Supporting Information

Towards the non-invasive continuous monitoring of physiological glucose using a novel monosaccharide-sensing contact lens

Ramachandram Badugu¹, Joseph R. Lakowicz*¹ and Chris D. Geddes^{1,2}*

¹Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, Medical Biotechnology Center, University of Maryland School of Medicine, 725 West Lombard St, Baltimore, MD, 21201, USA.

²Institute of Fluorescence and Center for Fluorescence Spectroscopy, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard St, Baltimore, MD, 21201, USA.

*All correspondence to: Cfs@cfs.umbi.umd.edu

Figure S1 - Emission spectra of DDPBBA in pH 8.0 buffer / methanol (2:1) with increasing concentrations of fructose, λ_{ex} = 340 nm.

Figure S2 – Emission spectra of Chalc 2 in pH 8.0 / methanol (2:1) with increasing concentrations of fructose, λ_{ex} = 430 nm.

Figure S3 – Intensity ratio plot for the DSTBA doped contact lens towards both glucose and fructose, where I and I_0 are the intensities in the presence and absence of sugar respectively, λ_{em} max, (**Top**), and the intensity ratio plot for the CSTBA doped contact lens towards both glucose and fructose (**Bottom**).

Figure S4. - Emission spectra of the Chalc 2 doped contact lens, pH 8.0 buffer / methanol (2:1), with increasing concentrations of glucose, $\lambda_{\rm ex}$ = 460 nm (**Top**), the emission spectra of the Chalc 2 doped contact lens, pH 8.0 buffer / methanol (2:1), with increasing concentrations of fructose, $\lambda_{\rm ex}$ = 460 nm (**Middle**) and the intensity ratio plot for the Chalc 2 doped lens towards both glucose and fructose, where / and I_0 are the intensities in the presence and absence of sugar respectively at $\lambda_{\rm em}$ max (**Bottom**).