAT3 inhibited 4T1.Luc cell growth more effectively than both
M/siSTAT3 and FM/siSTAT3. The detection of apoptotic cells using
Annexin V and propidium iodide (PI) staining showed significantly
more apoptosis following treatment with FM/siSTAT3 than with
M/siSTAT3. Importantly, less apoptosis was seen in the FM/si-
STAT3-treated cells than in cells treated with FM@PFC/siSTAT3
(Figure 3D), most likely because of better cell association and siRNA
transfection efficiency.

We evaluated anti-invasive activity of FM@PFC/siSTAT3 in transwell
cell migration and invasion assays. Both CXCR4 and STAT3 play
important roles in promoting cancer cell migration and invasion,
which are needed for metastatic spread. We used CXCL12 as a che-
moattractant with CXCR4-overexpressing osteosarcoma U2OS cells.
As shown in Figure 3E, at 2.5 mg/mL, all tested samples showed effec-
tive and comparable inhibition of cell invasion as the positive control
AMD3100 (0.15 mg/mL). To investigate how the combination of
CXCR4 antagonism and STAT3 gene silencing affected the cell inva-
sion, we used fetal bovine serum (FBS) as a broad chemoattractant. As
expected, FM@PFC/scrambled siRNA (siScr) showed limited ability
to inhibit cell migration due to its CXCR4 specificity. In contrast,
combined treatment with FM@PFC/siSTAT3 decreased cell invasion
by 79%, which was significantly higher than other tested formulations



Figure 3. Anti-cancer Efficacy of FM@PFC/siSTAT3 Nanoemulsions In Vitro

(A) Luciferase silencing in 4T1.Luc cells using formulations at w/w 2 (siLuc 100 nM). Cells were treated with the formulations prepared with control siScr or siLuc. Data

presented as the mean ± SD with unpaired t test, nR 3, *p < 0.05, ***p < 0.001 versus M/siLuc. (B) Colony formation after treatment. (C) Cell growth inhibition of 4T1.Luc

cells. Statistical comparisons by two-way ANOVA with Tukey’s multiple comparisons test. (D) Induction of apoptosis by the formulations with siSTAT3 in 4T1.Luc cells.

Annexin V-positive cells in quadrants 2 and 3 of the flow cytometry plot were considered apoptotic. Inhibition of cell invasion using (E) human U2OS osteosarcoma cells and

(F) mouse 4T1.Luc. The cells were treated with M, FM, FM@PFC or the corresponding siSTAT3 formulations, and AMD3100 (300 nM) and allowed to invade through a layer of

Matrigel upon stimulation with SDF-1 (U2OS) or FBS (4T1.Luc). Data are presented as the mean ± SD with unpaired t test, nR 3, *p < 0.05, **p < 0.01, ***p < 0.001, ****p <

0.0001.
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with siSTAT3: FM/siSTAT3 (�60%) and M/siSTAT3 (�36%)
(Figure 3F).

Biodistribution

Biodistribution was evaluated by whole-body fluorescence imaging
using polyplexes prepared with Cy5-labeled siRNA (Figure 4A) and
administered either by p.d. using intratracheal instillation or by i.v.
injection. At 1 h after administration, both the FM/siRNA (Figure 4C)
and FM@PFC/siRNA (Figures 4D and 4E) in the p.d. group were
mainly concentrated in the lungs, but the FM/siRNA polyplexes in
the i.v. injection group showed very low lung accumulation. Most
of the siRNA in the i.v. group was rapidly cleared by the kidneys, sug-
gesting poor plasma stability of the FM/siRNA polyplexes and their
dissociation at the glomerular basement membrane. At 12 and
24 h, the p.d. group retained a good amount of siRNA in the lung,
but the i.v. group showed a negligible amount of pulmonary distribu-
tion, with most of the fluorescence found in the liver and kidneys. The
higher concentration of the siRNA and the more favorable distribu-
tion to the lung metastases (Figure 4B) was expected to lead to
improved efficacy in the subsequent studies.
Effect of the Administration Route on Antimetastatic Activity

Antimetastatic activity of the FM@PFC/siSTAT3 nanoemulsions
was investigated in an experimental lung metastasis model of breast
cancer. The lung metastases were established by i.v. injection of
4T1.Luc cells in BALB/c mice. Animals with detectable lung metas-
tases were treated either by p.d. via intratracheal instillation or by
tail vein injection. The treatments were given on days 7, 9, 11,
and 13, and the animals were sacrificed on day 15 to compare the
efficacy of the two methods of administration. The anticancer activ-
ity of formulations given by p.d. was significantly better than with
the i.v. treatment based on the measurement of lung tumor burden
using total bioluminescence signal of the 4T1.Luc cells (Figure 5A).
Moreover, FM@PFC/siSTAT3 was more efficacious than FM/si-
STAT3, likely because of increased transfection efficacy. The differ-
ences in the number of detected surface lung metastases confirmed
superior antineoplastic effect of p.d. of FM@PFC/siSTAT3 (Fig-
ure 5B). H&E staining of the lungs showed the presence of metas-
tases and validated the best antimetastatic effect of the FM@PFC/si-
STAT3 p.d. treatment group (Figure 5C). The number and size of
metastases in the FM/siSTAT3 p.d. group were significantly lower
Molecular Therapy Vol. 27 No 12 December 2019 2103
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Figure 4. Biodistribution of Cy5-siRNA Polyplexes and Nanoemulsions In Vivo

(A) In vivo fluorescence images at different times after p.d. and i.v. injection of the polyplexes (1.2 mg/kg Cy5-siRNA, w/w 2). (B) Relative lung distribution of siRNA-Cy5 based

on ex vivo fluorescence intensity after p.d. or i.v. injection of the polyplexes (mean ± SD, unpaired t test, n = 3), ****p < 0.0001. (C) Ex vivo siRNA-Cy5 fluorescence images of

major organs after p.d. or i.v. administration. From left to right: heart, liver, spleen, lung, kidneys, and intestines. (D) In vivo fluorescence images after p.d. of the Cy5-siRNA

nanoemulsions (1.2 mg/kg Cy5-siRNA, w/w 2). (E) Ex vivo siRNA-Cy5 fluorescence images of major organs after p.d. of the nanoemulsions. From top to bottom: heart, liver,

spleen, lung, kidney, and intestines.
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than in the FM/siSTAT3 i.v. injection treated group demonstrating
the superiority of p.d.

Survival is the ultimate endpoint used to evaluate anticancer effi-
cacy. We thus treated the mice on days 7, 9, 11, 13, 15, and 17
2104 Molecular Therapy Vol. 27 No 12 December 2019
and monitored survival for up to 50 days (Figure 5D). As expected,
the FM@PFC/siSTAT3 p.d. treatment showed the best activity with
a median survival of 49 days (versus 22 days for untreated animals).
Half of the mice survived until the end of the experiment on day 50.
The p.d. of the FM/siSTAT3 polyplexes also prolonged the survival



Figure 5. Antimetastasis Efficacy of FM@PFC/siRNA

Nanoemulsions In Vivo

(A) Bioluminescence images of whole lungs with 4T1.Luc

tumors on day 15. The formulations were administered by

p.d. or i.v. injection on days 7, 9, 11, and 13. (B) Numbers of

surface lung metastases after different treatments on day

15. (C) H&E staining of the lung metastasis after different

treatments (scale bar equals 1 mm). (D) Effect of treatment

on animal survival (n = 6). Log-rank test: FM@PFC/siSTAT3

p.d. versus FM@PFC/siScr p.d. (p = 0.0005); FM/siSTAT3

p.d. versus FM/siSTAT3 i.v. (p = 0.0016). (Median

survival: untreated 22 days; FM@PFC/siScr p.d., 27 days;

FM/siSTAT3 i.v., 35.5 days; FM/siSTAT3 p.d., 43 days;

FM@PFC/siSTAT3 p.d., 49 days).
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significantly more than the comparable i.v. treatment as indicated
by the median survival of 43 days versus 35.5 days for the i.v. injec-
tion (log-rank test: p = 0.0016). The lower activity of the FM/si-
STAT3 polyplexes versus FM@PFC/siSTAT3 nanoemulsions points
to the benefits of the nanoemulsions in p.d. with enhanced tumor
cell association and gene transfection efficacy. Even a formulation
with CXCR4 inhibition only (FM@PFC/siScr p.d.) prolonged the
median survival from the 22 days (untreated) to 27 days (log-
rank test: p = 0.0126), indicating that blocking CXCR4 is helpful
for prolonging the survival in the established lung metastasis model
of breast cancer.

Mechanism of Antimetastatic Activity of FM@PFC/siSTAT3

The above results showed that FM@PFC/siSTAT3 exerts its antime-
tastatic effect in a relatively broad manner. In order to comprehend
the mechanism of action, we studied the modulation of key signaling
pathways in 4T1.Luc cells. Treatment with FM@PFC/siSTAT3
showed a greater inhibition of STAT3 expression and subsequent
decrease in the content of the activated phosphorylated STAT3
(p-STAT3) than FM/siSTAT3 and M/siSTAT3 (Figure 6A). Pro-
apoptotic effects of the treatments were assessed by measuring the
expression of Bcl-2 and pERK. FM@PFC/siSTAT3 downregulated
the expression of both Bcl-2 and pErk significantly more than FM/si-
STAT3 and M/siSTAT3. FM@PFC/siSTAT3 upregulated E-cadherin
expression to an extent that was larger than the control FM/siSTAT3
and M/siSTAT3.
Molecula
To explore the antimetastasis mechanism of the
FM@PFC/siSTAT3 nanoemulsions in vivo, the tu-
mor microenvironment was analyzed with immu-
nohistochemistry and immunofluorescence. We
validated that the nanoemulsions silence the
expression of STAT3 and subsequently decrease
the levels of the activated form of STAT3
(p-STAT3). The FM@PFC/siSTAT3 given by
p.d. showed the most effective STAT3 gene
silencing of all the tested treatments (Figure 6B).
The activated form of STAT3 (p-STAT3) is
important for promoting anti-apoptotic activity
in tumor cells through B cell lymphoma-extra
large (BCL-XL) and tumor angiogenesis through the induction of
pro-angiogenic factors such as vascular endothelial growth factor
(VEGF), hepatocyte growth factor (HGF), fibroblast growth factor
(bFGF), matrix metalloproteinase 2 (MMP2), and MMP9.19,21,30,31

We have shown above that the nanoemulsions downregulate the
expression of Bcl-2 and thus we further explored their effect on the
expression ofMMP9 andVEGF in vivo. FM@PFC/siSTAT3 p.d. group
showed a better effect than the FM/siSTAT3 i.v. and FM/siSTAT3 p.d.
groups (Figure 6C). VEGF expression decreased more in the
FM@PFC/siSTAT3 p.d. group than in the FM/siSTAT3 i.v. group
and the FM/siSTAT3 p.d. group. Consistent with the MMP9 and
VEGF data, the CD31 expression in FM@PFC/siSTAT3 group was
the lowest, proving that FM@PFC/siSTAT3 can inhibit tumor neovas-
cularization. The Ki67 staining showed that the FM/siSTAT3 p.d.
treatment inhibited the metastasis growth significantly better than
the FM/siSTAT3 i.v. treatment and the FM@PFC/siSTAT3 treatment
showed the best growth inhibition (Figure 6D).

Increased STAT3 activity in tumors influences the expression of im-
mune-stimulating factors and contributes to immune suppression
and tumor evasion.32 To test the hypothesis that our treatment con-
tributes to overcoming tumor immunosuppression, we measured the
infiltration of CD8+ T cells in the lung metastasis. As shown in Fig-
ure 6E, there was more infiltration of CD8+ T cells in FM@PFC/si-
STAT3 p.d.-treated mice than in mice treated with FM/siSTAT3 i.v.
and FM/siSTAT3 p.d. Interestingly, we found that silencing STAT3
r Therapy Vol. 27 No 12 December 2019 2105
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Figure 6. Mechanism of Action of FM@PFC/siSTAT3 Nanoemulsions

(A) Western blot analysis for Bcl-2, pERK, E-cadherin, p-STAT3, and STAT3 in 4T1.Luc cells treated with different formulations prepared at polymer/siRNA w/w ratio 2

(siSTAT3 100 nM). (B) Analysis of immunohistochemistry staining of p-STAT3 in lung metastasis. (C) Relative expression of VEGF, MMP9, and CD31 in lung metastasis. (D)

Ki67 positive% in the lung metastasis. (E) CD8+ T cells infiltration in lung metastasis. Relative (F) PD-L1, (G) IFN-g, (H) IL-12, and (I) Foxp3 expression in lung metastasis.

Semiquantitation of the staining was made with ImagePro Plus. Data are presented as the mean ± SD, n = 3, unpaired t test, *p < 0.05, **p < 0.01, ***p < 0.001.
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expression can decrease the programmed death-ligand 1 (PD-L1)
expression in the lung metastases and blocking CXCR4 can increase
CD8 T cell infiltration, which should enhance the anti-tumor im-
mune effect (Figure 6F). Correspondingly, significantly elevated levels
of interferon-g (IFN-g) and interleukin-12 (IL-12) were observed in
the FM@PFC/siSTAT3 p.d. group than in the FM/siSTAT3 i.v. and
FM/siSTAT3 p.d. groups (Figures 6G and 6H), indicating that p.d. ac-
tivates the antitumor immune response more efficiently than compa-
rable i.v. delivery. Expression of Foxp3, a marker for detection of
2106 Molecular Therapy Vol. 27 No 12 December 2019
Tregs, contributes to acquisition of immune-suppressive tumor prop-
erties.33,34 As shown in Figure 6I, the expression of Foxp3 decreased
the most with the treatment of FM@PFC/siSTAT3 p.d. confirming
the favorable effect of our treatment in overcoming the tumor immu-
nosuppressive environment.

DISCUSSION
Despite significant advances in diagnosis and treatment, lung metas-
tasis persists as a barrier to successful therapy and remains as a
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main cause of cancer-related deaths. During the formation and
growth of lung metastasis, the tumor cells closely interact with
the surrounding microenvironment. The tumor cells control the
microenvironment by releasing extracellular signals that contribute
to angiogenesis induction of immune tolerance. MMP9 induction
by VEGF receptor is involved in lung-specific metastasis and poten-
tiates metastasis formation.35,36 In this study, we showed that the
FM@PFC/siSTAT3 inhibited tumor cell growth, reduced colony for-
mation, and promoted apoptosis through combined inhibition of
CXCR4 and STAT3. We found that FM@PFC/siSTAT3 downregu-
lated the Bcl-2, pERK, and Ki67 expression to inhibit the metastasis
growth and reduced the VEGF and MMP9 expression to inhibit tu-
mor angiogenesis

In the process of tumorigenesis, STAT3 activation is a survival mech-
anism of many different types of cancer cells, which makes STAT3 in-
hibition a promising strategy for cancer treatment.18,37,38 STAT3 acti-
vation is also an immunoregulatory mechanism, which changes the
balance of cytokines from anti-tumor IL-12 (activation of natural
killer cells and effector T cells) to oncogenic IL-23 (which activates
Tregs) in tumorigenesis. However, only relieving the immunosup-
pressive state in the microenvironment of tumor immunity may
not kill tumor cells effectively. Potent anti-tumor immune response
requires sufficient amount of effector T cells. We demonstrated that
the FM@PFC/siSTAT3 treatment increased the IL-12 expression
and decreased the Foxp3 (a specific marker of Tregs) expression in
the tumor metastasis to transform the immunosuppression state
into an immune activation state in the metastasis microenvironment.
Previous reports have shown that STAT3 drives PD-L1 expres-
sion.39,40 We found that STAT3 inhibition in the breast cancer lung
metastasis downregulated the PD-L1 expression, which further
relieved the immunosuppression and activated effector T cells. There
have been many successful cases of anti-PD-L1 immunotherapy in
the treatment of preclinical models and cancer patients. However,
its efficacy in metastatic triple-negative breast cancer is limited. Insuf-
ficient T cell infiltration has compromised the anti-tumor immunity
brought by PD-L1 inhibition.41,42 Notably, our data suggested that
CXCR4 antagonism by the FM@PFC increased the CD8 T cells infil-
tration in the lung metastasis, which enhanced the STAT3- and PD-
L1-related effects.

Treatment of lung metastases is dependent on the adequate distribu-
tion of the therapeutic agents to the metastatic target lesions. PFCs
have been widely used in oxygen delivery, ultrasound imaging, organ
transplantation, and prevention of ischemia reperfusion tissue
injury.43–46 Here, the fluorinated polycations were used to equip
them with interfacial properties to allow surface binding and stabili-
zation of the PFC nanoemulsions. We used the FM@PFC nanoemul-
sion for siRNA lung delivery and found that it showed more potent
gene-silencing ability than all the emulsion-free controls. We demon-
strated that p.d. of the polyplexes inhibited the lung metastasis pro-
gression significantly better than the i.v. injection and proposed
FM@PFC/siSTAT3 lung delivery as a more efficient strategy for the
treatment of lung metastasis.
In conclusion, we developed a dual therapeutic PFC siRNA nanoe-
mulsion for combined inhibition of CXCR4 and STAT3 by p.d. and
achieved increased survival in the established lung metastasis model
of advanced breast cancer. The developed nanoemulsions inhibited
the proliferation and promoted apoptosis of the metastatic tumors,
prevented tumor neovascularization, and activated the immune sys-
tem. The nanoemulsions administered by pulmonary route could
be promising treatments of lung metastasis of varying origins,
including advanced osteosarcoma, colorectal cancer, and renal cell
carcinoma, which show high probability of lung metastasis and
involvement of CXCR4 and STAT3.

MATERIALS AND METHODS
Materials

Heptafluorobutyric anhydride (HFBA) andN,N’-hexamethylenebisa-
crylamide (HMBA) were from Sigma-Aldrich. AMD3100 was pur-
chased from Biochempartner (Shanghai, China). Perfluorodecalin
was from Bailingwei Tech (Beijing, China). CXCL12 was from Pepro-
Tech (USA). All siRNA (siScr, sense strand, 50-UUCUCCGAACGU
GUC ACG UTT-30; siLuc, sense strand, 50-GGA CGA GGA CGA
GCA CUU CUU-30; siSTAT3, sense strand, 50-GGU CAA AUU
UCCUGAGUUGUU-30; fluorescein (FAM)- and Cy5-labeled siScr)
were from GenePharma (Shanghai, China). DAPI LysoTracker Red
and Luciferase Assay Kit were from the Beyotime Institute of Biotech-
nology. Monoclonal antibodies (b-actin, p-STAT3, STAT3, Bcl-2,
pERK, E-cadherin), anti-rabbit immunoglobulin G (IgG), and horse-
radish peroxidase (HRP)-linked antibody were from Cell Signaling
Technology. Annexin V-fluorescein isothiocyanate (FITC)/propi-
dium iodide (PI) kit was from Vazyme Biotech (Nanjing, China).
Trypsin, penicillin, streptomycin, RPMI-1640, PBS, and fetal bovine
serum (FBS) were fromGIBCO (Thermo Fisher Scientific, USA). Hu-
man osteosarcoma U2OS cell line expressing EGFP-CXCR4 were
from Fisher Scientific. The cells were maintained in DMEM with
2 mM L-glutamine, 1% Pen-Strep, 0.5 mg/mL G418, and 10% FBS.
Mouse breast carcinoma 4T1.Luc were from PerkinElmer and
cultured in RPMI supplemented with 10% FBS. All the cells were
maintained at 37�C and 5% CO2. Unless otherwise stated, all other
reagents were bought from Nanjing Wanqing Chemical Glassware
Instrument.

Synthesis of FM and Preparation of FM@PFC

M was synthesized by Michael addition of equimolar ratio of HMBA
and AMD3100 as previously reported.28,47 Then, M was dissolved in
2mLmethanol andmixed withmethanol solution of HFBA. Triethyl-
amine was added and the reaction was stirred at room temperature in
nitrogen atmosphere and in the dark for 48 h. The mixture was
diluted into water (pH 3, HCl) and dialyzed (molecular weight cut-
off [MWCO] 3.5 kDa) against water for 2 days before lyophilization
to obtain FM. The fluorine content was determined by the elemental
analysis (Center of Modern Analysis, Nanjing University, China).
The FM@PFC was prepared using the method as previously re-
ported.26 Briefly, FM (5 mg) was dissolved in diethyl pyrocarbon-
ate-treated water (2 mL) and 20 mL PFC was added. The mixture
was sonicated twice with a probe-type sonicator (35% amplitude,
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1.5 s power on, 2 s power off) for 35 min in ice-water bath and refrig-
erated until use.

Preparation and Characterization of siRNA Complexes

The complexes were prepared by adding M, FM, or FM@PFC to the
solution of siRNA in HEPES (10 mM, pH 7.4) to achieve the final
siRNA concentration of 20 mg/mL. Binding of siRNA was evaluated
by 1% agarose gel electrophoresis (100 V, 15 min, JelRed) using for-
mulations prepared at M/siRNA w/w ratios 0–5. Zeta Plus (Zetasizer
Nano S90, Malvern) was used to measure size and zeta potential. Par-
ticle morphology was determined by TEM (H-600, Hitachi, Japan).

Cytotoxicity

Cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-di-
phenyltetrazolium bromide (MTT) assay in L929 cells (1 � 104 cells
per well, 96-well plates, cultured for 18 h). Tested polymers and for-
mulations were added and the cells were incubated in 37�C for 24 h.
MTT solution (5 mg/mL) was added for another 4 h incubation.
Then, DMSO was added and absorbance (490 nm) was measured.
Cell viability was analyzed by the GraphPad Prism 6.

Cellular Association and Trafficking

Cell association was measured by flow cytometry in 4T1.Luc cells
cultured in 12-well plates. The cells were incubated for 4 h with poly-
plexes and nanoemulsions were prepared with FAM-siRNA. Then the
cells were trypsinized for flow cytometry analysis. The 4T1.Luc cells
were treated with FAM-siRNA containing formulations for 1, 3,
and 6 h and stained with LysoTracker Red for 45 min before confocal
microscopy imaging. Images were analyzed and quantified with
ImageJ and GraphPad Prism 6.

Reporter Gene Silencing In Vitro

4T1.Luc cells were plated in a 48-well plate at 4 � 104 cells/well and
kept overnight. Polyplexes and nanoemulsions (w/w = 2, 100 nM
siRNA) prepared with siLuc or siScr were added to the wells for 4 h
incubation, and the incubation media was replaced with fresh media
with 10% FBS for 24 h incubation. Then, the cells were washed with
PBS and lysed with cell lysis buffer. The Luc activity was measured
with a commercial assay kit.

Anticancer Activity In Vitro

Cancer cell killing activity of the polyplexes was measured by colony
formation, MTT, and apoptosis assays. In the colony formation assay,
2,000 cells were added to the cell culture dish and treated with the si-
STAT3 polyplexes. After about 10 days incubation, the formed clones
were washed with PBS and fixed with 4% polyformaldehyde. After
dyeing with Crystal Violet, the clones were photographed and quan-
tified. In the MTT assay, 4T1.Luc cells were seeded in 96-well plates
and incubated with siSTAT3 polyplexes for 48 h before measuring cell
viability as above. In the apoptosis assay, 4T1.Luc cells were seeded in
12-well plates and treated with the siSTAT3 polyplexes (100 nM) for
48 h incubation. The cells were collected and apoptosis was deter-
mined using Annexin V-FITC/PI assay kit (Vazyme Biotech) on
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BD FACS Calibur flow cytometer. The results were analyzed using
FlowJo software (Treestar, USA).

Inhibition of Cancer Cell Invasion and Migration

The transwell invasion assay was performed as previously reported.24

Briefly, 35 mL ice-cold dilutedMatrigel was added to the porous trans-
well inserts for gelation. U2OS cells were resuspended in serum-free
medium containing AMD3100 (300 nM), M, FM, or FM@PFC (M
concentration 2.5 mg/mL) for 30 min and added to the inserts.
Then, the inserts were placed in a 24-well plate with 20 nM
CXCL12 in serum-free medium and incubated at 37�C for 18 h before
staining with 0.2% Crystal Violet. The transwell invasion assay of
4T1.Luc cells was performed as above for 48 h except treated with
the polyplexes (siSTAT3 100 nM, w/w = 2) and using 10% FBS as a
chemoattractant.

Western Blot

The 4T1.Luc cells (5 � 106) were seeded into 6-well plate and incu-
bated overnight. The cells were washed with PBS and the transfection
procedure with siSTAT3 (100 nM) polyplexes (w/w = 2) was per-
formed as described above. After 48 h, total protein was extracted
and separated by SDS-PAGE followed by transfer to nitrocellulose
membrane, probing with Bcl-2, pERK, E-cadherin, p-STAT3, and
STAT3 antibodies, and final incubation with HRP-linked secondary
antibody at 37�C for 1 h (b-actin was used as a housekeeping control).
The band intensities were quantified by ImageJ.

Biodistribution

Mice with 4T1.Luc lung metastases were given a single dose of the
polyplexes or nanoemulsions prepared with siScr-Cy5 (1.2 mg/kg
siRNA, w/w = 2) by intratracheal instillation or tail vein injection.
Fluorescence imaging (exc/em 640/680 nm) was done on IVIS
Lumina (Xenogen, USA). Images were acquired 1–24 h after admin-
istration. The amount of siScr-Cy5 in tissues was analyzed with IVIS
Living Imaging Software.

In Vivo Therapeutic Efficacy

All animal experiments followed regulations of the Institutional An-
imal Care and Use Committee of China Pharmaceutical University
and protocols approved by the Science and Technology Department
of Jiangsu Province. A total of 45 female BALB/c mice (8 weeks old)
were randomly assigned into five groups with nine animals per group.
Half a million 4T1.Luc cells were i.v. injected via tail vein in 100 mL
PBS. Treatments were administered either by p.d. or by tail-vein in-
jection on days 7, 9, 11, and 13 for a total of four doses. In the p.d.,
the mice were anaesthetized and the formulations (w/w = 2) were
given in a volume of 40 mL in PBS by intratracheal instillation.
Each mouse received 1.2 mg/kg siRNA. On day 15, three mice from
each group were randomly selected, injected intraperitoneally with
3 mg of D-luciferin in 100 mL PBS, and sacrificed after 5 min. The
lungs were harvested, washed with PBS, and imaged ex vivo for Luc
expression. The remaining six mice in each group were given two
more doses of the treatments on days 15 and 17 and monitored for
survival until day 50.
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Histopathology

Histopathological analysis was mainly performed by Wuhan Service-
bio Technology. Briefly, lung tissues were fixed for 24 h in 4% para-
formaldehyde, embedded in paraffin, and sectioned for H&E staining
accordingly. For immunohistochemistry staining, the sections were
incubated with (p-)STAT3, MMP-9 and Ki67 antibody, and HRP-
labeled secondary antibody before analysis with the Vectastain ABC
Kit. For immunofluorescence staining, the sections were incubated
with anti-CD31, anti-VEGF, anti-CD8, anti-PD-L1, anti-IFN-g,
anti-IL-12, and anti-Foxp3 antibodies. Slides were mounted with
Vectashield mounting media containing 4’,6-diamidine-2’-phenylin-
dole dihydrochloride (DAPI) before analyzed under fluorescence
microscope.

Statistical Analysis

Results are shown as mean ± SD. The Student’s t test was used to
determine the statistical significance of the differences between two
groups and ANOVA for differences among multiple groups. All sta-
tistical analyses were performed with GraphPad Prism v6.
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Figure S1. 1H NMR spectrum of FM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S2. Zeta potential of FM@PFC/siRNA nanoemulsions at varying siRNA/M w/w ratios. 
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