Supplementary Information for:

Predicting Stability Constants for Terbium(III) Complexes with Dipicolinic Acid and 4-Substituted Dipicolinic Acid Analogues Using Density Functional Theory

Hsieh Chen*, Rena Shi, and Hooisweng Ow

Aramco Services Company: Aramco Research Center-Boston, 400 Technology Square, Cambridge, Massachusetts 02139, United States

*hsieh.chen@aramcoservices.com

Complay	Eurotional/	Total DET	Thomas	Total	C°	ΛC^*	ΛC^*
Complex	Functional/		Therman	Total	U'g	ΔG [*] solv	ΔG [*] solv
	Basis Sets ^{<i>a</i>}	Energy (a.u.)	Correction to	Entropy	(kcal/mol)	(COSMO)	(SMD)
			Enthalpy	(cal/mol/K)		(kcal/mol)	(kcal/mol)
			(kcal/mol)				
$[Tb(H_2O)_8]^{3+}$	B3LYP/	-1433.814	143.692	140.019	-899616.4	-386.19	-394.55
	6-31+G*						
	B3LYP/	-1434.096	144.854	140.16	-899792.3	-386.2	-394
	6-311++G**						
	M06/	-1433.478	140.988	144.628	-899409.6	-386.75	-395.12
	6-31+G*						
	M06/	-1433.722	142.177	144.005	-899561.5	-387.02	-394.76
	6-311++G**						
DPA ²⁻	B3LYP/	-624.2566	63.799	101.979	-391687.6	-196.41	-202.28
	6-31+G*						
	B3LYP/	-624.4209	63.494	101.988	-391791	-196.15	-201.95
	6-311++G**						
	M06/	-623.9022	64.187	100.635	-391464.5	-197.64	-203.92
	6-31+G*						
	M06/	-624.051	63.881	100.742	-391558.2	-196.85	-202.93
	6-311++G**						
$[Tb(DPA)(H_2O)_8]^+$	B3LYP/	-2059.083	210.833	179.39	-1291917	-71.05	-75
	6-31+G*						
	B3LYP/	-2059.527	210.877	181.394	-1292196	-69.72	-72.56
	6-311++G**						
	M06/	-2058.326	209.078	186.961	-1291446	-72.99	-76.98
	6-31+G*						
	M06/	-2058.718	209.296	187.509	-1291692	-71.16	-74.05
	6-311++G**						

Table S1. Energy terms from DFT calculations used to construct Table S3.

^aNon Tb basis sets.

Complex	Functional/	Total DFT	Thermal	Total	$G^{\circ}_{ m g}$	$\Delta G^{*}_{ m solv}$	$\Delta G^{*}_{ m solv}$
	Basis Sets ^a	Energy	Correction	Entropy	(kcal/mol)	(COSMO)	(SMD)
		(a.u.)	to Enthalpy	(cal/mol/K)		(kcal/mol)	(kcal/mol)
			(kcal/mol)				
XDPA ²⁻	B3LYP	-723.7013	58.87	106.74	-454095.5	-189.23	-193.64
(-X = -F)	M06	-723.3042	59.387	105.328	-453845.4	-190.18	-194.9
XDPA ²⁻	B3LYP	-1084.058	58.224	109.728	-680221	-186.79	-190.58
(-X = -Cl)	M06	-1083.659	58.642	106.923	-679969.5	-187.8	-191.95
XDPA ²⁻	B3LYP	-3197.979	57.991	112.767	-2006707	-186.06	-189.2
(-X = -Br)	M06	-3197.485	58.445	111.242	-2006396	-187.6	-191.17
XDPA ²⁻	B3LYP	-7543.361	57.825	115.062	-4733435	-184.79	-192.19
(-X = -I)	M06	-7542.736	58.29	113.32	-4733043	-186.76	-194.68
XDPA ²⁻	B3LYP	-699.6742	66.888	108.177	-439010.9	-197.64	-204.48
(-X = -OH)	M06	-699.2754	67.502	106.464	-438759.6	-198.76	-205.76
XDPA ²⁻	B3LYP	-679.7979	74.938	108.642	-426530.6	-202.36	-207.8
$(-X = -NH_2)$	M06	-679.3957	75.375	107.255	-426277.4	-203.13	-208.89
XDPA ²⁻	B3LYP	-738.9945	85.646	119.982	-463669.2	-193.4	-200.09
$(-X = -CH_2OH)$	M06	-738.5613	86.133	116.699	-463395.9	-193.61	-200.81
XDPA ²⁻	B3LYP	-849.5184	97.994	123.054	-533011.5	-188.01	-193.17
(-X = -imidazole)	M06	-848.9985	98.306	121.518	-532684.5	-188.22	-193.65
[Tb(XDPA)(H ₂ O) ₈] ⁺	B3LYP	-2158.791	205.947	185.669	-1354491	-71.38	-73.77
(-X = -F)	M06	-2157.956	204.762	191.881	-1353970	-72.64	-75.06
[Tb(XDPA)(H ₂ O) ₈] ⁺	B3LYP	-2519.145	205.416	191.154	-1580615	-70.54	-73.59
(-X = -Cl)	M06	-2518.309	203.992	194.684	-1580093	-71.77	-74.79
[Tb(XDPA)(H ₂ O) ₈] ⁺	B3LYP	-4633.065	205.237	191.447	-2907100	-70.34	-73.99
(-X = -Br)	M06	-4632.135	203.767	197.522	-2906520	-71.63	-75.19
[Tb(XDPA)(H ₂ O) ₈] ⁺	B3LYP	-8978.445	205.111	193.427	-5633827	-70.21	-73.74
(-X = -I)	M06	-8977.385	203.617	199.623	-5633165	-71.48	-75.21
[Tb(XDPA)(H ₂ O) ₈] ⁺	B3LYP	-2134.779	214.293	186.28	-1339415	-73.31	-76.68
(-X = -OH)	M06	-2133.944	212.936	192.551	-1338895	-74.71	-78.17
[Tb(XDPA)(H ₂ O) ₈] ⁺	B3LYP	-2114.917	222.181	188.401	-1326945	-71.16	-74.2
$(-X = -NH_2)$	M06	-2114.078	220.716	194.361	-1326421	-72.46	-75.61
[Tb(XDPA)(H ₂ O) ₈] ⁺	B3LYP	-2174.094	232.921	195.688	-1364070	-72.48	-76.06
$(-X = -CH_2OH)$	M06	-2173.223	231.383	201.986	-1363526	-73.83	-77.49
[Tb(XDPA)(H ₂ O) ₈] ⁺	B3LYP	-2284.598	245.103	202.514	-1433401	-76.63	-80.3
(-X = -imidazole)	M06	-2283.64	243.513	208.401	-1432803	-77.62	-81.2

 Table S2. Energy terms from DFT calculations used to construct Table S3.

^a6-311++G** basis set was used for all atoms except Tb.

Equilibrium	Functional/	$\Delta G^{\circ}{}_{ m g}$	$\Delta G_{ m aq}$	$\Delta G_{ m aq}$	$\log K_l$	$\log K_l$
	Basis Sets ^a	(kcal/mol)	(COSMO)	(SMD)	(COSMO)	(SMD)
			(kcal/mol)	(kcal/mol)		
$Th^{3+} + DPA^{2-} \rightleftharpoons [Th(DPA)]^+$	B3LYP/	-613.2968	-103.6368	-93.35681	75.886653	68.359262
	6-31+G*	01012/00	100100000	20100000	101000000	00.007202
		612 0126	102 1726	01 41250	74 815220	66 026264
	DJLIF/	-012.9130	-102.1750	-91.41559	74.013229	00.930304
	0-311++G**					
	M06/	-572.0165	-62.50649	-51.84649	45.769532	37.963891
	6-31+G*					
	M06/	-572.7467	-61.92669	-50.99669	45.344979	37.341634
	6-311++G**					
$Th^{3+} + XDPA^{2-} \Rightarrow [Th(XDPA)]^+$	B3LYP/	-602.7796	-100.6196	-90,79962	73.677354	66.486792
(-X - F)	6-311++G**	0021////0	100.0170	,, ,	101011001	001100772
(M06/	562 2082	60 62921	50 50921	44 401512	27.040850
	6.211 + C**	-303.3082	-00.03821	-50.59821	44.401515	37.049839
m^{2+} , u^{2-} , m^{2-} , m^{2-}	0-511++0***	601.0054	101.0654	00 705 40	74 150220	(7.00(020
$Tb^{3+} + XDPA^{2-} \rightleftharpoons [Tb(XDPA)]^{+}$	B3LYP/	-601.8254	-101.2654	-92.72542	/4.150239	67.896939
(-X = -CI)	6-311++G**					
	M06/	-561.9203	-60.76032	-51.89032	44.490922	37.995984
	6-311++G**					
$Tb^{3+} + XDPA^{2-} \rightleftharpoons [Tb(XDPA)]^+$	B3LYP/	-600.3686	-100.3386	-93.04863	73.471603	68.133599
(-X = -Br)	6-311++G**					
,	M06/	-562.0628	-60 96276	-53 21276	44 639156	38 964323
	6-311++G**	00210020	001/02/0	00121270	1.11007.100	0000010100
$Th^{3+} \downarrow VDD\Lambda^{2-} \rightarrow [Th(VDD\Lambda)]^+$	B3LVP/	-508 08/12	-100.0942	-88 /2/2	73 202627	64 747427
$10 \pm ADFA \leftarrow [10(ADFA)]$	6 211 + C**	-578.7842	-100.0742	-00.4242	13.272021	04.747427
$(-\Lambda1)$		5(1 1077	(0 (0772)	40.76770	44 445005	25 700504
	M06/	-561.10//	-60.69772	-48./6//2	44.445085	35.709504
	6-311++G**					
$Tb^{3+} + XDPA^{2-} \rightleftharpoons [Tb(XDPA)]^+$	B3LYP/	-611.9632	-103.3232	-92.05324	75.657048	67.404742
(-X = -OH)	6-311++G**					
	M06/	-573.4662	-64.28616	-53.00616	47.072669	38.813042
	6-311++G**					
$Th^{3+} + XDPA^{2-} \rightleftharpoons [Th(XDPA)]^+$	B3LYP/	-621.6244	-106.1144	-95.91439	77.700827	70.232015
$(-X = -NH_2)$	6-311++G**					
$(\mathbf{n} - \mathbf{n}\mathbf{n}\mathbf{z})$	M06/	-582 5007	-66 70072	-56 // 1072	/8 013105	11 334548
	6 211 C**	-302.3771	-00.17712	-30.44772	40.913193	41.554540
m^{3+} , v_{DDA}^{2-} , m^{2} (v_{DDA}^{3+})	0-311++0**	(00.1000	102.0690	02.05902	75 207(04	(7.400004
$1b^{3+} + XDPA^{2-} \rightleftharpoons [1b(XDPA)]^{2}$	B3LYP/	-608.1989	-102.9689	-92.05892	/5.39/604	67.408904
$(-X = -CH_2OH)$	6-311++G**					
	M06/	-568.7147	-63.80466	-52.52466	46.720099	38.460472
	6-311++G**					
$Tb^{3+} + XDPA^{2-} \rightleftharpoons [Tb(XDPA)]^+$	B3LYP/	-596.7788	-101.0888	-91.79885	74.020943	67.218466
(-X = -imidazole)	6-311++G**					
	M06/	-556.9563	-61.22629	-51.63629	44.832125	37.809977
	6-311++G**					
			1		1	1

Table S3. Compiled ΔG°_{g} , ΔG_{aq} , and log K_1 calculated in this work.

^aNon Tb basis sets.

Complex	Functional/	68			4f			5d		
	Basis Sets ^a	gas	solution	solution	gas	solution	solution	gas	solution	solution
		-	COSMO	SMD	-	COSMO	SMD	-	COSMO	SMD
$[Tb(H_2O)_8]^{3+}$	B3LYP	0.47	0.49	0.49	8.15	8.14	8.14	0.38	0.37	0.37
[Tb(DPA)(H ₂ O) ₈] ⁺		0.42	0.46	0.48	8.17	8.16	8.15	0.45	0.44	0.44
[Tb(XDPA)(H ₂ O) ₈] ⁺		0.43	0.47	0.49	8.17	8.15	8.15	0.45	0.44	0.43
(-X = -F)										
$[Tb(XDPA)(H_2O)_8]^+$		0.43	0.47	0.50	8.17	8.16	8.15	0.44	0.44	0.43
(-X = -Cl)										
$[Tb(XDPA)(H_2O)_8]^+$		0.42	0.47	0.49	8.17	8.16	8.15	0.44	0.44	0.43
(-X = -Br)										
$[Tb(XDPA)(H_2O)_8]^+$		0.42	0.47	0.49	8.17	8.16	8.15	0.45	0.44	0.43
(-X = -I)										
$[Tb(XDPA)(H_2O)_8]^+$		0.42	0.46	0.48	8.17	8.16	8.15	0.45	0.44	0.44
(-X = -OH)										
$[Tb(XDPA)(H_2O)_8]^+$		0.42	0.46	0.48	8.17	8.16	8.16	0.45	0.44	0.44
$(-X = -NH_2)$										
$[Tb(XDPA)(H_2O)_8]^+$		0.43	0.47	0.49	8.17	8.16	8.15	0.45	0.44	0.44
$(-X = -CH_2OH)$										
$[Tb(XDPA)(H_2O)_8]^+$		0.44	0.48	0.50	8.17	8.16	8.16	0.44	0.44	0.43
(-X = -imidazole)										
$[Tb(H_2O)_8]^{3+}$	M06	0.47	0.49	0.49	8.14	8.14	8.13	0.37	0.36	0.36
$[Tb(DPA)(H_2O)_8]^+$		0.41	0.46	0.47	8.18	8.17	8.17	0.43	0.42	0.42
[Tb(XDPA)(H ₂ O) ₈] ⁺		0.41	0.46	0.48	8.18	8.17	8.17	0.42	0.42	0.42
(-X = -F)										
[Tb(XDPA)(H ₂ O) ₈] ⁺		0.42	0.46	0.48	8.18	8.17	8.17	0.42	0.42	0.42
(-X = -Cl)										
[Tb(XDPA)(H ₂ O) ₈] ⁺		0.41	0.46	0.48	8.18	8.17	8.16	0.43	0.42	0.42
(-X = -Br)										
$[Tb(XDPA)(H_2O)_8]^+$		0.41	0.46	0.48	8.18	8.17	8.17	0.43	0.42	0.42
(-X = -I)										
$[Tb(XDPA)(H_2O)_8]^+$		0.41	0.46	0.48	8.18	8.17	8.17	0.43	0.42	0.42
(-X = -OH)										
[Tb(XDPA)(H ₂ O) ₈] ⁺		0.42	0.46	0.48	8.18	8.17	8.17	0.43	0.42	0.42
$(-X = -NH_2)$										
[Tb(XDPA)(H ₂ O) ₈] ⁺		0.42	0.46	0.48	8.18	8.17	8.16	0.43	0.42	0.42
$(-X = -CH_2OH)$										
[Tb(XDPA)(H ₂ O) ₈] ⁺		0.42	0.47	0.49	8.18	8.17	8.17	0.42	0.42	0.42
(-X = -imidazole)										

Table S4. Natural electron configurations of Tb in different complexes from Mulliken analysis.

^{*a*}6-311++G** basis set was used for all atoms except Tb.

Figure S1. Equilibrium geometries of the XDPA²⁻ (A, C, E, and G) and $[Tb(XDPA)(H_2O)_8]^+$ (B, D, F, and H) complexes with X = -OH (A and B), -NH₂ (C and D), -CH₂OH (E and F), and -imidazole (G and H). (Note the geometries for the X = halide substitutes were similar to Figure 1 and were not duplicated

here.)

Figure S2. Partial charge differences predicted by Mulliken population analysis in gas phase for (A) Tb, (B) N1, (C) O1, and (D) O2 atoms in [Tb(XDPA)(H₂O)₈]⁺ complexes compared to in [Tb(DPA)(H₂O)₈]⁺ complex.

Figure S3. Partial charge differences predicted by Mulliken population analysis in solution phase for (A) Tb, (B) N1, (C) O1, and (D) O2 atoms in [Tb(XDPA)(H₂O)₈]⁺ complexes compared to in [Tb(DPA)(H₂O)₈]⁺ complex.

Figure S4. Interatomic distance differences in [Tb(XDPA)(H₂O)₈]⁺ complexes compared to in [Tb(DPA)(H₂O)₈]⁺ complex for (A) Tb-N1, (B) Tb-O1, and (C) Tb-O2 pairs.