Cell Reports, Volume 27

Supplemental Information

H3K36 Methylation and the Chromodomain Protein

Eaf3 Are Required for Proper Cotranscriptional

Spliceosome Assembly

Calvin S. Leung, Stephen M. Douglass, Marco Morselli, Matthew B. Obusan, Marat S. Pavlyukov, Matteo Pellegrini, and Tracy L. Johnson

Figure S1. Splicing defects are observed in the absence of H3K36 methylation. Related to Figure 1. A. Western blot analysis of Mud1-HA protein levels in wild-type and *set2* Δ cells. Pgk1 is a loading control. Band intensities were quantified using ImageJ. The intensity of Mud1-HA normalized to Pgk1 in *set2* Δ was compared to the intensity of Mud1-HA normalized to Pgk1 in wild-type (defined as 1.0). B. RT-PCR of splicing factor ICGs. Products were analyzed on a 1.8% agarose gel. C. RT-PCR of ICGs that are lowly expressed and display a splicing defect in both *set2* Δ and *H3K36A* compared to wild-type. Products were analyzed on a 1.8% agarose gel. D. Splicing defects are observed in *H3K36R* and *H3K36Q* mutants. Products were analyzed on a 1.8% agarose gel. gDNA: genomic DNA. *SCR1* is a loading control.

Figure S2. RNA expression profiles in *set*2 Δ **and** *H3K36A* **cells. Related to Figure 1. A.** XY-scatter plot of wild-type sense RPKM, *set*2 Δ sense RPKM (left), and *H3K36A* sense RPKM (right) of all genes. All splicing factors and spliceosomal snRNAs are labeled in purple. Spearman's correlation coefficient indicated. Red line represents the x=y line. **B.** XY-scatter plot of wild-type sense RPKM, *set*2 Δ sense RPKM (left), and *H3K36A* sense RPKM (right) of all ICGs. Ribosomal protein intron-containing genes (RP ICGs) are labeled in green. Spearman's correlation coefficient indicated. **C.** XY-scatter plot of *set*2 Δ sense RPKM and *H3K36A* sense RPKM of all ICGs. Non-ribosomal protein intron-containing genes (non-RP ICGs) are labeled in blue and ribosomal protein intron-containing genes. Spearman's correlation coefficient indicated. **D.** Scatter plot representing change in splicing efficiency (SE) of ICGs that show a \geq 2-fold decrease in expression in *H3K36A* compared to wild-type. Solid black line represents the median. Red line represents the y=0 line. Unpaired t test was used to test significance. **E.** XY-scatter plot of % RNAPII S2P ChIP-seq occupancy change and % SE change of all ICGs in *H3K36A*/wild-type cells.

Figure S3. *eaf3* Δ and *H3K36A* cells have similar RNA expression profiles. Related to Figure 2. A. Spliceosomal snRNAs co-immunoprecipitated with Chd1-HA. Bar graph depicting the five spliceosomal snRNAs that are pulleddown with Chd1-HA in wild-type cells under non-crosslinking conditions. U3 and U14 are snoRNAs. Bars represent the average of 3 biological replicates. Error bars represent the standard error of the mean (SEM). **B.** XY-scatter plot of *eaf3* Δ sense RPKM and *H3K36A* sense RPKM of all genes. Non-ribosomal protein intron-containing genes (non-RP ICGs) are labeled in blue and ribosomal protein intron-containing genes (RP ICGs) are labeled in green. Spearman's correlation coefficient indicated. Red line represents the x=y line. **C.** XY-scatter plot of % RNAPII S2P ChIP-seq occupancy change and % SE change of all ICGs in *eaf3* Δ /wild-type cells.

Name	Genotype	Reference
BY4741	MATa his $3\Delta 1 \text{ leu} 2\Delta 0 \text{ met} 15\Delta 0 \text{ ura} 3\Delta 0$	Open
		Biosystems
TJY7170	MATa set2 Δ ::KANMX4 his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0	GE Dharmacon
TJY7152	MATa his $3\Delta 200 \text{ leu} 2\Delta 0 \text{ lys} 2\Delta 0 \text{ trp} 1\Delta 63 \text{ ura} 3\Delta 0 \text{ met} 15\Delta 0 \text{ can} 1::MFA1pr-HIS3$	GE Dharmacon
	hht1-hhf1::NatMX4 hht2-hhf2::[H3K36A-HHFS]*-URA3	
TJY7171	MATa set2 SRI Δ ::HIS3 his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0	This study
TJY7153	MATa $eaf3\Delta$::KANMX4 his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0	GE Dharmacon
TJY7158	MATa EAF3-HA::HIS3MX6 his3∆1 leu2∆0 met15∆0 ura3∆0	This study
TJY7159	MATa set2Δ::KANMX4 EAF3-HA:HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0	This study
TJY7214	MATa PRP45-HA::KANMX6 his $3\Delta 1 \text{ leu} 2\Delta 0 \text{ met} 15\Delta 0 \text{ ura} 3\Delta 0$	This study
TJY7209	MATa PRP45-Myc::HIS3MX6 his3∆1 leu2∆0 met15∆0 ura3∆0	This study
TJY7216	MATa EAF3-HA::HIS3MX6 PRP45-Myc::HIS3MX6 his3Δ1 leu2Δ0 met15Δ0	This study
	ura3∆0	
TJY7215	MATa $eaf3\Delta$::KANMX4 PRP45-HA::HIS3MX6 his3 Δ 1 leu2 Δ 0 met15 Δ 0	This study
	ura3 $\Delta 0$	
TJY7238	MATa set2 Δ ::KANMX4 PRP45-HA::HIS3MX6 his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0	This study
TJY7240	MATa PRP19-HA::HIS3MX6 his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0	This study
TJY7241	MATa $eaf3\Delta$::KANMX4 PRP19-HA:HIS3 his 3Δ 1 leu 2Δ 0 met 15Δ 0 ura 3Δ 0	This study
TJY7242	MATa his $3\Delta 200 \text{ leu} 2\Delta 0 \text{ lys} 2\Delta 0 \text{ trp} 1\Delta 63 \text{ ura} 3\Delta 0 \text{ met} 15\Delta 0 \text{ can} 1::MFA1pr-HIS3$	GE Dharmacon
	hht1-hhf1::NatMX4 hht2-hhf2::[H3K36R-HHFS]*-URA3	
TJY7243	MATa his $3\Delta 200 \text{ leu} 2\Delta 0 \text{ lys} 2\Delta 0 \text{ trp} 1\Delta 63 \text{ ura} 3\Delta 0 \text{ met} 15\Delta 0 \text{ can} 1::MFA1pr-HIS3$	GE Dharmacon
	hht1-hhf1::NatMX4 hht2-hhf2::[H3K36Q-HHFS]*-URA3	
TJY7244	MATa MUD1-HA::KANMX4 his $3\Delta 1 \text{ leu} 2\Delta 0 \text{ met} 15\Delta 0 \text{ ura} 3\Delta 0$	This study
TJY7245	MATa set2Δ::KANMX4 MUD1-HA::HIS3MX6 his3Δ1 leu2Δ0 met15Δ0	This study
	ura3∆0	
TJY7246	MATa CHD1-HA::KANMX4 his3∆1 leu2∆0 met15∆0 ura3∆0	This study

Table S1. Strains used in this study. Related to STAR Methods.

Name	Sequence (5' to 3')	Purpose
HPC2 sense	AACACCACCTCTTTTCATGGTACCA	RT-PCR
HPC2 F	CCTCCACGA CCATATTCAA ACGATTGG	RT-PCR
HPC2 R	GGAACCAGAAATTATAATGGGAGACGG	RT-PCR
RAD14 sense	TGTCAATTTCTTCAGTTTCTAGCCC	RT-PCR
RAD14 F	CGTAGTGAAGGTATCGAACGTAACGC	RT-PCR
RAD14 R	GTGTTAGTGTTAGCAAGCGCAGACG	RT-PCR
DYN2 sense	CGCCAGTGGACCGATATAGAAATAA	RT-PCR
DYN2 F	GGAAAGCCTCCAAAACTACTGCCAG	RT-PCR
DYN2 R	GAAAACTAAAAACGCCAGTGGACCG	RT-PCR
MUD1 sense	GGTAACGTCATTGTTTGTAGCTTGT	RT-PCR
MUD1 F	CGGCCTCATCAAACCTAAAGAAACC	RT-PCR
MUD1 R	GAAACCGGTCTGCTTCTTCTTGAG	RT-PCR
YCL002C sense	TTATAGTTTTCCTTTTGGCAACCGTG	RT-PCR
YCL002C F	ATGCTTGTTA TTGTTCTGCAGGGC	RT-PCR
YCL002C R	AACTGCCTTAAAACCATCATGCAGC	RT-PCR
TFC3 sense	ACCAATTATGATTGACCCAATAGCC	RT-PCR
TFC3 F	GACGATTTATCCTGACGAACTCGTAC	RT-PCR
TFC3 R	CCTGATTTGGCAACTTCGAGAAGTA	RT-PCR
RPL14A sense	TTAAGCCTTAGCCAAAGCCTTCTTG	RT-PCR
RPL14A F	CAAGGCTTCTAACTGGAGATTAGTCG	RT-PCR
RPL14A R	CAATCTTCTTAGCCCAAGATGAAGC	RT-PCR
SCR1 sense/R	CACAATGTGCGAGTAAATCCTGATG	RT-PCR
SCR1 F	AAGGGATAGTTCTCTATTCCGCACC	RT-PCR
CIN2 sense	CTATAAGTAAGCGCGAAACAACTGC	RT-PCR
CIN2 F	GCTTAAGCATAAATGGACTTTACTGCG	RT-PCR
CIN2 R	GCTGAATCACCCTTCTCCAAGAC	RT-PCR
BET4 sense	CACTTATGCTGCTCCAGGAGATG	RT-PCR
BET4 F	ACTATAAAGCAGTAGGTCAGCAATG	RT-PCR
BET4 R	TCCAATAGACTTTGGGGTAATCCTTC	RT-PCR
YSF3 sense/R	CTACCTCTCTCGTAAGTAGGCTT	RT-PCR
YSF3 F	GGTTATATTACACAATTCGAAACAGTGAAA	RT-PCR
LSM2 sense/R	TCTTTCAGTCATTACCTCCCTTCTGG	RT-PCR
LSM2 F	CAAGACTTTA GTTGACCAAG AAGTGGT	RT-PCR
SMD2 sense/R	ACTCAACAGGGGTTTTTAACACAACG	RT-PCR
SMD2 F	CGCCTTTGACAGTTGATTAGAGGAGT	RT-PCR
LSM7 sense/R	TATAGTACATCAGAACCTTCGGCGG	RT-PCR
LSM7 F	CAAAAAACATGCATCAGCAACACTCC	RT-PCR
U1 F	ATTGAAGTCATTGATGCAAACTCCT	qPCR
U1 R	GGTGTCAAACTTCTCCAGGCAG	qPCR

Table S3. Primer sequences used for RT-PCR, RT-qPCR, and ChIP-qPCR. Related to STAR Methods.

U2 F	TATCGATGGGAAGAAATGGTGC	qPCR
U2 R	CTCTTGCAGCGCCACCAG	qPCR
U4 F	CGCATATCAGTGAGGATTCGTC	qPCR
U4 R	CCAAAAATTCCCTACATAGTCTTGAAGTA	qPCR
U5 F	TACAGATCAATGGCGGAGGG	qPCR
U5 R	AAATATGGCAAGCCCACAGTAAC	qPCR
U6 F	AAGTAACCCTTCGTGGACATTTG	qPCR
U6 R	TCTCTTTGTAAAACGGTTCATCCTTAT	qPCR
U3 F	CAAAAGAGCCACTGAATCCAACT	qPCR
U3 R	TAGATGGCCGAACCGCTAAG	qPCR
U14 F	GGTGATGAAAGACTGGTTCCTTA	qPCR
U14 R	AAGGTCTCTAAAGAAGAGCGGTC	qPCR
HPC2 1 F	ACCTCCACGACCATATTCAAACG	ChIP-qPCR
HPC2 1 R	CCCTAACGAAGGGCGGATAATTG	ChIP-qPCR
HPC2 2 F	TTCCTCCAGTACAAACCCGATGG	ChIP-qPCR
HPC2 2 R	ATCACGGGGGATGGTGAATG	ChIP-qPCR
HPC2 3 F	CTCCAGCAAAAAGCCTACGTCTG	ChIP-qPCR
HPC2 3 R	TCTTGGTCGTTGTTGGCTTTGG	ChIP-qPCR
HPC2 4 F	TCTCCGAAGAAGAAGTCGCATCC	ChIP-qPCR
HPC2 4 R	CCGAATCATCAATGAACGGATCTTC	ChIP-qPCR
RAD14 1 F	GTATCGAACGTAACGCTATGACTCC	ChIP-qPCR
RAD14 1 R	ACCCACGGTTAAAATACAAACACAG	ChIP-qPCR
RAD14 2 F	GGCAGCAATCGGGATGATAATG	ChIP-qPCR
RAD142R	TGTTAGTGTTAGCAAGCGCAGACG	ChIP-qPCR
RAD14 3 F	TGCACCTCCTCCAGAGCATATTTC	ChIP-qPCR
RAD14 3 R	CATCATGTAGCACAGGATCCATCTC	ChIP-qPCR
RAD14 4 F	AATGGCAACGTCGTGAAGAAGG	ChIP-qPCR
RAD144R	GCTCTTGTTTTCAGTCGCATTTCC	ChIP-qPCR
ECM33 1 F	AAGAGGAAACGGGTTTCGAG	ChIP-qPCR
ECM33 1 R	ACTCGCCCTAATCCTATGACAG	ChIP-qPCR
ECM33 2 F	ACCAGTGCTTCTTTCGGTTC	ChIP-qPCR
ECM33 2 R	GGTAGAAATGGCAGGCAAAG	ChIP-qPCR
ECM33 3 F	AGGCCGCTTTCAGTAACTTG	ChIP-qPCR
ECM33 3 R	ACTTCAATGGCACCAAC	ChIP-qPCR
ECM33 4 F	TAGTGGTGATGCCTCCAATG	ChIP-qPCR
ECM33 4 R	TGGAACAAGTTCTGGAGCAG	ChIP-qPCR
ADH1 1 F	TGGTGTCTGTCACACTGACTTG	ChIP-qPCR
ADH1 1 R	TTCGTGACCACCGACTAATG	ChIP-qPCR
ADH1 2 F	TCACGCTGACTTGTCTGGTTAC	ChIP-qPCR
ADH1 2 R	AATGTGAGCGGCTTGAACAG	ChIP-qPCR
ADH1 3 F	TTGACGGTGGTGAAGGTAAG	ChIP-qPCR
ADH1 3 R	CACCGACAATGTCCTTTTCC	ChIP-qPCR
ADH1 4 F	TCAACCAAGTCGTCAAGTCC	ChIP-qPCR
ADH1 4 R	TCTGGCGAAGAAGTCCAAAG	ChIP-qPCR