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Cytokines are essential regulatory components of the immune system, and their aberrant levels have been linked to many disease states.

Despite increasing evidence that cytokines operate in concert, many of the physiological interactions between cytokines, and the shared

genetic architecture that underlies them, remain unknown. Here, we aimed to identify and characterize genetic variants with pleiotropic

effects on cytokines. Using three population-based cohorts (n ¼ 9,263), we performed multivariate genome-wide association studies

(GWAS) for a correlation network of 11 circulating cytokines, then combined our results in meta-analysis. We identified a total of eight

loci significantly associated with the cytokine network, of which two (PDGFRB and ABO) had not been detected previously. In addition,

conditional analyses revealed a further four secondary signals at three known cytokine loci. Integration, through the use of Bayesian

colocalization analysis, of publicly available GWAS summary statistics with the cytokine network associations revealed shared causal

variants between the eight cytokine loci and other traits; in particular, cytokine network variants at the ABO, SERPINE2, and ZFPM2

loci showed pleiotropic effects on the production of immune-related proteins, on metabolic traits such as lipoprotein and lipid levels,

on blood-cell-related traits such as platelet count, and on disease traits such as coronary artery disease and type 2 diabetes.
Introduction

Cytokines are signaling molecules secreted by cells, and

they are central to multiple physiological functions, espe-

cially immune regulation.1 Broadly speaking, cytokines

include chemokines, which drive movement of cells, and

growth factors, which drive cell growth and proliferation.

Changes in circulating cytokine levels have been associ-

ated with infection,2 autoimmune diseases,3 and malig-

nancies,4 as well as atherosclerosis and cardiovascular

disease.5,6 The expression of cytokines can be strongly

regulated by genetic variation,7 and several studies have
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identified cis-acting genetic variants associated with circu-

lating levels of certain cytokines and their receptors under

various conditions.8–10 These initial studies laid the foun-

dation for genetic investigation of circulating cytokine

levels at a scale and breadth that may improve our

understanding of individual differences in immune

response, inflammation, infection, and common disease

susceptibility.

Despite cytokines operating in concert to facilitate

immune regulation, genome-wide association studies

(GWAS) have typically focused on individual cyto-

kines.11–18 The most extensive cytokine GWAS to date
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separately analyzed individual levels of 41 circulating cyto-

kines in approximately 8,000 individuals, identifying 27

distinct loci each associated with at least one cytokine.19

Others have identified loci influencing cytokine produc-

tion in response to pathogens.20,21 While these previous

GWAS utilized a univariate framework, analyzing each

cytokine separately, studies of related traits indicate that

a multivariate framework can confer greater statistical

power, for example by taking advantage of the tightly

co-regulated nature of both pro- and anti-inflammatory

cytokines.

Several methods for multivariate GWAS of correlated

phenotypes have been developed.22–27 Simulations have

shown that multivariate analysis can result in increased

power to detect genetic associations with small or pleio-

tropic effects across phenotypes.22,28–30 These have largely

been conducted on metabolic traits where they have

demonstrated a boost in statistical power. For example,

multivariate analysis of four lipid traits led to a 21% in-

crease in independent genome-wide significant variants

compared to univariate analysis.23 Similar findings were

shown for other metabolic traits.24,31 Moreover, complex

genotype-phenotype dependencies have been revealed

when variants were jointly tested with lipoprotein

traits.32 Notably, a multivariate GWAS of networks of high-

ly correlated serum metabolites was able to detect nearly

twice the number of loci compared to univariate testing,

with downstream tissue-specific transcriptional analyses

showing that the top candidate genes from multivariate

analysis were upregulated in atherosclerotic plaques.31

In this study, we focused on correlated immune traits by

leveraging the correlation structure within a network of 11

cytokines to perform a multivariate genome-wide scan in

9,263 individuals from three population-based cohorts.

We then investigated the colocalization of cytokine-associ-

ated variants with those regulating gene expression in

numerous tissues and cell types, circulating protein and

metabolite levels, hematological traits, and disease states.

Finally, we highlighted and characterized variants as po-

tential master regulators of the cytokine network, with

pleiotropic effects on production of inflammatory pro-

teins, immune cell function, lipoprotein and lipid levels,

and cardiometabolic diseases.
Material and Methods

Study Populations
Approval for the study protocols for each cohort was obtained

from their respective ethics committees, and all subjects enrolled

in the study gave written informed consent.

The Cardiovascular Risk in Young Finns Study (YFS) is a longitu-

dinal prospective cohort study that commenced in 1980, with

follow-up studies carried out every three years. The purpose of

this study was to monitor the risk factors of cardiovascular disease

in children and adolescents from different regions of Finland. In

the baseline study, which was conducted in five Finnishmetropol-

itan areas (Turku, Helsinki, Kuopio, Tampere, and Oulu), a total of
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3,596 children and adolescents were randomly selected from the

national public register, the details of which were described by Rai-

takari, et al.33 Follow-up studies have been carried out every three

years, in 1983, 1986, 1989, 2001, 2007, and 2011. For this current

study, we utilized data from 2,204 participants (aged 30–45 years)

who responded to the 2007 follow-up study (YFS07). Of these,

2,018 individuals had matched cytokine and genotype data avail-

able. Ethics were approved by the Joint Commission on Ethics of

the Turku University and the Turku University Central Hospital.

The FINRISK cohorts were part of a cross-sectional population-

based survey; such studies have been carried out every five years

since 1972 in order to evaluate the risk factors of chronic diseases

in the Finnish population.34 Each survey has recruited a represen-

tative random sample of 6,000–8,800 individuals, within the age

group of 25–74 years, chosen from the national population

information system. This study utilized samples from the 1997

(FINRISK97) and 2002 (FINRISK02) collections, which recruited

individuals from five or six (for FINRISK02) major regional and

metropolitan areas of Finland; the provinces of North Karelia,

Northern Savo, Northern Ostrobothnia, Kainuu, and Lapland;

the Turku and Loimaa region of southwestern Finland; and the

Helsinki and Vantaa metropolitan area. In total, 8,444 (aged

24–74 years) and 8,798 (aged 51–74 years) individuals participated

in the FINRISK97 and FINRISK02 studies, respectively. Impor-

tantly, each FINRISK survey is an independent cohort, each

comprising a different set of participants. Ethics were approved

by the coordinating ethical committee of the Helsinki and Uusi-

maa hospital district, Finland. For FINRSK97, cytokines profiles

were measured for all participants where high-quality blood sam-

ples were still available. For FINRISK02, cytokine profiling was

restricted to older participants (>50 years) due to budget con-

straints. Cytokine measurements and matched genotype data

were available for a subset of 5,728 FINRISK97 participants and

2,027 FINRISK02 participants.
Blood Sample Collection
Blood samples and detailed information on various physical and

clinical variables for the YFS and FINRISK cohorts were collected

using similar protocols to those described previously.33,34 Venous

blood was collected following an overnight fast for the YFS cohort,

while non-fasting blood was collected for FINRISK. Samples were

centrifuged, and the resulting plasma and serum samples were ali-

quoted into separate tubes and stored at �70�C for later analyses.
Genotype Processing and Quality Control
Genotyping in YFS and FINRISK cohorts was performed on whole

blood genomic DNA. For YFS07 (n ¼ 2,442), a custom 670K Illu-

mina BeadChip array was used for genotyping. For FINRISK97 (n

¼ 5,798), the Human670-QuadCustom Illumina BeadChip plat-

form was used for genotyping. For FINRISK02 (n ¼ 5,988), the

Human670-QuadCustom Illumina BeadChip (n ¼ 2,447) and

the Illumina Human CoreExome BeadChip (n ¼ 3,541) were

used for genotyping. The Illuminus clustering algorithm was

used for genotype calling,35 and quality control (QC) was per-

formed using the Sanger genotyping QC pipeline. This included

removal of SNPs and samples with >5% genotype missingness

followed by removal of samples with gender discrepancies. Geno-

types were then imputed with IMPUTE236 through the use of the

1000 Genomes Phase 1 version 3 as the reference panel followed

by removal of SNPs with call rate < 95%, imputation ‘‘info’’ score

< 0.4, minor allele frequency < 1%, and Hardy-Weinberg
nal of Human Genetics 105, 1076–1090, December 5, 2019 1077



equilibrium p value < 5 3 10�6. In instances where data were

generated using different genotyping platforms, overlapping

SNPs were merged using PLINK version 1.90 software.37 A total

of 6,664,959, 7,370,592, and 6,639,681 genotyped and imputed

SNPs passed QC in YFS, FINRISK97, and FINRISK02, respectively.

Cryptic relatedness was assessed using identity by descent (IBD)

estimates, and in cases where the pi-hat relatedness was greater

than 0.1, one of the two individuals was randomly removed

(n ¼ 44 for YFS, n ¼ 291 for FINRISK97, and n ¼ 39 for FIN-

RISK02). Genetic principal components (PCs) were obtained

through principal component analysis (PCA) using FlashPCA38

on �60,000 linkage disequilibrium (LD)-pruned SNPs. LD-based

pruning was performed to remove SNPs that exceeded an r2

threshold of 0.05 through the use of PLINK’s –indep-pairwise

command (SNP window ¼ 100, SNPs shifted each time ¼ 10, r2

threshold ¼ 0.05).
Measurement of Cytokines
Concentrations of cytokines, chemokines, and growth factors

(hereafter referred to as cytokines) were measured in serum

(YFS07), EDTA plasma (FINRISK97), and heparin plasma

(FINRISK02) using multiplex fluorescent bead-based immunoas-

says (Bio-Rad). A total of 48 cytokines were measured in YFS07

(n ¼ 2,200) and FINRSK02 (n ¼ 2,775) using two complementary

array systems: the Bio-Plex ProTM Human Cytokine 27-plex assay

and Bio-Plex ProTM Human Cytokine 21-plex assay. For

FINRISK97, 19 cytokines were assayed on the Human Cytokine

21-plex assay system. All assays were performed in accordance

with the manufacturer’s instructions, except that beads, detection

antibodies, and streptavidin-phycoerythrin conjugate were used

at half their recommended concentrations. Fluorescence intensity

values determined using the Bio-Rad’s Bio-Plex 200 array reader

were converted to concentrations from the standard curve gener-

ated by the Bio-PlexTM Manager 6.0 software. For each cytokine, a

standard curve was derived by fitting a five-parameter logistic

regression model to the curve obtained from standards provided

by the manufacturer. Cytokines with concentrations at the lower

and upper asymptotes of the sigmoidal standard curve were set

to the concentration corresponding to the fluorescent intensity

2% above or below the respective asymptotes.
Cytokine Data Filtering, Normalization, and Clustering
The analysis was limited to 18 cytokines (Table S1) assayed in all

three cohorts. Although Interleukin 1 receptor, type I (IL-1Ra)

was assayed in all three cohorts, it was excluded from the analyses

due to its inconsistent Pearson correlation pattern with the other

18 cytokines across the three datasets.

Before normalization, cytokine data were subset to individuals

with matched genotype data in YFS07 (n ¼ 2,018), FINRISK97

(n ¼ 5,728), and FINRISK02 (n ¼ 2,775). We excluded individuals

in YFS07 who reported febrile infection in the two weeks prior to

blood sampling (n¼ 92). To identify extreme outlier samples, PCA

was performed on the log2 transformed cytokine values through

the use of the missMDA R package.39 This method first imputed

the missing cytokine values via a regularized iterative PCA algo-

rithm implemented in the imputePCA function, then performed

PCA. Three and two outlier samples were removed from

FINRISK97 and FINRISK02, respectively. Based on IBD analysis

described above, 44 (YFS07), 291 (FINRISK97), and 39 (FINRISK02)

individuals were also removed. After filtering, a total of 1,843,

5,434, and 1,986 individuals passed QC in YFS07, FINRISK97,
1078 The American Journal of Human Genetics 105, 1076–1090, Dec
and FINRISK02, respectively, and these were used for downstream

analysis.

Since all 18 cytokines displayed non-Gaussian distributions, we

performed normalization of cytokine levels. For YFS07, the lower

limit of detection (LOD) was available for each cytokine. Reported

values that were below the LODwere indistinguishable from back-

ground noise signals or instrument error40 and were excluded and

treated as missing. For FINRISK97 and FINRISK02, the detection

limits were not available; however, it was observed that these

two datasets exhibited a bimodal distribution, with the leftmost

peak below the expected LOD when compared to the YFS dataset.

Individuals in the leftmost peak were therefore set to missing. The

log2-transformed cytokine values were then normalized to follow

standard Gaussian distributions (with mean of 0 and SD of 1) us-

ing rank-based inverse normal transformation (rntransform) as

implemented in the GenABEL R package.41 For each study group,

residuals for all cytokines were calculated by regressing the

normalized cytokine values on age, sex, BMI, lipid and blood pres-

suremedication, pregnancy status (FINRISK97), and the first 10 ge-

netic PCs through the use of a multiple linear regressionmodel. Of

note, information on pregnancy status was only available for the

FINRISK97 cohort (n ¼ 52; �2% of the women). The FINRISK02

is an older cohort (aged 51-74 years), so we do not expect any

pregnant women in this cohort. Density distribution plots were

generated to confirm that the resulting cytokine residuals were

still normally distributed (data not shown).

Detection of groups of correlated cytokines was done in

FINRISK97, the cohort with the largest sample size. Pairwise Pear-

son correlation was performed among residuals of 18 cytokines.

These cytokines were then subjected to hierarchical clustering,

with one minus the absolute correlation coefficient used as the

dissimilaritymetric.We then defined a cytokine network—a group

of 11 cytokines that were moderately to highly correlated (r >

0.57)—for subsequent use in the multivariate analysis.
Statistical Analysis
Univariate association analysis was carried out with linear regres-

sion in PLINK,37 where the residuals of each cytokine were re-

gressed on each SNP genotype. Summary statistics at each marker

across three datasets were then combined in a meta-analysis using

the METAL software program,42 which implemented a weighted

Z-score method. Since 11 hypothesis tests were performed for

each SNP, genome-wide significance was formally set at p value

< 4.55 3 10�9, i.e., dividing the standard genome-wide signifi-

cance threshold (p value < 5 3 10�8) by 11.

Multivariate testing (MV) was performed under the canonical

correlation framework implemented in PLINK (MV-PLINK),22

which extracted the linear combination of traits most highly

correlated with genotypes at a particular SNP. The test is based

onWilks’ Lambda (l ¼ 1�r2), where r is the canonical correlation

coefficient between the SNP and the cytokine network. Corre-

sponding p values were computed by transformingWilks’ Lambda

into a statistic that approximates an F distribution, and the load-

ings for each cytokine represented their individual contributions

toward themultivariate association result.22 Since themultivariate

beta-coefficients and standard errors were not calculated by MV-

PLINK, the cohort-level multivariate p values were combined in

a meta-analysis using the weighted Z-score method43,44 imple-

mented in the metap R package. In brief, the p values for each da-

taset were transformed into unsigned Z-scores and weighted by

their respective sample sizes, and the sum of each of these
ember 5, 2019



weighted Z-scores was then divided by the square root of the sum

of squares of the sample size for each study. The combined

weighted Z-scores obtained were then back-transformed into p

values. Complete summary statistics from meta-analyses will be

made available through the NHGRI-EBI GWAS Catalog.

To assess the inflation of the test statistics as a result of popula-

tion structure, quantile-quantile (Q-Q) plots of observed-versus-

expected log10 p values were generated from the multivariate

analyses of the three datasets, both individually and meta-

analyzed. Corresponding genomic inflation factor (l) was calcu-

lated by taking the ratio of the median observed distribution of

p values to the expected median.

To investigate the existence of additional independent signals

within the significant multivariate loci, a conditional stepwise

multivariate meta-analysis was performed within each locus. For

each study cohort, the lead SNP at each locus (p value < 5 3

10�8), together with other covariates, was fitted in a linear regres-

sion model for each cytokine in the network. The resulting resid-

uals were provided as an input for themultivariate test of the locus

being assessed. The cohort-level conditional p values were then

combined in a meta-analysis. The stepwise conditional analysis

was repeated in the univariate model with the lead multivariate

SNPs until no additional significant signal was identified.
Colocalization Analysis
Bayesian colocalization tests between cytokine-network-associ-

ated signals and the following trait- and disease-associated signals

were performed using the COLOC R package.45 For whole blood

cis expression quantitative trait loci (eQTLs), we downloaded

publicly available summary data from the eQTLGen Consortium

portal. The eQTLGen Consortium analysis is the largest meta-

analysis of blood eQTLs to date and comprises of 31,684 blood

and peripheral blood mononuclear cell (PBMC) samples from a

total of 37 datasets.46 For immune cell cis-eQTLs, we either

generated cis-eQTL summary data in resting B cells,47 resting

monocytes,48 and stimulated monocytes with interferon-g or

lipopolysaccharide,48 or obtained publicly available cis-eQTL

summary data generated by the BLUEPRINT consortium in neu-

trophils and CD4þ T cells.57 For cis-eQTL mapping in B cells

and monocytes (resting and stimulated), information on access-

ing the raw gene expression and genotype data, data pre-process-

ing, and cis-eQTL analysis has been described in a previous

study.50 For protein QTLs (pQTLs), we used publicly available So-

maLogic plasma protein GWAS summary statistics from the

INTERVAL study.17 A colocalization test was performed for loci

where the cytokine-network-associated variants (within 200 kb

from the lead SNP) were also influencing protein levels, either

in cis (cis-pQTLs) or trans (trans-pQTLs), at pQTL p value < 1 3

10�6. For disease or complex trait associations, we compiled sum-

mary statistics of 185 diseases and quantitative traits from GWAS

studies conducted in European ancestry individuals, which were

accessed from the UK Biobank (Table S2), or downloaded from

either ImmunoBase, the NHGRI-EBI GWAS Catalog, or LD Hub.

Here, we only considered immune-related and cardiometabolic

diseases. For each cytokine network locus, we only tested traits

or diseases with the minimum association p value < 1 3 10�6

at this locus. COLOC requires either beta-coefficients and its vari-

ance, or p values, for each SNP, in addition to MAF and sample

size. Since PLINK multivariate did not produce beta values and

standard errors, we instead used meta-analyzed p values for the

multivariate cytokine GWAS summary data. For each association
The American Jour
pair assessed for colocalization, SNPs within 200 kb of the lead

multivariate cytokine GWAS SNP were considered. COLOC

(coloc.abf) was run with default parameters and priors. COLOC

computed posterior probabilities for the following five hypothe-

ses: PP0, no association with trait 1 (cytokine GWAS signal) or

trait 2 (e.g., eQTL signal); PP1, association with trait 1 only

(i.e., no association with trait 2); PP2, association with trait 2

only (i.e., no association with trait 1); PP3, association with trait

1 and trait 2 by two independent signals; and PP4, association

with trait 1 and trait 2 by shared variants. In practice, evidence

of colocalization was defined by PP3 þ PP4 R 0.99 and PP4/

PP3 R 5, a cut off previously suggested.50 To further explore

the possibility of colocalization with secondary multivariate cyto-

kine-network- associated signals, we conducted colocalization

analyses with conditional p values obtained from the stepwise

conditional multivariate GWAS meta-analysis. A sensitivity anal-

ysis was further performed using the ‘‘sensitivity’’ function of the

COLOC package. The sensitivity analysis takes the COLOC

output and assesses whether the posterior inference is robust to

the priors used in the colocalization analysis at a predefined

rule, which was set to PP3 þ PP4 R 0.99 and PP4/PP3 R 5

(threshold used as evidence for colocalization). The predefined

decision rule determines the values of the posterior probabilities

considered acceptable for the given priors. The sensitivity anal-

ysis demonstrated that the posterior for each colocalizing pair

was robust to the priors chosen, in particular to the choice of

p12 (1 3 10�5); hence, all colocalization analysis was performed

using default priors. The output from the sensitivity analysis was

indicated as ‘‘pass’’ in all the colocalization results reported.

Multi-trait colocalization analysis was performed with the

MOLOC tool51 using default prior probabilities. This analysis

was performed to assess whether the pairwise cytokine-to-disease

and cytokine-to-molecular trait colocalizations, at the ABO locus,

involved the same shared casual variant in a three-way colocaliza-

tion analysis (e.g., CAD-to-cytokine network-to-protein). Only

SNPs that were within 200 kb of the lead multivariate cytokine

GWAS SNP and were common among all three datasets were as-

sessed. We considered a posterior probability of associations

(PPA) threshold ofR80% as strong evidence that the disease, cyto-

kine network, and complex trait (e.g., eQTL, proteins, metabolites,

or blood cell traits) colocalized and shared a causal variant.
Results

Summary of Cohorts and Data

Our final dataset comprised a total of 9,267 individuals

enrolled in three population-based studies, YFS07 (n ¼
1,843), FINRISK97 (n ¼ 5,438), and FINRISK02 (n ¼
1,986), all of whom had available genome-wide genotype

data and quantitative measurements of 18 cytokines (Table

S1). Characteristics of the study cohorts are summarized in

Table 1. Genotypes for the three datasets were imputed

with IMPUTE236 using the 1000 Genomes Phase 1 version

3 of the reference panel. After QC, a total of 6,022,229

imputed and genotyped SNPs were available across all co-

horts. Cytokine levels were measured in serum and plasma

through the use of Bio-Plex ProTM Human Cytokine 27-

plex and 21-plex assays, then subsequently normalized

and adjusted for covariates, including age, sex, BMI,

pregnancy status, blood-pressure-lowering medication,
nal of Human Genetics 105, 1076–1090, December 5, 2019 1079



Table 1. Summary of Descriptive Characteristics of the Three Study Cohorts

Characteristics FINRISK97 FINRISK02 YFS07

Collection year 1997 2002 2007

Number of individuals with matched cytokine and genotype data 5,438 1,986 1,843

Number of males (%) 2,637 (48.5) 991(49.9) 841 (45.6)

Mean age in years (and range) 47.6 (24–74) 60.3(51–74) 37.7 (30–45)

BMI (kg/m2); mean 5 SD. 26.6 5 4.6 28.1 5 4.5 25.9 5 4.6

Number of individuals on lipid lowering drugs (%) 174 (3.2) 284 (14.3) 40 (2.2)

Number of individuals on blood pressure treatment drugs (%) 698 (12.8) 512 (25.8) 127 (6.9)

Abbreviations: BMI, body mass index; YFS, Young Finns Study
The numbers beside the cohort names refer to the calendar year (collection year) in which the samples and clinical information were obtained from each cohort.
lipid-lowering medication, and population structure (see

Material and Methods). An overview of the study is shown

in Figure 1.

A Correlation Network of Circulating Cytokines

To characterize the correlation structure of circulating

cytokines, we utilized the largest dataset available

(FINRISK97) and the set of 18 cytokines overlapping all

three cohorts. IL-18 was very weakly correlated with other

cytokines (Figure 2A), while TRAIL, SCF, HGF, MCP-1,

EOTAXIN, and MIP-1b showed moderate correlation with

the others. A distinct set of 11 cytokines showed high cor-

relation among themselves (median r ¼ 0.75). In the

smaller cohorts (YFS07 and FINRISK02), the cytokine cor-

relation structure was similar but weaker (Figure S1), and

the set of 11 cytokines also showed relatively high correla-

tion (YFS07 median r ¼ 0.42; FINRISK02 median r ¼ 0.46).

We used this set of 11 cytokines (denoted below as the

cytokine network) for multivariate association analysis.

The cytokine network included both anti-inflammatory

(IL-10, IL-4, IL-6) and pro-inflammatory (IL-12, IFN-g,

IL-17) cytokines as well as growth factors (FGF-basic, PDGF-

BB, VEGF-A, G-CSF) and a chemokine (SDF-1a) involved in

promoting leukocyte extravasation and wound heal-

ing.52–54 These cytokines were all positively correlated,

which is likely indicative of counter-regulatory (negative-

feedback) mechanisms among pro-inflammatory and anti-

inflammatory pathways, such as those of IFN-g and

IL-10.55

Multivariate Genome-Wide Association Analysis for

Cytokine Loci

We performed a multivariate GWAS on the cytokine

network in each cohort separately, then cohort-level results

were combined using meta-analysis (see Material and

Methods). Since one hypothesis test (corresponding to the

cytokine network) was performed for each SNP, a genome-

wide significance threshold of p < 53 10�8 was used. Min-

imal inflation was observed for the cohort-level and meta-

analysis test statistics with lambda (l) inflation ranging

from 1.00–1.02 (Figure S2A–S2D). To directly compare the
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statistical power of multivariate to univariate GWAS, we

first performed univariate analysis in each dataset by re-

gressing each of the cytokines in the cytokine network indi-

vidually on each SNP, andwe then combined the results in a

meta-analysis. To account for the 11 cytokines tested, the

genome-wide significance threshold was set at p < 4.55 3

10�9. For comparison, we selected the smallest univariate

meta-analysis p value for any cytokine at a given locus.

We identified eight loci reaching genome-wide signifi-

cance for the cytokine network (Figure 2B; Table 2). The

strongest association was rs7767396 (meta-p value ¼
6.93 3 10�306), a SNP located 172 kb downstream of

vascular endothelial growth factor A (VEGFA [MIM:

192240]) (Figure S3A). The VEGFA locus was previously

identified in GWAS for individual cytokine levels,

including VEGF-A, IL-7, IL-10, IL-12, and IL-13.14,19

Consistent with these earlier results, we found that

VEGF-A, IL-10, and IL-12 were the top three cytokines

based on their trait loadings (relative contribution of

each cytokine to the multivariate association result) in

each cohort and also significantly associated with this

locus in the univariate scans (Figure S4A). Multivariate

analysis also confirmed four other previously known asso-

ciations,14,16,19 including loci harboring SERPINE2 (MIM:

177010) (rs6722871; meta-p value ¼ 1.19 3 10�59),

ZFPM2 (MIM: 603693) (rs6993770; meta-p value ¼
4.73 3 10�8), VLDLR (MIM: 192977) (rs7030781; meta-p

value ¼ 3.78 3 10�13), and PCSK6 (MIM: 167405)

(rs11639051; meta-p value ¼ 1.93 3 10�58) (Figure 2B;

Table 2; Figure S3B–S3E). The cytokine with the highest

loading at each of these loci was consistent with those pre-

viously identified in univariate analysis (Figure S4B–S4E).

The multivariate GWAS also detected novel cytokine as-

sociations not identified in any previous univariate tests of

these cytokines. These were three loci with genic lead SNPs

in the candidate genes F5 (MIM: 612309), PDGFRB (MIM:

173410), and ABO (MIM: 110300). The lead variant at

the F5 locus (rs9332599; meta-p value ¼ 7.17 3 10�12) is

located in intron 12 of F5 (Figure S3F). At the platelet-

derived growth factor receptor-beta (PDGFRB) locus, the

lead variant rs2304058 (meta-p value ¼ 4.06 3 10�9) is
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Figure 2. Multivariate GWA Analysis of a Network of 11 Corre-
lated Cytokines in Three Finnish Cohorts
(A) Correlation heatmap of the 18 cytokines in the FINRISK97
cohort. Each cell presents the pairwise Pearson’s correlation coef-
ficient between the normalized cytokine residuals. The cytokines
are ordered by hierarchical clustering, using 1 minus the absolute
value of the correlations as the distance matrix. The color scale de-
notes the strength of the correlations, where red is a high positive
correlation. The group of 11 tightly correlated cytokines (black
box) was used for multivariate analysis.
(B) Manhattan plot for meta-analysis results from the multivariate
GWAS of the cytokine network. The statistical strength of associa-
tion (-log10 meta-p value; y axis) is plotted against all the SNPs or-
dered by chromosomal position (x axis). The sky-blue horizontal
dashed line represents the genome-wide (meta-p value < 5 3
10�8) significance threshold. The lead SNP (lowest meta-p value)
at each locus and the nearby genes are shown.
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Figure 1. Overview of the Study Populations, Design, and the
Analyses Conducted
within intron 10 of PDGFRB (Figure S3G). At the ABO lo-

cus, the lead variant rs550057 (meta-p value ¼ 2.75 3

10�8) is within the first intron of ABO (Figure S3H); further-

more, rs550057 is located �1.6 kb upstream of the

erythroid cell specific enhancer, which contains a

GATA-1 transcription factor binding site and has been

shown to enhance the transcription of the ABO gene.56

To investigate the presence of multiple independently

associated variants at each of the eight loci, we performed

stepwise conditional multivariate meta-analysis. Three loci

(SERPINE2, VEGFA, and PCSK6) exhibited evidence of mul-

tiple independent signals (Table S3). In addition to the

lead variants (rs6722871, rs7767396, and rs11639051) at

each of these three loci, we identified additional association

signals (rs55864163, SERPINE2, meta-pcond ¼ 9.03 3 10�29;

rs112215592, SERPINE2, meta-pcond ¼ 2.10 3 10�12;

rs4714729, VEGFA, meta-pcond ¼ 7.49 3 10�10; and

rs6598475, PCSK6, meta-pcond ¼ 2.63 3 10�17), which

were independently associated with the cytokine network.

We also performed conditional univariate analysis that

adjusted for the lead multivariate SNPs, which were either

the same lead univariate SNPs or in high LD (r2 ¼ 0.99).

This univariate analysis also uncovered the same secondary
The American Jour
signal at the VEGFA locus in association with VEGF-A cyto-

kine levels (rs4714729;meta-pcond¼ 8.83 10�13) (Table S3).

Colocalization of Cytokine Variants with cis-eQTLs in

Whole Blood

To characterize the regulatory effects of the multivariate

cytokine-associated loci, we queried the largest publicly

available set of results for whole blood cis-eQTLs, a meta-

analysis of 31,684 individuals, which was obtained from

the eQTLGen Consortium database.46 We found SNPs,

lead or LD-proxy (r2>0.5), at seven of the eight cytokine

loci (ABO, F5, PCSK6, PDGFRB, SERPINE2, VEGFA, and

VLDLR) with cis-regulatory effects (p value < 1 3 10�6)

on gene expression (for a total of 17 unique genes) in blood
nal of Human Genetics 105, 1076–1090, December 5, 2019 1081



Table 2. Meta-Analyzed Results of Multivariate GWAS of Cytokine Network

Locus Locus Region Top SNP Average MAF Top Multivariate Meta-p value
Univariate
Meta-p value (Top Cytokine) Detection

F5 1q24.2 rs9332599 0.294 7.17 3 10�12 9.21 3 10�3 (SDF1-a) multivariate

SERPINE2 2q36.1 rs6722871 0.311 1.19 3 10�59 3.55 3 10�18 (PDGF-BB) both

PDGFRB 5q32 rs2304058 0.379 4.06 3 10�9 1.52 3 10�5 (IL4) multivariate

VEGFA 6p21.1 rs7767396 0.471 6.93 3 10�306 3.10 3 10�201 (VEGF-A) both

ZFPM2 8q23.1 rs6993770 0.221 4.73 3 10�8 1.01 3 10�7 (IL12p70) multivariate

ABO 9q34.2 rs550057 0.306 2.75 3 10�8 4.9 3 10�3 (IL4) multivariate

VLDLR 9p24.2 rs7030781 0.413 3.78 3 10�13 6.78 3 10�14 (VEGF-A) both

PCSK6 15q26.3 rs11639051 0.255 1.93 3 10�58 1.19 3 10�26 (PDGF-BB) both

JMJD1C 10q21.3 rs9787438 0.374 a1.30 3 10�7 a8.96 3 10�12 (VEGF-A) univariate

The table shows the meta-analysis p values for the top SNP (lowest p value) at each locus associated with the cytokine network in the multivariate analysis at
genome-wide significance threshold (p < 53 10�8). The corresponding lowest meta-p value for the same top SNP in the univariate analysis with any single cyto-
kine present in the cytokine network, given in brackets beside the meta-p value, was also reported.
aInstance where the top SNP at a locus crossed only the univariate significance threshold (p < 4.553 10�9), then the corresponding meta-p value for that SNP in
the multivariate was also given. The univariate significance threshold was calculated from a Bonferroni correction for 11 cytokines tested (p < 5 3 10�8/11).
(Table S4). Using Bayesian colocalization analysis, we

further demonstrated that associations at three of these

loci colocalized with cis-eQTLs for ABO, PCSK6, and SER-

PINE2 expression (Figure 3A–3C; Table S5). We did not

observe colocalization with the secondary multivariate

GWAS signals at the PCSK6 and SERPINE2 loci.
Colocalization of Cytokine Variants with Immune Cell-

Specific cis-eQTLs

Next, we investigated the cell-type- or context-dependent

regulatory effects of genetic variants associated with the

cytokine network by interrogating previously published

cis-eQTLs specific to resting B cells,47 resting mono-

cytes,48 stimulated monocytes with interferon-g or lipo-

polysaccharide,48 resting neutrophils,57 naive CD4þ

Tcells49,57 and CD8þ Tcells,49 all isolated from healthy do-

nors of European ancestry (Table S6). Three out of the eight

cytokine network loci harbored cis-eQTLs (p value < 1 3

10�6) in at least one immune cell type, in either a stimu-

lated or a non-stimulated state (Table S7). For example,

SNPs at the SERPINE2 locus were reported to have cis-

eQTL effects across multiple immune cell types, including

B cells, CD4þ, and CD8þ T cells (Table S7).

Further, colocalization analysis showed that the cyto-

kine network variants at SERPINE2 had strong evidence

of sharing a causal variant with SERPINE2 cis-eQTLs in

CD4þ T cells and B cells, similar to the colocalization we

observe in whole blood (Figure 3B; Table S8). Evidence of

colocalization was not observed with the secondary multi-

variate GWAS signals at this locus.
Colocalization of Cytokine Variants with Plasma Protein

QTLs

To investigate protein-level effects of cytokine network var-

iants, we utilized plasma protein QTLs (pQTLs) from the IN-

TERVAL study.17 Colocalization analysis, considering only
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proteins with both cis- and trans-pQTLs, at the cytokine

network loci, with association p value < 1 3 10�6, showed

that all the eight cytokine network loci had strong evidence

of shared causal variants with plasma levels of a total of 146

proteins (out of the 215 tested) (Table S9). Of these, the ABO

and ZFPM cytokine network loci strongly colocalized with

trans-pQTL signals for 55 (out of 81) and 87 (out of 98) pro-

teins, respectively (Table 3; Table S9). Of these, 14 and 75

proteins shared the same causal lead pQTLs with the lead

cytokine network variants at the ABO (rs550057) and

ZFPM2 (rs6993770) loci, respectively, suggesting these vari-

ants have extensive pleiotropic effects on multiple cyto-

kines and proteins—which potentially have shared underly-

ing pathophysiology and/or biology.

The ABO locus colocalized with trans-pQTLs for several

membrane proteins (B3GN2, endoglin, GOLM1, OX2G,

and TPST2) and cell surface receptors (IL-3RA, LIFR, IGF-I R,

and HGF receptors). ABO colocalization was also observed

with trans-pQTLs for adhesion and immune-related mole-

cules involved in leukocyte recruitment, cell adhesion, and

transmigration, including sGP130, sICAM-1, sICAM-2,

LIRB4, and P-selectin (Table 3; Table S9). At theZFPM2 locus,

colocalization was seenwith trans-pQTLs for proteins gener-

ally found in platelet granules (e.g., VEGF-A, PDGF-AA,

PDGF-BB, PDGF-D, angiopoietin, andP-selectin).At the SER-

PINE2 locus, we observed that, in addition to colocalizing

with the cis-eQTL signal for SERPINE2 expression, the cyto-

kine-network-associated variants colocalized with the cis-

pQTL variants for SERPINE2 protein levels (Table S9). Like-

wise, the VEGFA locus colocalized with a cis-pQTL for

VEGF-A, and the PDGFRB locuswith a cis-pQTL for PDGFRB.
Relationships of Cytokine Network Variants with

Complex Traits and Diseases

Using the NHGRI GWAS Catalog,58,59 we found that,

across all eight cytokine network loci, 55 SNPs matched
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Figure 3. Regional Plots for the Cytokine
Network Association and Whole Blood
and Immune Cell cis-eQTL Association Sig-
nals at the ABO, PCSK6, and SERPINE2 Lo-
cus
(A) The cytokine network GWAS signal
(top) colocalizes with the whole blood
cis-eQTLs signal for ABO (bottom) at the
ABO locus on chromsome 9; (B) colocalizes
with whole blood cis-eQTLs for PCSK6
expression (bottom) at the PCSK6 locus
on chromosome 15; (C) colocalizes with
the cis-eQTL signals for SERPINE2 expres-
sion in whole blood (middle), B cells (mid-
dle), and CD4þ T cells (bottom) at the
SERPINE2 locus on chromosome 2. For
each plot, the circles represent the -log10
association p values (y axis) of SNPs
plotted against their chromosomal posi-
tion (x axis). The eQTL association plots
show the lead cytokine network GWAS
SNP tested in the colocalization analysis.
The lead cytokine network GWAS SNP
rs6722871 was not present in the B cell
and CD4þ T cell eQTL dataset, instead,
the next top GWAS SNP present in each
of the eQTL dataset (rs861442, B cell;
rs1438831, CD4þ T cell) is shown. For all
regional plots, pairwise LD (r2) in the re-
gion is colored with respect to the lead
cytokine network GWAS SNP. LD was
calculated from the 1000 Genomes Euro-
pean population.
SNPs previously associated with quantitative traits and dis-

eases (Table S10). The lead cytokine network variant at

ZFPM2 (rs6993770) has previously been associated with

various platelet traits, including platelet count, distribu-

tion width, plateletcrit (total platelet mass), and mean vol-

ume17,60 (Table S10).

Next, GWAS summary statistics from a broad range of

traits and diseases (Table S2), including hematopoietic

traits, circulatingmetabolites, and immune- and cardiome-

tabolic-related diseases, were compiled for colocalization

analysis with the cytokine network loci. The two cyto-

kine-network-associated loci, ABO and ZFPM2, exhibited

strong evidence of colocalization for several traits and dis-

eases. The ZFPM2 locus colocalized not only with signals

for several platelet trait associations, but also with other

hematological trait-associated signals, including white

blood cell counts and specifically neutrophil and basophil
The American Journal of Human Genetics
counts (Table 3; Table S11). The ABO

locus showed colocalization with

various QTLs for hematological traits,

including red blood cell traits (hae-

moglobin concentration, red blood

cell count, and hematocrit) and white

blood cell counts, including granulo-

cyte count and specifically eosinophil

count (Table 3; Table S11). This is

consistent with the ABO locus being

identified as a pQTL for proteins
involved in leukocyte activation as identified previously.

Cytokine network variants at the ABO locus colocalized

with those of intermediate-density, low-density, and

very-low-density lipoprotein subclasses as well as glycosy-

lated haemoglobin (HbA1c) (Table 3; Table S11), suggest-

ing both inflammatory and metabolic effects. Notably,

the same cytokine network variants at the ABO locus also

strongly colocalized with signals associated with coronary

artery disease (CAD), pulmonary embolism, ischemic

stroke (MIM: 601367), and type 2 diabetes (T2D [MIM:

125853]) (Table 3, Table S11).

Multi-Trait Colocalization at the ABO Locus

Given its extensive pleiotropy and disease relevance,

we performed three-way multi-trait colocalization

(MOLOC)51 at the ABO locus to assess shared genetic etiol-

ogy between disease traits, the cytokine network, and
105, 1076–1090, December 5, 2019 1083



Table 3. Colocalization of Cytokine-Network-Associated Variants at the ABO and ZFPM2 Loci with Those of Plasma Protein Levels,
Quantitative Traits, and Disease Risk

Group/ Functions Evidence Names

ABO Locus (Chromosome 9)

Diseases

Cardiometabolic diseases strong pulmonary embolism, ischemic stroke, coronary artery disease, type 2 disease,

Cardiometabolic diseases none deep vein thrombosis

Blood Cell Traits

Blood cell counts Strong white blood cell, granulocytes, basophils þ eosinophils, basophils þ neutrophils, eosinophils þ
neutrophils, eosinophils, neutrophils, hematocrit (%), haemoglobin, myeloid, red blood cells,
platelet distribution width

Blood cell counts Suggestive basophils, reticulocytes

Blood cell counts None monocyte, platelet, plateletcrit (%), red cell distribution width

Metabolites

IDL particle constituents strong Total cholesterol (IDL-C), free cholesterol (IDL-FC), total lipids (IDL-L), total particle concentration
(IDL-P), phospholipids (IDL-PL), triglycerides (IDL-TG)

LDL subclass particle constituents strong For large particles: total cholesterol (L-LDL-C), cholesterol esters (L-LDL-CE), free cholesterol (L-
LDL-FC), total lipids (L-LDL-L), total particle concentration (L-LDL-P), phospholipids (L-LDL-PL),
For medium particles: total cholesterol (M-LDL-C), cholesterol esters (M-LDL-CE), total lipids
(M-LDL-L), total particle concentration (M-LDL-P), phospholipids (M-LDL-PL)
For small particles: total cholesterol (S-LDL-C), total lipids (S-LDL-L), total particle concentration
(S-LDL-P)

VLDL subclass particle constituents strong For small particles: total cholesterol (S-VLDL-C),
For extra-small particles: total lipids (XS-VLDL-L), phospholipids (XS-VLDL-PL)

Other strong HbA1c, Apolipoprotein B, total LDL cholesterol, total serum cholesterol

Proteins

Chemokine activity strong FAM3B, FAM3D, MIP-5, TECK,

Chemokine activity suggestive CCL28

Chemokine receptors strong IL-3RA, HGF receptor, sGP130, VEGF-R2, VEGF-R3

Chemokine receptors none TCCR

Receptor function and/or signaling strong F177A, GP116, IGF-1R, IR, JAG1, MBL, PEAR1, PYY, SECTM1, SEMA6A, TLR4

Receptor function and/or signaling suggestive PLXB2

Receptor function and/or signaling none CD109, CD209, GFRAL, GPIV, LIF-R, Notch-1, PEAR1, sTIE1, sTIE2

Cell adhesion strong Cadherin-1, E-selectin, Endoglin, ICAM-4, ISLR2, Laminin, NCAM-L1, OX2G, P-selectin,
sICAM-1, sICAM-2, sICAM-5

Cell adhesion none ADAM23, BCAM, Cadherin-5, Desmoglein-2, ESAM

Enzyme function strong B3GN2, B4GT1, B4GT2, Cathepsin S, CLIC5, DPEP2, FA20B, FUT10, GLCE, GNS, IAP, LPH,
MA1A2, NDST1, QSOX2, ST4S6, TPST2, XXLT1

Enzyme function none ATS13, BGAT, CEL, CHSTB, DYR, MINP1, TLL1

Miscellaneous strong C1GLC, CASC4, GOLM1, KIN17, THSD1, TUFT1,

Miscellaneous none Factor VIII, OBP2B

ZFPM2 Locus (Chromosome 8)

Blood Cell Traits

Blood cell counts strong white blood cells, granulocytes, basophils þ neutrophils, neutrophils þ eosinophils, basophils,
neutrophils, myeloid, platelets, plateletcrit (%), platelet distribution width, mean platelet volume

Proteins

Cytokine/chemokine activity strong EDA, IL-7, PDGF-AA, PDGF-BB, PDGF-D, VEGF-A, NAP-2, RANTES, TARC

Immune response strong CLM2, COCH, CYTF, DB119

(Continued on next page)
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Table 3. Continued

Group/ Functions Evidence Names

Receptor function and/or signaling strong ANG-1, APP, BDNF, CD44, CGB2, CRIM1, Dkk-1, Dkk-4, EDAR, EPHB2, EPHB3, GI24, GRP, LIRB4,
Mammaglobin-2, OBP2A, P2RX6, PAP1, PTPRD, RGS10, RGS3, RHOG, THA, MESD2

Receptor function and/or signaling suggestive Ephrin-A3

Receptor function and/or signaling none UNC5H4, sRAGE

Cell adhesion strong Galectin-7, KIRR2, MADCAM-1, MFGM, ON, P-Selectin, PCDG8, SCF, SPARCL1

Enzyme activity strong Arylsulfatase A, ASM3A, B4GT7, Cathepsin A, CHSTB, CPXM1, FUT8, GSTM1-1, INP5E, MMEL2,
MYSM1, PAI-1, PDIA5, RIFK, SIRT5, SPTC1, UD2A1

Enzyme activity none PDE3A, ZFP91, LAML2, HECW1

Enzyme inhibitor strong SERPINE2, SPINK5, TICN3, WFD13

Transcription/translation strong APBB1, CENPW, HIF-1a, PAIP1

Transcription/translation suggestive ID2

Miscellaneous strong 4EBP2, APLP2, ARL1, ASIC4, CA063, Coactosin-like protein, CQ089, DJB11, MPP7, NSG2, PROL1,
RBM28, SATB1, SYT11, SYT17, TXNDC4

Miscellaneous none CNA2

Evidence: Evidence of colocalization, Strong¼ PP3þPP4R 0.99 and PP4/PP3R 5; Suggestive¼ PP3þ PP4> 0.75 and PP4/PP3> 3; None¼ association signal for
the trait at the locus, but no evidence of colocalization
Refer to Table S9 for full descriptions of the proteins. The proteins have been grouped into broad functional categories using the Uniprot database.85
various molecular traits. Consistent with our pairwise CO-

LOC analysis, the majority of these colocalizing proteins,

lipids and lipoproteins, and blood cell traits also showed

evidence of multi-trait colocalization (PPA R 80%) with

CAD-cytokine network, T2D-cytokine network, pulmo-

nary embolism-cytokine network, and ischemic stroke-

cytokine network pairs (Tables S12–S15). Overall, this sug-

gested that the ABO locus contributes to the shared genetic

architecture among several known cardiometabolic disease

risk factors, which includes multiple inflammatory, hae-

mostatic, and metabolic processes.
Discussion

In this study,wefirst identified anetwork of 11 correlated cy-

tokines which are known to participate in a broad array of

immune responses in circulation. These cytokines include

those involved in the classical TH1 (IL-12, IFN-g), TH2 (IL-4,

IL-6, and IL-10), TH17 (IL-6, IL-17, and G-CSF), and Treg (IL-

10) responses52,53 as well as the promotion of angiogenesis,

tissue repair, and remodelling typically coinciding with in-

flammatory and post-inflammatory states (VEGF-A, FGF-

basic, and PDGF-BB).54 Although previous in vitro challenge

studies20,21 indicate antagonistic relationships among

selected cytokines in the network, our analyses in>9,000 in-

dividuals are consistentwith a previous studywhich utilized

similar data,19 showing that these 11 circulating cytokines

are positively correlated in the general population. There-

fore, at the population level, it is more likely that an equilib-

rium in circulating levels of disparate cytokines exists,

possibly maintained by counter-regulatory mechanisms.

Our multivariate GWAS meta-analysis identified eight

loci associated with the cytokine network, confirming six
The American Jour
previously reported associations for circulating cytokine

levels14,16,19 as well as uncovering two additional signals

(PDGFRB and ABO), empirically demonstrating that jointly

modeling correlated traits in a multivariate GWAS can in-

crease statistical power to detect additional associations

compared to the univariate approach. This contributes to

the growing body of literature which shows, through

both simulation and empirical analyses, that multivariate

outperforms the univariate analysis, leading to the identi-

fication of novel pleiotropic loci.22,28–30 On the other

hand, we and others have also noted that in certain cir-

cumstances, the multivariate approach may suffer from

power loss; for example, when the SNP influences nearly

all the traits equally or the direction of genetic and cross-

trait correlation is the same.22,23,61

Further, integrative genetic analyses revealed evidence

for shared genetic influences between these loci, molecular

QTLs, and complex trait and disease associations. This

study identified several regions harboring cytokine-associ-

ated signals that colocalize with whole blood and/or im-

mune cell-specific cis-eQTLs for a number of genes,

including SERPINE2, ABO, and PCSK6, suggesting that

these genes are possible candidates underlying the collec-

tive expression of cytokines in the cytokine network—or

vice versa. Our findings also highlight the fact that the

cytokine network associations at the pleiotropic loci,

ABO and ZFPM2, overlap with signals associated with mul-

tiple traits, including cardiometabolic diseases, immune-

related proteins, and platelet traits.

SERPINE2 encodes protease nexin-1, an inhibitor of

serine proteases such as thrombin and plasmin, and is

therefore implicated in coagulation, fibrinolysis, and

tissue remodelling.62 It shares similar functions with its

better-known homolog SERPINE1 (MIM: 173360), or
nal of Human Genetics 105, 1076–1090, December 5, 2019 1085



plasminogen activator inhibitor-1 (PAI-1), the elevation of

which is associated with thrombosis and cardiovascular

risk.62 However, there is also evidence that SERPINE2 has

pleiotropic roles in immune and inflammatory regulation,

roles that could be either dependent or independent of its

function as a serine protease. It is expressed in many tissue

types, and its expression can be induced by pro-inflamma-

tory cytokines such as IL-1a.63,64 Conversely, SERPINE2

can itself influence inflammatory status: SERPINE2 is a

candidate susceptibility gene for chronic obstructive pul-

monary disease, and SERPINE2-knockout mice exhibited

extensive accumulation of lymphocytes in the lungs,

through a mechanism linked to thrombin and NFkB acti-

vation.64 We observed in our data that the cytokine

network associations overlapped with the SERPINE2

pQTL signal. Moreover, using immune cell-specific cis-

eQTL data, we further demonstrated colocalization be-

tween the cytokine network and SERPINE2 cis-eQTL

signals specifically in CD4þ Tcells and B cells. This suggests

that the association between SERPINE2 and the cytokine

network at this locus is at least partially driven by lympho-

cytic expression—consistent with SERPINE2 itself influ-

encing chemotaxis and recruitment of lymphocytes.64

Our analyses demonstrate that the importance of

SERPINE2 in regulating immune and inflammatory pro-

cesses is potentially greater than previously anticipated,

and warrants further targeted research.

Like SERPINE2, the ABO locus has widespread pleiotropic

effects. The most well-known function of ABO is its deter-

mination of blood group. The human ABO gene has three

major alleles (A, B, and O) that determine ABO blood type.

The A and B alleles encode for distinct ‘‘A’’ versus ‘‘B’’ gly-

cosyltransferases that add specific sugar residues to a pre-

cursor molecule (H antigen) to form A versus B antigens,

respectively.65 The O allele results in a protein without gly-

cosyltransferase activity.65 The lead cytokine-associated

variant rs550057 and its proxies in moderate LD (r2 ¼
0.6; rs507666, rs687289) have been previously shown to

determine the ABO allele,66 but they have also been associ-

ated with circulating levels of inflammatory proteins such

as sICAM-1, P-selectin, and ALP.17,67,68 Our study showed

that cytokine network associations at the ABO locus share

colocalized signals with a host of other proteins and traits,

including lipoproteins (IDL, LDL, and VLDL), proteins of

immune function, immune cell subsets, and cardiometa-

bolic diseases (Table 3); these results highlight the poten-

tial for shared molecular etiology among these traits. Our

analyses highlight the potential genetic basis for numerous

previous observations linking ABO blood group to an array

of similar traits and phenotypes.18,69–74 We also observed

multi-trait colocalization among cardiometabolic diseases,

cytokine network, and other features relating to multiple

inflammatory (e.g., inflammatory proteins, cytokines,

and cytokine receptors), haemostatic (blood cell traits),

and metabolic processes (lipids and metabolites); this

further strengthens the evidence for a shared causal

variant. Altogether, these results suggest that certain
1086 The American Journal of Human Genetics 105, 1076–1090, Dec
genetic variants, e.g., at the ABO locus, influence the risk

of cardiometabolic disease through a constellation of

pleiotropic effects.

It could therefore be speculated, due to its involvement

inmultiple inflammatory, haemostatic, andmetabolic pro-

cesses, that the ABO gene influences the risk of cardiometa-

bolic disease; however, our current understanding of the

mechanisms behind this remains unclear. For instance,

non-O blood groups have been associated with increased

risk of cardiovascular disease, venous thromboembolism,

stroke, and T2D.70,75 However, the O blood group has itself

been linked to elevated IL-10 and worse outcomes given

existing coronary disease (risk of cardiovascular death, of

recurrent myocardial infarction, and of all-cause mortal-

ity).66 Other studies have suggested a role for von Wille-

brand factor (VWF), a coagulative factor which also

expresses ABO antigens—in particular, the O phenotype

is associated with lower VWF, which may explain reduced

thrombotic and cardiovascular risk.66,76 It has been sug-

gested that the link between ABO blood group type and

venous thromboembolism (VTE) is potentially driven by

VWF and Factor VIII—non-O blood group individuals pre-

sented a higher risk of venous thromboembolism and had

elevated levels of both VWF and Factor VIII.77,78 Also rele-

vant is the link between ABO and adhesion molecules such

as E-selectin and sICAM-1 which are overexpressed in in-

flammatory states.18,68,72,73 sICAM-1 is a known positive

correlate with cardiovascular disease; however, it is the A

blood group, not O, that is associated with reduced

sICAM-1 levels, again complicating the picture.72 Inferring

the exact causal relationships among all these entities will

require intricate follow-up experimental investigation,

involving simultaneous examination of all key players. It

is particularly unclear whether the link with cardiometa-

bolic diseases may be due to its direct modification of H an-

tigen, or of the glycosyltransferase activity of the encoded

enzyme on other proteins, or some combination of both.

In our study, formal causal inference (e.g., with Mendelian

randomization) was not possible because the correspond-

ing multivariate beta-coefficients and standard errors are

not currently calculable and the locus itself has extensive

pleiotropy.

The ZFPM2 locus has been associated with platelet

traits,60 and our findings highlight its importance as a

determinant of platelet and angiogenic cytokine activity.

ZFPM2 encodes a zinc finger cofactor that regulates the ac-

tivity of GATA4, a transcription factor reported to play a

critical role not only in heart development79 but also in

modulation of angiogenesis. In particular, GATA4 directly

binds to the promoter of angiogenic factor VEGFA and reg-

ulates its expression,80 and it has been shown that disrup-

tion of ZFPM2-GATA4 interaction alters the expression of

VEGFA and other angiogenesis-related genes.81 VEGF-A

and PDGFR-BB, which are part of the cytokine network,

have been found to be released via alpha granules of acti-

vated platelets, and serum VEGF-A levels correlate closely

with blood platelet counts.82–84 In our study, we show
ember 5, 2019



that the cytokine-associated signal at the ZFPM2 locus co-

localized with GWAS signals for platelet traits (platelet

count, platelet distribution width, and mean platelet vol-

ume) and platelet proteins (e.g., VEGF-A, PDGF-AA,

PDGF-BB, PDGF-D, angiopoietin, and P-selectin). Our find-

ings provide additional insights into the relationships

between the ZFPM2 locus, cytokines and various platelet-

associated proteins, and their role in platelet biology. The

lead cytokine network SNP rs6993770 has been reported

to be a trans-eQTL in whole blood for gene products typi-

cally found in platelets and their receptors (e.g., CXCL5,

GP9, MYL9, and VWF).46 Collectively, these findings sug-

gest that this locus regulates the number and/or cytokine

activity of circulating platelets, and that this potentially

occurs via interaction with GATA4 (MIM: 600576) and

regulation of VEGFA.

In conclusion, our study illustrates the utility of multi-

variate analysis of correlated immune traits and highlights

potentially fruitful avenues of biological investigation for

multivariate genetic signals. Our results highlight the fact

that certain gene loci drive the expression of a cytokine

network with immune, inflammatory, and tissue repair

functions; and, simultaneously, these loci are implicated

in the regulation of other haemostatic and metabolic func-

tions, with relevance to human health and disease. This

stresses the fact that the processes of inflammation, hae-

mostasis, and repair often run concurrent with each other

after injury, and that biological systems often feature

ample redundancy and feedback loops within individual

effectors.
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nen, L., Räsänen, L., Pietikäinen, M., Hutri-Kähönen, N., Tait-

tonen, L., Jokinen, E., Marniemi, J., et al. (2008). Cohort

profile: the cardiovascular risk in Young Finns Study. Int. J. Ep-

idemiol. 37, 1220–1226.

34. Borodulin, K., Vartiainen, E., Peltonen, M., Jousilahti, P.,

Juolevi, A., Laatikainen, T., Männistö, S., Salomaa, V.,
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Figure S1: Comparison of cytokine-cytokine correlation in FINRISK07, FINRISK02, and YFS07.  

The heatmaps show the correlations between the normalised cytokines residuals in the discovery dataset, 
(A) FINRISK97, and the replication datasets, (B) FINRISK02 and (C) YFS07. Each square represents 
the Pearson’s correlation coefficient between the cytokines. The black box shows the correlation 
patterns among the 11 correlated cytokines (discovered using the FINRISK97) across the three datasets. 
The correlation matrix in FINRISK07 was subjected to hierarchical clustering using distance as 1 minus 
the absolute value of the correlations. The ordering of rows and columns in FINRISK02 and YFS07 was 
defined by the ordering in FINRISK07. The strength of the correlations is indicated by the colour on the 
scale, where red is a high positive correlation. 
 
 
 
 
  



 
 
Figure S2: Quantile-quantile (Q-Q) plots resulting from the multivariate GWAS in the three 
cohorts separately and meta-analysis.  

Q-Q plots of observed (y-axis) vs. expected P-values (x-axis) for each SNP from the multivariate 
genome-wide association in (A) FINRISK97, (B) FINRISK02, (C) YFS07, and (D) Meta-analysis of 
the three cohorts. The diagonal red line (y=x) indicates null hypothesis of no association. The inflation 
factor (λ) was between 1.0 – 1.02 suggesting that inflation from population substructure or other 
confounders was appropriately adjusted for. 
 
 
  



 
 
Figure S3: Regional association plots for each of the 8 loci associated with the cytokine network 
from the meta-analysed multivariate GWA analysis. 

(A) VEGFA locus, rs7767396 is an intergenic SNP located 172.83kb downstream of vascular 
endothelial growth factor A (VEGFA) gene on chromosome 6p21.1. (B) SERPINE2 locus, rs6722871 
lies 10.9kb upstream of SERPINE2 on chromosome 2q36.1. (C) ZFPM2 locus, rs6993770 lies within 
intron 4 of the zinc finger protein multitype 2 (ZFPM2) gene on chromosome 8q23.1. (D) VLDLR locus, 
rs7030781 is situated ~31.8kb away from the very low-density lipoprotein receptor (VLDLR) gene on 
chromosome 9p24.2. For each plot, the circles represent the -log10 meta-analysed P-values (y-axis) of 
SNPs plotted against their chromosomal position (x-axis). The lead SNP in each plot is denoted by a 
purple circle, and its pairwise LD (r2) strength with other SNPs in the region, estimated from the “1000 
genomes Mar 2012 EUR” population, is indicated by color. The blue lines indicate the recombination 
rates. The plots were generated using the LocusZoom online tool 
(http://locuszoom.sph.umich.edu/locuszoom/). 
  



 
 
Figure S3: Regional association plots for each of the 8 loci associated with the cytokine network 
from the meta-analysed multivariate GWA analysis 

(E) PCSK6 locus, rs11639051 is located in the second intron of PCSK6 (proprotein convertase 
subtilisin/kexin type 6) on chromosome 15q26.3. (F) F5 locus, rs9332599 is located within intron 
twelve of factor V (F5) gene on chromosome 1q24.2. (G) PDGFRB locus, rs2304058 lies within the 
tenth intron of the platelet-derived growth factor receptor-beta (PDGFRB) gene on chromosome 5q32. 
(H) ABO locus, rs550057 is located within the first intron of ABO gene on chromosome 9q34.2. 
 
 
  



 



Figure S4: Loadings, the contribution of each cytokine in the cytokine network to the multivariate 
association results with the lead SNPs at the VEGFA, SERPINE2, ZFPM2, VLDLR and PCSK 
locus in each study cohort.  

The trait loadings are output results from MV-PLINK – the sign of the loadings for each cytokine in 
each cohort indicates whether the genetic variant influences different cytokines in the same or opposite 
effect direction. The dotted lines mean that the locus did not achieve 1 x 10-5 in a particular cohort. The 
top cytokine(s) for each locus is highlighted in red. The univariate meta-analysed P-values, for each 
cytokine, for the new loci (ABO, PDGFRB and F5) identified in the multivariate analysis are also 
provided.  
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