# **Supplementary Methods**

#### Antibodies and Reagents

The following antibodies were used in western blot, immunofluorescent, immunoprecipitation, and immunohistochemical analyses: Flag (F3165; Sigma-Aldrich, St Louis, MO), hemagglutinin (11666606001; Roche Diagnostics, Indianapolis, IN), Myc (Sigma-Aldrich), PDL1 (13684; Cell Signaling Technology, Danvers, MA), PDL1 (329702; Bio-Legend, San Diego, CA; ab205921; Abcam, Cambridge, UK), granzyme B (ab4059; Abcam),  $\alpha$ -tubulin (B-5-1-2; Sigma-Aldrich), GSK3B (BD Transduction Laboratories, San Diego, CA), TRAF6 (Abcam),  $\beta$ -actin (A2228; Sigma-Aldrich), CD8 (ab22378; Abcam), MET (8198; Cell Signaling Technology), and p-MET (3077; Cell Signaling Technology). Capmatinib was purchased from Selleck Chemicals (Houston, TX) and GSK3B substrate peptide was purchased from Millipore Sigma (Burlington, MA). Active recombinant human MET, puromycin, and staurosporine were obtained from Sigma-Aldrich. Phospho-specific antibodies against phosphorylation of GSK3B at Y56 were generated by EZBiolab (Carmel, IN).

#### Cell Culture, Plasmids, and Transfection

All cell lines were obtained from the ATCC (Manassas, VA), independently validated using short tandem repeat DNA fingerprinting at The University of Texas MD Anderson Cancer Center, and tested negative for mycoplasma contamination. Cells were maintained in Dulbecco's modified Eagle's medium/F12 medium or RPMI 1640 medium supplemented with 10% fetal bovine serum.

pCR-Flag-TRAF6 was kindly provided by Dr Bryant Darnay. pCGN-GSK3B-WT, pCGN-GSK3B-kinase-dead, pGEX-GSK3B, pRK5-hemagglutinin-tagged ubiquitin WT, Lys48R, and Lys63R were constructed for transient transfection as described previously.<sup>1</sup> A series of WT GSK3B and GSK3B mutants used for various purposes were subsequently constructed using pCMV-Flag, pGEX-6P-1, and pMX-Flagpuro vectors at EcoRI cloning sites. GSK3B Y56F and GSK3B P51A (PE) mutants were generated using pCMV-Flag-GSK3B as a template and QuikChange Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA). All DNA constructs were validated using enzyme digestion and DNA sequencing; detailed information about the DNA sequence is available upon request. WT TRAF6- and C70A-expressing cell lines were generated by transient transfection with DNA performed with an optimal ratio of DNA to liposomes using Lipofectamine 3000 (Invitrogen, Carlsbad, CA). For stable knockdown of MET expression and induction of MET overexpression, liver cancer cells were transfected with a pGIPZ shRNA vector (control; Thermo Fisher Scientific, Rockford, IL) and pCDH-neo vector (System Biosciences, Palo Alto, CA). The MET shRNA sequences used in knockdown experiments were as follows (5' to 3'): CCATCCA-GAATGTCATTCT (sh1) and GCATTAAAGCAGCGTATC (sh2; targeting the 3'-untranslated region). Using the pCDH-MET-Flag expression vector as a template, MET-Flag kinase mutants were generated by performing site-directed mutagenesis. For generation of stable HCC cells using retroviral infection, recombinant retroviruses were produced by cotransfecting GP293 cells (Clontech, Palo Alto, CA) with a retroviral expression plasmid and VSV-G plasmids using Lipofectamine 3000 (Invitrogen). Culture supernatants containing infectious viruses were harvested 48 hours after transfection, centrifuged to eliminate cell debris, and filtered through 0.22-mm filters. For transduction of retroviral constructs, 70% confluent HCC cells were cultured in virus-containing medium plus hexadimethrine bromide (Polybrene; Chemicon International, Temecula, CA) for 1 day to generate 70% successfully infected cells by visualizing green fluorescent protein expression. Stable clones of different constructs were subsequently selected and maintained in a culture medium with puromycin 2  $\mu$ g/ mL. The lentiviral-based shRNA (pGIPZ plasmids) used to knock down expression of human PDL1 was purchased from the shRNA and ORFeome Core at MD Anderson. Using a pGIPZ-shPDL1/Flag-PDL1 dual-expression construct to knock down endogenous PDL1 expression and reconstitute Flag-PDL1 simultaneously, endogenous PDL1-knockdown and WT Flag-PDL1- or 4NQ mutant (N35Q/N192Q/ N200Q/N219Q)-expressing cell lines were established.<sup>2</sup> Twenty-four hours after transfection, the medium was changed and then collected at 24-hour intervals. The collected medium containing the lentivirus was centrifuged to eliminate cell debris and filtered through  $0.45 - \mu m$  filters. Cells were seeded at 50% confluence 12 hours before infection, and the medium was replaced with medium containing the lentivirus. After infection for 24 hours, the medium was replaced with fresh medium, and the infected cells were selected using puromycin 2 µg/mL (InvivoGen, San Diego, CA).

#### Proliferation Assay

For cell proliferation assays, control HCC cells and cells previously intervened with capmatinib or tivantinib 1  $\mu$ mol/L for 48 hours were used. Three thousand cells dispensed in 100- $\mu$ L aliquots were seeded in a 96-well plate, and viable cells were measured after 24, 48, and 72 hours according to the manufacturer's protocol. Cells were incubated in 10% Cell Counting Kit-8 (Dojindo Molecular Technologies, Gaithersburg, MD) and diluted in culture medium for an additional 2 hours. The absorbance at a wavelength of 450 nm was used to estimate the viable cells in each well.

#### Flow Cytometric Analysis

To measure cell surface PDL1 expression, single HCC cells were resuspended in phosphate buffered saline (PBS) and stained with primary antibodies according to standard protocols for flow cytometry. The cells were washed twice and then stained with secondary antibodies conjugated with allophycocyanin (Life Technologies, Carlsbad, CA). Isotype immunoglobulin G or a secondary antibody alone was used as a negative control. Stained cell samples were evaluated using a BD FACSCanto II cytometer (BD Biosciences, San

Jose, CA), and flow cytometric data were analyzed using the FlowJo software program (Ashland, OR).

## T-Cell-Mediated Tumor Cell Killing Assay

To analyze T-cell-killing ability in vitro, nuclear restricted red fluorescent protein-expressing tumor cells were cocultured with activated primary human T cells or peripheral blood mononuclear cells (STEMCELL Technologies, Vancouver, BC, Canada) in the presence of a caspase 3/7 substrate (Essen BioScience, Ann Arbor, MI) in 96-well plates. T cells were activated with a CD3 antibody (100 ng/mL) and interleukin-2 (10 ng/mL). After 4 days of coculture of tumor cells and T cells in 12-well plates, wells were washed with PBS twice to remove the T cells, and the surviving tumor cells were fixed and stained with a crystal violet solution. The dried plates were scanned and quantified.

# Quantitative Real-Time Polymerase Chain Reaction

HCC cells were washed twice with PBS and immediately lysed in QIAzol lysis reagent. Total RNA was extracted from HCC cells using an RNeasy Plus Mini Kit (QIAGEN, Venlo, Netherlands) according to the manufacturer's instructions and then subjected to complementary DNA synthesis by reverse transcription using a SuperScript III kit (Invitrogen). Quantitative real-time polymerase chain reaction analysis of  $\beta$ -actin and PDL1 was performed using iQ SYBR Green Supermix (Bio-Rad, Hercules, CA) in triplicate with a real-time polymerase chain reaction machine (iQ5; Bio-Rad) and the following primers: human PDL1, 5'-TCACTTGGTAATTCTGGGAGC-3' and (forward) 5'-CTTTGAGTTTGTATCTTGGATGCC-3' (reverse);  $\beta$ -actin, 5'-GCAAAGACCTGTACGCCAACA-3' (forward) and 5'-TGCATCCTGTCGGCAATG-3' (reverse). All data analyses were performed using the comparative threshold cycle method. Results were normalized according to internal control  $\beta$ -actin mRNA expression.

## Western Blot Analysis and Immunoprecipitation

Western blot analysis of target proteins was performed as previously described.<sup>3,4</sup> Image acquisition and band intensity quantitation for western blotting was performed using an Odyssey infrared imaging system (LI-COR Biosciences, Lincoln, NE). For immunoprecipitation, liver cancer cells were lysed in buffer (Tris-HCl 50 mmol/ L. pH 8.0. NaCl 150 mmol/L. EDTA 5 mmol/L. 0.5% Nonidet P-40) and centrifuged at 16,000  $\times$  g for 30 minutes to remove debris. Cleared lysates were subjected to immunoprecipitation with antibodies. Two micrograms of antibodies were added to lysates with 30  $\mu$ L of protein A/ G agarose beads. Samples of tagged lysates were incubated on a rotating wheel overnight at 4°C. Beads were collected by centrifugation at 1,000 rpm for 2 minutes at 4°C and washed 5 times with ice-cold PBS buffer. Immunocomplex samples were boiled directly in  $2 \times$  sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis sample buffer (Tris-HCl 50 mmol/K, pH 6.8, 2% SDS, 10% glycerol, 1%  $\beta$ -mercaptoethanol, EDTA 12.5 mmol/L, 0.02% bromophenol blue) followed by SDS-polyacrylamide gel electrophoresis and western blot analysis.

## In Vitro and In Vivo Ubiquitination Assay

For an in vitro ubiquitination assay, purified GSK3B protein was incubated with in vitro translated TRAF6 or TRAF6 C70A in the presence of a ubiquitin ligation buffer containing Tris-HCl 100 mmol/L (pH 7.4), MgCl<sub>2</sub> 5 mmol/L, NaF 2 mmol/L, okadaic acid 10 nmol/L, ATP 2 mmol/L, dithiothreitol 0.6 mmol/L, E1 60 ng, E2 300 ng, and histidine (His)-tagged ubiquitin 12 mg (Sigma-Aldrich). Reaction mixtures of these materials were incubated at 37°C for 60 minutes, and the reaction was terminated by boiling for 5 minutes with an SDS sample buffer containing dithiothreitol 0.1 mol/L. These reaction products were resolved by SDSpolyacrylamide gel electrophoresis and blotted with a Histagged ubiquitin antibody. For in vivo ubiquitination assays, HCC cells were transfected with hemagglutinintagged ubiquitin, Flag-tagged WT GSK3B, or GSK3B PE and TRAF6 or TRAF6 C70A. GSK3B in HCC cells was immuno-precipitated and then blotted with antibody against ubiquitin or hemagglutinin.

## Tumor-Infiltrating Lymphocyte Profiling and Tumor-Cell Analysis Using Time-of-Flight Mass Cytometry or Flow Cytometry

Excised hepatocellular tumors were digested to single cells using a gentleMACS Dissociator with a mouse Tumor Dissociation Kit (Miltenyi Biotec, Auburn, CA). Tumorinfiltrating lymphocytes and tumor cells were enriched on a Ficoll gradient (Sigma-Aldrich). For time-of-flight mass cytometric analysis, tumor-infiltrating lymphocytes and tumor cells were incubated with a mixture of metal-labeled antibodies (Supplementary Table 1) for 30 minutes at room temperature, washed twice, and incubated with Cell-ID Intercalator-<sup>103</sup>Rh (Fluidigm, San Francisco, CA) overnight at 4°C. A sample of labeled tumor-infiltrating lymphocytes or tumor cells was analyzed using a time-offlight mass cytometry 2 instrument (Fluidigm) at the Flow Cytometry and Cellular Imaging Facility at MD Anderson. For flow cytometry, cells were stained with CD3 and peridinin-chlorophyll protein, CD8 and allophycocyanin or cyanine 7, and granzyme B-Pacific Blue antibodies (Bio-Legend). Stained samples were analyzed using the BD FACSCanto II cytometer.

## Identification of Phosphorylation Sites in HCC Cells Using Mass Spectrometry

Hep3B cells overexpressing Flag-tagged GSK3B and MET were subjected to immunoprecipitation. After protein gel electrophoresis, the gel was stained with Coomassie blue. The band corresponding to GSK3B phosphorylation by MET was excised from the gel and subjected to tryptic digestion. The band containing GSK3B was subsequently isolated

Gastroenterology Vol. 156, No. 6

using immobilized metal affinity chromatography, and enriched phospho-peptides were analyzed using microliquid chromatography and tandem mass spectrometry. The peptide sequences were searched against the National Center for Biotechnology Information protein sequence database using the Mascot search engine.

### In Vitro Kinase Assay and Phosphorylation Analysis

Expression of glutathione S-transferase and glutathione S-transferase–GSK3B–kinase-dead fusion proteins was induced in *Escherichia coli* BL-21 cells, and these proteins were purified using glutathione-agarose beads (17-0756-01; Amersham, Little Chalfont, UK) using a standard procedure. Purified proteins were incubated with active human recombinant MET (Sigma-Aldrich) in the presence of ATP 50  $\mu$ mol/L in a kinase buffer for 30 minutes at 30°C. Reaction products were subjected to SDS-polyacrylamide gel electrophoresis and then blotted with an antibody against a target protein.

For complex immune analysis, GSK3B was immunoprecipitated from whole cell lysates by incubating total cell protein 75  $\mu$ g for 2 hours with a rabbit GSK3B antibody 2  $\mu$ g in the presence of protein A/G agarose beads and washed as previously described.<sup>5</sup> The immuno-precipitates were incubated for 45 minutes at 30°C in  $4 \times$  kinase assay buffer,  $[\gamma^{-32}P]$  ATP 10  $\mu$ Ci, and synthetic peptide substrate of GSK3B 150 µmol/L, spotted onto P81 phospho-cellulose, and washed in 0.75% H<sub>3</sub>PO<sub>4</sub>. The activity was determined by scintillation counting. Purified GSK3B (0.2  $\mu$ g; Upstate Biotechnology, Waltham, MA) was used as a positive kinase control, and a negative GSK3B substrate peptide (Calbiochem, San Diego, CA) was used to detect background phosphorylation (eg, GSK3B autophosphorylation). The resulting GSK3B activity data were obtained after the background phosphorylation was subtracted.

#### Yeast Two-Hybrid Assay

pGBT9, pGBT-GSK3B, and pGBT-GSK3B PE paired with pACT-TRAF6 were co-transformed into yeast Y190 cells using a Matchmaker Two-Hybrid System 2 (Clontech) according to the manufacturer's instructions. Yeast cells containing corresponding vectors were grown in tryptophan and leucine selection media for 24 hours at 30°C. For a yeast survival assay, yeast transformants at an optical density of 1.6 were resuspended in PBS. Ten-fold serially diluted yeast cells were spotted onto synthetic complete medium plates lacking tryptophan, leucine, and His with or without 3amino-1,2,4-triazole 20 mmol/L (Sigma-Aldrich). The plates were incubated at 30°C until colonies were observed.

#### Clinical Tumor Samples and Follow-up

Tumor samples were collected from 268 patients with HCC who underwent surgical resection from August 2001 to November 2007 at the Fudan Liver Cancer Institute (Shanghai, People's Republic of China) for use in tissue microarrays. Patients were monitored after surgery until March 15, 2009 at the Liver Surgery Department at the Zhongshan Hospital of the Fudan University (Shanghai, People's Republic of China). The Research Ethics Committee of the Zhongshan Hospital approved the use of tumor samples. Postsurgical follow-up was conducted as previously described.<sup>6</sup> Overall survival was defined as the interval from tumor resection to death or last follow-up examination, and disease-free survival was defined as the interval from the date of resection to the date of tumor recurrence.

#### Immunohistochemistry

Tissue microarrays containing HCC patient samples were constructed as previously described.<sup>7</sup> Mouse liver tumor samples were obtained from tumor xenografts. Immunohistochemical staining of the samples was performed as previously described.<sup>4</sup> Briefly, each tissue sample was stained with specific antibodies as indicated and a biotin-conjugated secondary antibody and then incubated with an avidin-biotin-peroxidase complex. Visualization of the target protein was performed using 3-amino-9ethylcarbazole chromogen. The samples were scored using an H-score method combining the values of immunoreaction intensity and percentage of tumor-cell staining. The final immunohistochemical score was calculated by multiplying the percentage of target protein positive cells by the intensity score. The staining intensity was ranked in 4 groups according to histologic score: high (+++), medium (++), low (+), and negative (-).

#### Immunofluorescence

For immunocytochemistry, HCC cells were fixed in 4% paraformaldehyde at room temperature for 15 minutes, made permeable in 5% Triton X-100 for 5 minutes, and then stained with primary antibodies. Secondary antibodies used were anti-mouse Alexa Fluor 488 or 594 dye conjugate and anti-rabbit Alexa Fluor 488 or 594 dye conjugate (Life Technologies). Nuclei were stained with 4,6-diamidino-2-phenylindole (blue; Life Technologies). After mounting, the cells were visualized using a multiphoton confocal laser-scanning microscope (LSM700; Carl Zeiss, Oberkochen, Germany).

Mouse liver tumor samples were frozen in an optimal cutting temperature block immediately after extraction. Cryostat sections of samples that were 5  $\mu$ m thick were attached to saline-coated slides. The cryostat sections were fixed with 4% paraformaldehyde for 15 minutes at room temperature and blocked with a blocking solution (5% bovine serum albumin, 2% donkey serum, and PBS 0.1 mol/L) at room temperature for 30minutes. Sample sections were stained with primary antibodies overnight at 4°C followed by secondary antibodies at room temperature for 1hour. The LSM700 microscope was used for image analysis.

#### Animal Studies

All procedures using C3H, nonobese diabetic and severe combined immunodeficiency gamma (NOD.Cg-Prkdc<sup>scid</sup>Il2rg<sup>tm1Wjl</sup>/SzJ), and C57BL/6 mice (male, 6 weeks old; The Jackson Laboratory, Bar Harbor, ME, USA) were conducted under guidelines approved by the MD Anderson Institutional Animal Care and Use Committee. Tumorigenicity assays were performed using mouse subcutaneous and orthotopic liver cancer models. For the subcutaneous tumor model, HCA-1 and Hep1-6 liver cancer cells (5  $\times$  10<sup>6</sup>) were subcutaneously injected into the right inguinal fold regions of C3H and C57BL/6 mice. For the orthotopic tumor model, subcutaneous Hep1-6 tumors were cut into cubes (1 mm<sup>3</sup>) under aseptic conditions. Then, single cubes were inoculated into the liver parenchyma of C57BL/6 mice anesthetized using xylazine. Mice were randomly assigned to groups according to mean tumor volume. For antibody-based drug intervention, PD1 antibody 100  $\mu$ g (RMP1-14; Bio X Cell, West Lebanon, NH) or rat immunoglobulin G (control; Bio X Cell) were injected intraperitoneally every 3 days 1 week after tumor-cell inoculation. For drug-based drug intervention, mice were given daily oral doses of capmatinib 10 mg/kg reconstituted in 0.5% methylcellulose and 5% dimethylacetamide<sup>8</sup> or tivantinib 100 mg/kg<sup>9</sup> formulated in tocopherol polyethylene glycol 1000 succinate (BioXtra, water-soluble vitamin E conjugate). Subcutaneous tumors were measured using a caliper, and orthotopic tumors were evaluated using high-frequency ultrasound (Vevo 2100 imaging system; FUJIFILM VisualSonics Inc, Toronto, ON, Canada) twice a week (Supplementary Figure 4A). Tumor volumes were calculated using the formula (length  $\times$ width<sup>2</sup>)/2. At the experimental end point, mice were killed using CO<sub>2</sub> exposure followed by cervical dislocation, and tumors were excised for subsequent histologic analysis or processed immediately for mass cytometric and flow cytometric analyses.

## Statistical Analysis

The relation of the expression of different proteins in liver tumors was determined by Pearson correlation analysis. Statistical analysis was performed using SPSS (IBM Corporation, Armonk, NY). The level of significance was set at .05.

## References

- 1. Lee DF, Kuo HP, Liu M, et al. KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol Cell 2009;36:131–140.
- Li CW, Lim SO, Xia W, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 2016;7:12632.
- Lim SO, Gu JM, Kim MS, et al. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 2008;135:2128–2140 e1-8.
- Lee DF, Kuo HP, Chen CT, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 2007;130:440–455.
- Singer CA, Vang S, Gerthoffer WT. Coupling of M(2) muscarinic receptors to Src activation in cultured canine colonic smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 2002;282:G61–G68.
- Sun HC, Zhang W, Qin LX, et al. Positive serum hepatitis B e antigen is associated with higher risk of early recurrence and poorer survival in patients after curative resection of hepatitis B-related hepatocellular carcinoma. J Hepatol 2007;47:684–690.
- Zhou SL, Dai Z, Zhou ZJ, et al. Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology 2012; 56:2242–2254.
- Liu X, Wang Q, Yang G, et al. A novel kinase inhibitor, INCB28060, blocks MET-dependent signaling, neoplastic activities, and cross-talk with EGFR and HER-3. Clin Cancer Res 2011;17:7127–7138.
- Rimassa L, Assenat E, Peck-Radosavljevic M, et al. Second-line tivantinib (ARQ 197) vs placebo in patients (Pts) with MET-high hepatocellular carcinoma (HCC): results of the METIV-HCC phase III trial. J Clin Oncol 2017;35:4000.





**Supplementary Figure 2.** MET binds to and phosphorylates GSK3B at Tyr56 to down-regulate its ubiquitination. (*A*) Hep3B cells coexpressing MET and an empty vector, Flag-GSK3B, Flag- IKK $\alpha$ , Flag-IKK $\beta$ , Flag-IKK $\gamma$ , or Flag-ERK were immunoprecipitated with a Flag antibody. The total amount of immuno-precipitates was determined by western blotting with a phospho-tyrosine antibody (4G10) to detect phosphorylation. (*B* and *C*) Mass spectrometric analyses identifying GSK3B Y56 phosphorylation (*B*) in vivo and (*C*) in vitro. (*D*) Immunofluorescent staining of the PDL1, CD8, and granzyme B protein expression patterns in HCA-1 cells after drug intervention. ERK, extracellular signal-regulated kinase; E.V., empty vector; IKK, I $\kappa$ B kinase; Tyr56, Y56.

**Supplementary Figure 1.** MET inhibition drives PDL1 expression that correlates with poor prognosis for HCC. (*A*) Control HCA-1 cells or cells treated with capmatinib or tivantinib for 48 hours at a concentration of 1  $\mu$ mol/L were subjected to a Cell Counting Kit-8 assay, and viable cells were measured after 24, 48, and 72 hours. (*B*) Immunoblot analysis of whole cell lysates derived from HCA-1 and Hep3B cell lines treated with or without the MET inhibitor capmatinib or tivantinib at the indicated concentrations for 48 hours. (*C* and *D*) Prognostic value of PDL1 expression according to Kaplan-Meier analysis of overall (*C*) and disease-free (*D*) survival in patients with HCC. (*E*) Representative HCC samples exhibiting expression and PDL1 (*yellow*) at low (*top*) and high (*bottom*) levels. Scale bars, 100  $\mu$ m. (*F*) (*Left*) immunoblot of MET protein expression and PDL1 expression and PDL1 expression induced by a vector control and MET knockdown in HA22T and HA59T cells. (*Middle*) Immunoblot of MET protein expression and PDL1 expression and PDL1 expression for levels. (*Right*) PDL1 quantification of western blot results from left and middle panels. Intensity of PDL1 protein was quantified using a densitometer. (*G*) (*Left*) Western blot analysis of PDL1 protein and p-MET in HCC cell lines. (*Right*) Intensity of PDL1 protein and p-MET was quantified using a densitometer. (*H*) Immunoblot of MET protein and PDL1 expression in vector control, WT MET-expressing Hep3B, and MET kinase-dead Hep3B cells. (*I*) Results of quantitative real-time polymerase chain reaction analysis of PDL1 mRNA expression in MET-knockdown Hep3B and SK-HEP-1 cells are shown. CCK8, Cell Counting Kit-8; CTRL, control; KD, kinase-dead; OE, overexpression.



**Supplementary Figure 3.** MET up-regulates GSK3B activity in HCC cells by suppression of TRAF6-mediated GSK3B K63 ubiquitination. (*A*) Interaction between GSK3B and TRAF6 based on a yeast 2-hybrid assay. Yeast cells containing corresponding vectors were grown in tryptophan and leucine selection media for 24 hours at 30°C. Ten-fold serially diluted yeast cells were spotted onto synthetic complete medium plates lacking tryptophan, leucine, and histidine with or without 3-amino-1,2,4-triazole. (*B*) Hep3B cells were transfected with hemagglutinin-tagged GSK3B together with a plasmid expressing His<sub>6</sub>, His-tagged fused ubiquitin, or Nedd8 with or without TRAF6. A covalently conjugated His-tagged ubiquitin of GSK3B in the cells was pulled down using Ni<sup>2+</sup> agarose beads under denaturing conditions and analyzed using western blotting with the indicated antibodies. (*C*) Mass spectrometric analyses identifying 2 ubiquitination sites in GSK3B (K86 and K197) in Hep3B cells. (*D*) Hep3B cells were transfected with the indicated plasmids and subjected to immunoprecipitation using a Flag antibody. Ubiquitination of transfected cells was analyzed by Western blotting. (*E*) Hep3B cells were transfected with the indicated plasmids and subjected to immunoprecipitation using a Flag antibody. Ubiquitination of transfected cells was analyzed by western blotting. (*F*) Immunoprecipitation of Hep3B cells transfected with the indicated plasmids. GST, glutathione S-transferase; PAGE, polyacrylamide gel electrophoresis; Ubi, ubiquitination.



| Supplementary | Table | <b>1.</b> Antibodies | Used for | <sup>r</sup> Time-of- | Flight |
|---------------|-------|----------------------|----------|-----------------------|--------|
|               |       | Mass Cyto            | metry An | alysis (Pro           | ovided |
|               |       | bv Fluidian          | ר)       |                       |        |

| , ,        |                                                                                                                                                                                                                                 |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Clone      | Label                                                                                                                                                                                                                           |  |
|            |                                                                                                                                                                                                                                 |  |
| RB6-8C5    | 141Pr                                                                                                                                                                                                                           |  |
| N418       | 142Nd                                                                                                                                                                                                                           |  |
| 30-F11     | 147Sm                                                                                                                                                                                                                           |  |
| M1/70      | 148Nd                                                                                                                                                                                                                           |  |
| 6D5        | 149Sm                                                                                                                                                                                                                           |  |
| 145-2C11   | 152Sm                                                                                                                                                                                                                           |  |
| 53-6.7     | 168Er                                                                                                                                                                                                                           |  |
| H57-597    | 169Tm                                                                                                                                                                                                                           |  |
| PK136      | 170Er                                                                                                                                                                                                                           |  |
| RM4-5      | 172Yb                                                                                                                                                                                                                           |  |
| RA3-6B2    | 176Yb                                                                                                                                                                                                                           |  |
| 29F.1A12   | 159Tb                                                                                                                                                                                                                           |  |
|            |                                                                                                                                                                                                                                 |  |
| 10F.9G2    | 154Sm                                                                                                                                                                                                                           |  |
| 93H1       | 149Sm                                                                                                                                                                                                                           |  |
| M9C6       | 152Sm                                                                                                                                                                                                                           |  |
| M89-61     | 159Tb                                                                                                                                                                                                                           |  |
| B56        | 168Er                                                                                                                                                                                                                           |  |
| G8.8       | 166Er                                                                                                                                                                                                                           |  |
| D13.14.4.E | 167Er                                                                                                                                                                                                                           |  |
| p-Tyr-100  | 144Nd                                                                                                                                                                                                                           |  |
| N7-548     | 172Yb                                                                                                                                                                                                                           |  |
| 196624     | 147Sm                                                                                                                                                                                                                           |  |
|            | Clone<br>RB6-8C5<br>N418<br>30-F11<br>M1/70<br>6D5<br>145-2C11<br>53-6.7<br>H57-597<br>PK136<br>RM4-5<br>RA3-6B2<br>29F.1A12<br>10F.9G2<br>93H1<br>M9C6<br>M89-61<br>B56<br>G8.8<br>D13.14.4.E<br>p-Tyr-100<br>N7-548<br>196624 |  |

Supplementary Figure 4. In vivo therapeutic study and toxicity detection. (A) Sonogram of orthotopic tumor growth. Highfrequency ultrasound was used to noninvasively monitor the growth of intrahepatic HCC. Tumor size was marked by circling the maximum diameter of the largest tumor area in the ultrasound plane. (B) Schematic of drug intervention protocol for tivantinib and the PD1 antibody in C57/BL6 mice. (C) Growth of orthotopic Hep1-6 tumors in tivantinib- and/or PD1 antibodytreated C57/BL6 mice. Tumors were measured at the indicated time points. (D) Survival of mice bearing Hep1-6 tumors after drug intervention with tivantinib and/or PD1 antibody. Significance was determined using log-rank test. (E) Immunohistochemical stains of PDL1, CD8, and granzyme B protein expression patterns in Hep1-6 cells. Scale bar, 50 µm. (F) Histogram showing mean immunohistochemistry score  $\pm$  standard error of the mean in each group. \*P < .05; \*\*P < .01. (G) Growth of orthotopic MET KO Hep1-6 tumors in tivantinib- and/or PD1 antibody-treated C57/BL6 mice. Tumors were measured at the indicated time points. (H) Immunofluorescent staining of p-GSK3B (Y56) and PDL1 expression patterns in HCA-1 cells after drug intervention with capmatinib. (/) Curves showing body weight changes of mice during drug intervention. (J) Quantitative analysis of indicated biochemistry indices for liver and kidney function after the experiments. All error bars represent mean ± standard deviation. (*K*) Flow cytometric quantification of MET<sup>+</sup> neutrophils in tumors of mice treated as indicated (n = 6; mean  $\pm$  standard error of the mean). \*\**P* < .01. (*L*) Immunofluorescent staining of MPO and MET expression patterns in HCA-1 tumors of mice treated as indicated (M) (Left) Western blot analysis of PDL1 protein and p-MET in lung cancer cell lines. (Right) Quantification of intensity of PDL1 protein and p-MET by a densitometer. ALT, alanine aminotransferase; BUN, serum urea nitrogen; DAPI, 4',6-diamidino-2-phenylindole; IHC, immunohistochemistry; KO, knockout; MPO, myeloperoxidase; NS, not significant.

| Supplemental Table 2. Components of | of GSK3B Comp | plex Identified by | / Mass Spectrometry | y and Their | Confidence Scores |
|-------------------------------------|---------------|--------------------|---------------------|-------------|-------------------|
|-------------------------------------|---------------|--------------------|---------------------|-------------|-------------------|

| Entry name    | Coverage, % | Description                                                                  | Score |
|---------------|-------------|------------------------------------------------------------------------------|-------|
| G3P_HUMAN     | 82          | Glyceraldehyde-3-phosphate dehydrogenase                                     | 3285  |
| ANXA2_HUMAN   | 76          | Annexin A2                                                                   | 2330  |
| LDHB_HUMAN    | 58          | L-lactate denydrogenase B chain                                              | 1509  |
|               | 45          | 60S acidic ribosomal protein P0                                              | 703   |
| PP1R HUMAN    | 4J<br>59    | Serine- and threonine-protein phosphatase PP1-beta catalytic subunit         | 674   |
| I BC59 HUMAN  | 56          | Leucine-rich repeat-containing protein 59                                    | 549   |
| MDHM HUMAN    | 53          | Malate dehydrogenase, mitochondrial                                          | 516   |
| MDHC HUMAN    | 37          | Malate dehydrogenase, cytoplasmic                                            | 495   |
| NACA HUMAN    | 36          | Nascent polypeptide-associated complex subunit alpha                         | 488   |
| EF1D_HUMAN    | 30          | Elongation factor 1-delta                                                    | 481   |
| PDLI1_HUMAN   | 51          | PDZ and LIM domain protein 1                                                 | 480   |
| RL6_HUMAN     | 41          | 60S ribosomal protein L6                                                     | 411   |
| CNN2_HUMAN    | 32          | Calponin-2                                                                   | 388   |
| EF1A1_HUMAN   | 34          | Elongation factor 1-alpha 1                                                  | 369   |
| ALDR_HUMAN    | 60          | Aldose reductase                                                             | 316   |
| ROA2_HUMAN    | 28          | Heterogeneous nuclear ribonucleoproteins A2/B1                               | 314   |
| PP2AA_HUMAN   | 39          | Serine- and threonine-protein phosphatase 2A catalytic subunit alpha isoform | 311   |
| PDXK_HUMAN    | 33          | Pyridoxal kinase                                                             | 247   |
| ENOA_HUMAN    |             | Alpha-enolase                                                                | 232   |
| GALE_HUMAN    | 20          | UDP-glucose 4-epimerase                                                      | 223   |
| RPR1B_HUMAN   | 40          | Regulation of nuclear pre-mRNA domain-containing protein 1B                  | 217   |
| ALBU_HUMAN    | 11          | Serum albumin                                                                | 213   |
| APEX1_HUMAN   | 42          | DNA-(apurinic or apyrimidinic site) lyase                                    | 186   |
| AIMP1_HUMAN   | 33          | Aminoacyl tRNA synthetase complex-interacting multifunctional protein 1      | 183   |
| SSRA_HUMAN    | 11          | Translocon-associated protein subunit alpha                                  | 1/5   |
|               | 0           | Perovisione multifunctional enzyme type 2                                    | 103   |
|               | 34          | Libiquitin this esterase OTLIP1                                              | 147   |
|               | 20          | Dolymerase delta-interacting protain 2                                       | 112   |
| HMOX2 $HIMAN$ | 20          | Heme ovugenase 2                                                             | 116   |
| NDUA9 HUMAN   | 28          | NADH dehydrogenase [ubiquinone] 1 alpha sub-complex subunit 9 mitochondrial  | 112   |
| KPYM HUMAN    | 74          | Pyruvate kinase isozymes M1/M2                                               | 3356  |
| TCPB HUMAN    | 56          | T-complex protein 1 subunit beta                                             | 1898  |
| PDIA1 HUMAN   | 64          | Protein disulfide-isomerase                                                  | 1621  |
| G6PI_HUMAN    | 66          | Glucose-6-phosphate isomerase                                                | 1614  |
| TCPD_HUMAN    | 56          | T-complex protein 1 subunit delta                                            | 1422  |
| TCPQ_HUMAN    | 65          | T-complex protein 1 subunit theta                                            | 1409  |
| TCPH_HUMAN    | 49          | T-complex protein 1 subunit eta                                              | 1276  |
| G6PD_HUMAN    | 63          | Glucose-6-phosphate 1-dehydrogenase                                          | 998   |
| CH60_HUMAN    | 39          | 60-kDa heat shock protein, mitochondrial                                     | 966   |
| TCPA_HUMAN    | 57          | T-complex protein 1 subunit alpha                                            | 939   |
| IMDH2_HUMAN   | 46          | Inosine-5'-monophosphate dehydrogenase 2                                     | 869   |
| AL1A3_HUMAN   | 46          | Aldehyde dehydrogenase family 1 member A3                                    | 854   |
| PTBP1_HUMAN   | 42          | Poly-pyrimidine tract-binding protein 1                                      | 756   |
| PDIA3_HUMAN   | 45          | Protein disulfide-isomerase A3                                               | 686   |
| FKBP4_HUMAN   | 61          | FK506-binding protein 4                                                      | 625   |
|               | 50          | Adenyiyi cyclase-associated protein 1                                        | 500   |
|               | 20          | D 3 phosphoglycorate debudrogopace                                           | 550   |
| CPNE3 HUMAN   | 25<br>//1   | Conine-3                                                                     | 544   |
| NP1I 1 HUMAN  | 32          | Nucleosome assembly protein 1-like 1                                         | 500   |
| RCC2 HUMAN    | 40          | Protein RCC2                                                                 | 491   |
| TRXR1 HUMAN   | 29          | Thioredoxin reductase 1. cvtoplasmic                                         | 478   |
| TBA1B_HUMAN   | 40          | Tubulin alpha-1B chain                                                       | 381   |
| SYYC_HUMAN    | 39          | Tyrosyl-tRNA synthetase, cytoplasmic                                         | 350   |
| PRS4_HUMAN    | 31          | 26S protease regulatory subunit 4                                            | 345   |
| UGDH_HUMAN    | 29          | UDP-glucose 6-dehydrogenase                                                  | 312   |
| NONO_HUMAN    | 30          | Non-POU domain-containing octamer-binding protein O                          | 290   |
| HNRPK_HUMAN   | 15          | Heterogeneous nuclear ribonucleoprotein K                                    | 277   |
| COPD_HUMAN    | 29          | Coatomer subunit delta                                                       | 259   |

# Supplemental Table 2. Continued

| Entry name   | Coverage, % | Description                                                        | Score      |
|--------------|-------------|--------------------------------------------------------------------|------------|
| PACN2_HUMAN  | 15          | Protein kinase C and casein kinase substrate in neurons protein 2  | 222        |
| PAK2_HUMAN   | 20          | Serine-threonine-protein kinase PAK 2                              | 203        |
| HSP71_HUMAN  | 66          | Heat shock 70-kDa protein 1                                        | 2989       |
| HSP7C_HUMAN  | 58          | Heat shock cognate 71-kDa protein                                  | 2639       |
| GRP75_HUMAN  | 50          | Stress-70 protein, mitochondrial                                   | 1913       |
| LKHA4_HUMAN  | 49          | Leukotriene A-4 hydrolase                                          | 1002       |
| LMNB1 HUMAN  | 50          | Lamin-B1                                                           | 691        |
| SYRC HUMAN   | 31          | Arginvl-tRNA synthetase, cytoplasmic                               | 441        |
| DDX5 HUMAN   | 29          | Probable ATP-dependent RNA helicase DDX5                           | 354        |
| SYFB HUMAN   | 25          | Phenvlalanvl-tRNA synthetase beta chain                            | 327        |
| ABCE1 HUMAN  | 30          | ATP-binding cassette sub-family E member 1                         | 304        |
| CMC2 HUMAN   | 20          | Calcium-binding mitochondrial carrier protein aralar2              | 265        |
| FUBP1 HUMAN  | 23          | Far upstream element-binding protein 1                             | 260        |
| TRI25 HUMAN  | 26          | Tripartite motif-containing protein 25                             | 239        |
| RFA1 HUMAN   | 38          | Replication protein A 70-kDa DNA-binding subunit                   | 220        |
| IF2B3 HUMAN  | 24          | Insulin-like growth factor 2 mRNA-binding protein 3                | 209        |
| TBA1A HUMAN  | 25          | Tubulin alpha-1A chain                                             | 174        |
| AMPB HUMAN   | 11          | Aminopeptidase B                                                   | 141        |
| GRP78 HUMAN  | 59          | 78-kDa alucose-regulated protein                                   | 2917       |
| MOES HUMAN   | 58          | Moesin                                                             | 1846       |
| PABP1 HUMAN  | 44          | Polvadenvlate-binding protein 1                                    | 1367       |
| I MNA HUMAN  | 57          | Lamin-A/C                                                          | 1322       |
| HSP7C HUMAN  | 37          | Heat shock cognate 71-kDa protein                                  | 1320       |
| CAN2 HUMAN   | 55          | Calpain-2 catalytic subunit                                        | 1246       |
| GLIAA HUMAN  | 62          | GMP synthese (qlutamine-hydrolyzing)                               | 982        |
| SBC8 HUMAN   | 33          | Src substrate cortactin                                            | 957        |
| PDIA4 HUMAN  | 44          | Protein disulfide-isomerase A4                                     | 824        |
| TRAP1 HUMAN  | 28          | Heat shock protein 75-kDa, mitochondrial                           | 765        |
| DDX3X HUMAN  | 31          | ATP-dependent RNA helicase DDX3X                                   | 716        |
| FCHA HUMAN   | 42          | Trifunctional enzyme subunit aloba, mitochondrial                  | 653        |
| K6PI HUMAN   | 31          | 6-phosphofructokinase liver type                                   | 642        |
| CAN1 HUMAN   | 38          | Calpain-1 catalytic subunit                                        | 559        |
| TTI 12 HUMAN | 34          | Tubulin-tyrosine ligase-like protein 12                            | 558        |
| ACSL3 HUMAN  | 25          | Long-chain-fatty-acid_CoA ligase 3                                 | 530        |
| SYG HUMAN    | 33          | Glycyl-tRNA synthetase                                             | 466        |
| SEPT9 HUMAN  | 32          | Septin-9                                                           | 445        |
| KEYM HUMAN   | 34          | Pyrijvate kinase isozymes M1/M2                                    | 442        |
|              | 36          | Lamina-associated polypentide 2 isoform alpha                      | 386        |
|              | 12          | Serum albumin                                                      | 363        |
| HNRPM HIMAN  | 27          | Heterogeneous nuclear ribonucleoprotein M                          | 202        |
| PVRG1 HUMAN  | 27          | CTP synthase 1                                                     | 232        |
|              | 21          | Glycerol-3-nhosnhate dehydrogenase, mitochondrial                  | 200        |
|              | 12          | Vacualar protein sorting-associated protein 35                     | 205        |
| GEPT1 HUMAN  | 14          | Glucosamine-fructose-6-phosphate aminotransferase (isomerizing) 1  | 220        |
|              | 19          | Cytoplasmic dynain 1 intermediate chain 2                          | 220        |
| SBD72 HIMAN  | 20          | Signal recognition particle 72-kDa protein                         | 217        |
|              | 18          | Dipentidul-pentidase 3                                             | 200        |
| GLU2B HUMAN  | 23          | Chucosidase 2 subunit beta                                         | 203        |
|              | 12          | Acul amino acid relaccing onzymo                                   | 107        |
|              | 17          | NADH ubiquipana avidaraduatasa 75 kDa subunit, mitashandrial       | 17/        |
|              | 62          | Hast shock protein 00 bote                                         | 2024       |
|              | 03<br>71    | Alpha actinin 1                                                    | 3652       |
|              | 50          | Flongetion factor 2                                                | 202        |
|              | 29          | Endralosmin                                                        | 2020       |
|              | 59<br>59    | Liuupiasiilii<br>Transitional ondonlasmia ratioulum ATPasa         | 1461       |
|              | 00          | mananunai enuopiaaniio reliculum ATFase<br>Importin cubunit bata 1 | 1401       |
|              | 39<br>20    | Importin suburiti beta-i<br>Noutral alpha alugosidaso AR           | 993<br>075 |
|              | 30          | Incurar alpha-ylucosluase AD                                       | ٥/5<br>حتم |
|              | 29          | Chargen phenohendene liver form                                    | 1/6        |
|              | 33          | Ciycogen phosphorylase, liver form                                 | 644<br>FF4 |
|              | 29          | Furomycin-sensitive antinopeptidase                                | 551        |
| SFPQ_HUMAN   | 21          | Splicing lactor, proline- and glutamine-rich                       | 530        |

# Supplemental Table 2. Continued

| Entry name   | Coverage, % | Description                                           | Score |
|--------------|-------------|-------------------------------------------------------|-------|
| PSMD2_HUMAN  | 33          | 26S proteasome non-ATPase regulatory subunit 2        | 463   |
| SSRP1_HUMAN  | 24          | FACT complex subunit SSRP1                            | 395   |
| MCM3_HUMAN   | 24          | DNA replication licensing factor MCM3                 | 394   |
| 4F2_HUMAN    | 22          | 4F2 cell-surface antigen heavy chain                  | 307   |
| MCM6_HUMAN   | 14          | DNA replication licensing factor MCM6                 | 307   |
| GELS_HUMAN   | 22          | Gelsolin                                              | 305   |
| AP2B1_HUMAN  | 11          | AP-2 complex subunit beta-1                           | 304   |
| PDC6I_HUMAN  | 12          | Programmed cell death 6-interacting protein           | 295   |
| COPB2_HUMAN  | 16          | Coatomer subunit beta'                                | 292   |
| COPG_HUMAN   | 14          | Coatomer subunit gamma                                | 292   |
| CTND1_HUMAN  | 16          | Catenin delta-1                                       | 280   |
| HGFR_HUMAN   | 8           | Hepatocyte growth factor receptor (HGFR)              | 276   |
| SYMC_HUMAN   | 10          | Methionyl-tRNA synthetase, cytoplasmic                | 252   |
| NIBL1_HUMAN  | 16          | Niban-like protein 1                                  | 226   |
| RIR1_HUMAN   | 24          | Ribonucleoside-diphosphate reductase large subunit    | 216   |
| CSDE1_HUMAN  | 16          | Cold shock domain-containing protein E1               | 210   |
| NSUN2_HUMAN  | 12          | tRNA (cytosine-5-)-methyltransferase NSUN2            | 205   |
| CAPR1_HUMAN  | 10          | Caprin-1                                              | 202   |
| SYQ_HUMAN    | 11          | Glutaminyl-tRNA synthetase                            | 155   |
| CTNB1_HUMAN  | 15          | Catenin beta-1                                        | 151   |
| MOGS_HUMAN   | 6           | Mannosyl-oligosaccharide glucosidase                  | 143   |
| C1TC_HUMAN   | 63          | C-1-tetrahydrofolate synthase, cytoplasmic            | 2726  |
| VINC HUMAN   | 56          | Vinculin                                              | 2557  |
| UBA1 HUMAN   | 39          | Ubiguitin-like modifier-activating enzyme 1           | 1901  |
| NUCL HUMAN   | 41          | Nucleolin                                             | 1807  |
| XPO2 HUMAN   | 39          | Exportin-2                                            | 1335  |
| MYO1B HUMAN  | 37          | Mvosin-Ib                                             | 1298  |
| CTNA1 HUMAN  | 49          | Catenin alpha-1                                       | 1236  |
| IPO5 HUMAN   | 35          | Importin-5                                            | 1211  |
| ACLY HUMAN   | 31          | ATP-citrate synthase                                  | 944   |
| HS105 HUMAN  | 39          | Heat shock protein 105 kDa                            | 928   |
| PARP1 HUMAN  | 34          | Polv(ADP-ribose) polvmerase 1                         | 883   |
| FF2 HUMAN    | 39          | Flongation factor 2                                   | 781   |
| PUR2 HUMAN   | 32          | Trifunctional purine biosynthetic protein adenosine-3 | 753   |
| ACTN1 HUMAN  | 38          | Alpha-actinin-1                                       | 734   |
| SND1 HUMAN   | 39          | Staphylococcal nuclease domain-containing protein 1   | 726   |
| HNRPU HUMAN  | 20          | Heterogeneous nuclear ribonucleoprotein U             | 724   |
| XPO1 HUMAN   | 29          | Exportin-1                                            | 712   |
| FIF3B HUMAN  | 33          | Eukarvotic translation initiation factor 3 subunit B  | 638   |
| IPO7 HUMAN   | 27          | Importin-7                                            | 604   |
| PSA HUMAN    | 28          | Puromycin-sensitive aminopeptidase                    | 576   |
| TIF1B HUMAN  | 25          | Transcription intermediary factor 1-beta              | 542   |
| ENPL HUMAN   | 25          | Endoplasmin                                           | 524   |
| SYAC HUMAN   | 24          | Alanyl-tBNA synthetase, cytoplasmic                   | 464   |
| KINH HUMAN   | 22          | Kinesin-1 heavy chain                                 | 423   |
| HS90B HUMAN  | 20          | Heat shock protein 90-beta                            | 419   |
| PSMD1 HUMAN  | 18          | 26S proteasome non-ATPase regulatory subunit 1        | 380   |
| NALP2 HUMAN  | 17          | NACHT L BB and PYD domains containing protein 2       | 353   |
| ITB1 HUMAN   | 19          | Integrin beta-1                                       | 300   |
| ICAL HUMAN   | 31          | Calpastatin                                           | 289   |
| 4F2 HUMAN    | 14          | 4F2 cell-surface antigen heavy chain                  | 279   |
| HXK1 HUMAN   | 23          | Hexokinase-1                                          | 269   |
| FIF3C HUMAN  | 18          | Fukarvotic translation initiation factor 3 subunit C  | 200   |
| CAPR1 HIIMAN | 12          | Caprin-1                                              | 240   |
| AP1B1 HIIMAN | 15          | AP-1 complex subunit beta-1                           | 243   |
|              | 20          | 116-kDa 115 small nuclear ribonucleoprotein component | 240   |
| SYIM HI MAN  | 11          | Isoleucyl-tRNA synthetase mitochondrial               | 230   |
|              | 24          | Maior vault protein                                   | 214   |
|              | 10          | Endonlasmic reticulum aminopentidase 1                | 190   |
|              | 68          | Myosin-9                                              | 10//6 |
| FAS HIMAN    | 50          | Fatty acid synthese                                   | 12440 |
|              | 52          | ratty aola synthasis                                  | 4202  |

# Supplemental Table 2. Continued

| Entry name  | Coverage, % | Description                                        | Score |
|-------------|-------------|----------------------------------------------------|-------|
| IQGA1 HUMAN | 44          | Ras GTPase-activating-like protein IQGAP1          | 2164  |
| HGFR_HUMAN  | 38          | Hepatocyte growth factor receptor (HGFR)           | 1479  |
| MYOF_HUMAN  | 30          | Myoferlin                                          | 1298  |
| IF4G1_HUMAN | 22          | Eukaryotic translation initiation factor 4 gamma 1 | 943   |
| FLNA_HUMAN  | 19          | Filamin-A                                          | 900   |
| PYR1_HUMAN  | 14          | CAD protein                                        | 803   |
| CLH1_HUMAN  | 10          | Clathrin heavy chain 1                             | 198   |
| ALBU HUMAN  | 10          | Serum albumin                                      | 198   |
| ZO1_HUMAN   | 6           | Tight junction protein ZO-1                        | 177   |
| UBIQ_HUMAN  | 56          | Ubiquitin                                          | 170   |