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Papillary thyroid carcinoma (PTC) is the most common malig-
nant tumor of endocrine systems. Chromosomal instability
(CIN) is crucial to the clinical prognoses of tumor patients.
DNA methylation plays an important role in the regulation of
gene expression and CIN. Based on PTC samples from The Can-
cer GenomeAtlas database, we usedmultiple regression analyses
to identify methylation patterns of CpG sites with the strongest
correlation with gene expression. A total of 4,997 genes were
obtained through combining the CpG sites, which were repre-
sented as featured DNA methylation patterns. In order to
identify CIN-related epigenetic markers of PTC survival, we
developed a method to characterize CIN based on DNAmethyl-
ation patterns of genes using the Student’s t statistics. We found
that 1,239 genes were highly associatedwithCIN.With the use of
the log-rank test, univariate Cox regression analyses, and the Ka-
plan-Meier method, DNA methylation patterns of UBAC2 and
ELOVL2, highly correlated with CIN, provided potential prog-
nostic values for PTC. The higher these two genes, risk scores
were correlated with worse PTC patient prognoses. Moreover,
the ELOVL2 risk score was significantly different in the four
stages of PTC, suggesting that it was related to the progress of
PTC. The DNA methylation pattern associated with CIN may
therefore be a good predictor of PTC survival.
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INTRODUCTION
Papillary thyroid carcinoma (PTC) is derived from the thyroid follic-
ular epithelium. PTC is the most common type of endocrine cancer,
and its incidence has increased rapidly over the past several decades.1

It accounts for 85% of thyroid cancer, 60% of adult thyroid cancer,2

and 100% of child thyroid cancer.3 The vast majority of patients are
diagnosed with differentiated thyroid carcinoma, especially with
PTC.4 This causes difficulty in planning the therapy, because some
patients are overtreated, whereas in other patients, the same therapy
does not result in the eradication of the neoplastic foci and inhibition
of the natural course of the disease. PTCs are usually curable with a
5-year survival of over 95%;5 however, occasionally, they dedifferen-
tiate into more aggressive and lethal thyroid cancers.6 For this reason,
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it is important to identify effective prognostic markers to evaluate the
prognoses of PTC patients.

Commonly used prognostic markers presently include proteins,
microRNAs (miRNAs), mRNAs, and DNA methylations. Ma and
Yu7 suggested that TBL1XR1 overexpression was an unfavorable
prognostic factor for epithelial ovarian cancer, and Wang et al.8 sug-
gested that DHX32 overexpression was an unfavorable prognostic
biomarker for breast cancer. The signature of chromosomal insta-
bility (CIN), inferred from gene-expression levels, can predict clinical
outcomes in multiple human cancers.9 CIN describes a dynamic state
in which cells continuously gain or lose whole chromosomes or parts
of chromosomes at an elevated rate and is therefore a principal medi-
ator of aneuploidy and intra-tumor heterogeneity.10–13 Because aneu-
ploidy is a consequence of CIN, genes with expression levels are
consistently associated with aneuploidy, so gene-expression signa-
tures provide a means to estimate levels of CIN.9 Carter et al.9

developed a computational method to characterize CIN based on
gene-expression levels using the Student’s t statistics. They mapped
the genes to chromosomal sub-bands, with CIN describing the net de-
viation in expression of genes contained in each chromosomal region
relative to the remainder of the sampled transcriptome. Patients with
a higher CIN score had worse clinical prognoses. They suggested that
gene-expression signatures that had high correlations with CIN could
therefore predict the clinical prognoses of tumor patients.

Genomic DNA hypomethylation is another important factor associ-
ated with CIN.14–17 Methylation of the carbon-5 position of cytosine,
mostly in the context of CpG dinucleotides, is the main epigenetic
The Authors.
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Table 1. Clinical Information on PTC Patients

Characteristics Training Set (n = 49) Testing Set (n = 442)

State

Living 45 431

Dead 4 11

Survival (years)

Mean ± SD 4.22 ± 3.52 2.46 ± 2.37

Gender

Male 14 117

Female 35 325

Age (years)

Mean ± SD 45.29 ± 17.22 47.57 ± 15.72

Stage

I 30 246

II 5 47

III 11 99

IV 3 50

Histological Type

Thyroid papillary carcinoma

Classical/usual 42 313

Tall cell (R50% tall cell features) 3 33

Follicular (R99% follicular
patterned)

4 96
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modification of DNA and is essential for a properly functioning
genome, including maintenance of chromosome stability and tran-
scriptional repression.18–21 Recently, DNA methylation biomarkers
for the diagnoses, molecular typing, and prognoses of cancers were
identified.22–24 Lu et al.22 suggested that hypermethylation of
hMLH1 in PTC was significantly correlated with age, size, and the
number of primary lesions, local invasion, T stage, and lymph node
metastases. Shou et al.23 reported that aberrant methylation of the
RASSF1A promoter was more frequently detected in thyroid cancer
than in noncancerous controls. Wang et al.24 reported that hyperme-
thylation of RUNX3 significantly increased the risk of PTC recurrence
by using appropriate site-specific cut-off values.

Genomic DNA hypomethylation has been associated with
increased CIN, which plays a central role in tumorigenesis.14–17

Kawano et al.14 suggested that whole genome hypomethylation
initiated carcinogenesis of esophageal squamous cells through
CIN. Nishida et al.15 concluded that DNA hypomethylation is
an important cause of CIN in the earliest phase of human hepa-
tocellular carcinoma, especially in the background of noncirrhotic
livers. Rodriguez et al.16 reported that CIN was correlated with
genome-wide DNA demethylation in human primary colorectal
cancers, and Suzuki et al.17 reported that global DNA demethyla-
tion in gastrointestinal cancer was correlated with increased
genomic damage. However, few reports have shown that hyper-
methylation is associated with CIN.
Gene-expression levels can be affected by a number of factors,
including the environment, gene mutations, and DNA methyla-
tions.25–28Hypermethylated promoters lead to an “off” state of expres-
sion, whereas less methylation may lead to an “on” state.19 Methyl-
ation is an acquired epigenetic phenomenon but can be faithfully
reproduced in the progeny of affected cells, and the methylation will
then be propagated during clonal selection during the development
of tumors.29 DNA methylations are therefore more stable than gene
expressions. Although several methylation biomarkers have been
identified to predict cancer survival, they are usually limited to average
methylation levels of several genes based on experimental data. How-
ever, there is aweak correlation between the averageDNAmethylation
levels of gene promoters and the levels of gene expression.30 This
report prompted us to speculate that methylated CpGs might not
have equivalent regulatory effects on gene expression, which results
in the maximum regulatory effect of DNA methylation on gene
expression.31 We then identified the DNA methylation patterns that
had high correlations with CIN as prognostic markers of PTC.

In the following study, based on The Cancer Genome Atlas (TCGA)
database, we identified differentially methylated CpG sites between
PTC and normal samples. Multiple regression analyses were then
used to obtain the methylation patterns of CpGs with the highest
correlations with gene expression. We obtained specified genes by
combining CpG sites, which were represented as specific DNA
methylation patterns. In order to identify CIN-related epigenetic
markers of PTC survival, a method was developed to characterize
CIN based on the DNA methylation patterns of genes using the
Student’s t statistics. Pearson’s correlation coefficient (PCC) was
used to evaluate the correlations between DNAmethylation patterns
and the CIN of each gene. With the use of PCC and a permutation
test, we verified that the featured genes were highly associated with
CIN. With the use of the log-rank test, univariate Cox regression
analyses, and the Kaplan-Meier method, we conducted prognostic
analyses. The DNA methylation patterns of UBAC2 and ELOVL2
that had high correlations with CIN provided good prognostic values
for PTC. Moreover, UBAC2 and ELOVL2 were hypomethylation
phenotypes. The DNA methylation patterns associated with CIN
may therefore be a good predictor of PTC survival.

RESULTS
Identifying Differentially Methylated CpGs Associatedwith Gene

Expression

With the use of the Illumina Infinium HumanMethylation450
BeadChip assay (Illumina, San Diego, CA), raw data (level 3 data),
raw UNC RNAseqV2 level 3 expression data, and the clinical prog-
nostic information for PTC were collected from TCGA. The DNA
methylation data and the gene-expression data both contained 562
samples, comprised of 49matched normal samples, 494 PTC samples,
11 metastatic thyroid carcinoma samples, and eight samples of other
types of thyroid cancers. We eliminated batch effects between these
562 samples. In total, 49 PTC samples and 49matched normal samples
comprised the training set, with the remaining 445 PTC samples used
as the testing set. Three samples were excluded because they did not
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Figure 1. Analyses of Papillary Thyroid Carcinoma

Data

(A) Two-way hierarchical clustering of the fBi value in papil-

lary thyroid carcinoma tissue samples. The blue area

was >0, and the red area was <0. (B) In total, DNA

methylation patterns of 1,239 genes were highly related to

chromosomal instability (CIN), and 653 (53% of the total)

were positively correlated genes. In total, 586 (47% of the

total) were negatively correlated genes. (C) Gene ontology

(GO) functional enrichment analyses for DNA methylation

patterns of 1,239 genes were highly related to CIN using

DAVID. (D) TheKyotoEncyclopediaofGenesandGenomes

pathway enrichment analyses forDNAmethylation patterns

of 1,239 genes were highly related to CIN using DAVID. (E)

Two-way hierarchical clustering of DNA methylation pat-

terns of 1,239 genes were highly related to CIN in papillary

thyroid carcinoma tissue samples and normal tissue sam-

ples. The blue area was >0, and the red area was <0.
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contain survival information. The final study included 442 PTC pa-
tients in the testing set (Table 1). Eleven metastatic thyroid carcinoma
samples and eight samples of other types of thyroid cancers were
excluded.

All of the CpG sites were from the Illumina Infinium
HumanMethylation450 BeadChip assay. Raw data (level 3 data) con-
tained all CpG sites in the gene sequence and all CpG sites in the pro-
moter of the analyzed gene. For a specific CpG site, we calculated the
correlations with expression of the nearest gene. In total, 203,015
differentially methylated CpG sites were identified from the training
set, and 7,541 differentially methylated CpG sites were significantly
related to gene expression (false discovery rate [FDR]-corrected p
value < 0.05) and included 4,997 genes. There were 3,673 hypermethy-
lated sites and 3,868 hypomethylated sites. More than 50% of the hy-
pomethylated sites were negatively related to gene expression (Fig-
ure S1A), and more than 50% of the hypermethylated sites were
negatively related to gene expression (Figure S1B). A total of 2,035
genes with the proportion of the hypomethylated sites associated
with gene expression were greater than 9.60%, accounting for more
than 50%, and the expression of seven genes was influenced by all of
their hypomethylated sites (Figure S1C). A total of 2,082 genes with
the proportion of the hypermethylated sites associated with gene
expression were greater than 9.22%, accounting for more than 50%,
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and the expression of three genes was influenced
by all of their hypermethylated sites (Fig-
ure S1D). The hypomethylated sites showed sig-
nificant regulatory effects on gene expression
(Figure S1E), and the hypermethylated sites
also showed significant regulatory effects on
gene expression (Figure S1F).

Identification of the Genes Related to CIN

The methylation pattern score (score value) was
used to describe the maximal regulatory effect of
DNA methylation on gene expression. The distribution of the score
value was consistent with the normal distribution, which was the
same as the gene expression (Figure S2). We therefore characterized
the CIN based on the score value using Student’s t statistics. The fBi
was the net deviation in the score value contained in each chromo-
somal region relative to the remainder of the sampled score value.
The results of clustering analyses showed that most of the bands
had CIN (Figure 1A). As a measure of overall CIN, theMFA of a sam-
ple was defined as the sum of the magnitudes of its fBi features. In to-
tal, the DNA methylation patterns of 1,239 genes from preselected
4,997 genes were significantly related to the MFA (Table S1), and
53% of them showed a positive correlation, indicating the higher
the gene score value, the higher the CIN (Figure 1B). A total of 572
of them were hypermethylation phenotypes (Table S2), and 667 of
them were hypomethylation phenotypes (Table S3).

Gene ontology (GO) functional enrichment analyses (Figure 1C)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses (Figure 1D) showed that the 1,239 genes
were significantly related to organ development and were enriched
in pathways that were related to cancer. The DNA methylation pat-
terns of these genes were significantly related to the MFA and
significantly differentiated between normal samples and cancer sam-
ples (Figure 1E).



Table 2. Prognosis Markers of PTC Patients

Variable HR (95% CI)
Regression
Coefficient p Value

TMEM18 1.951 � 10-9(2.351e�17-0.1619) �20.05 0.0311

UBAC2 7.909� 10-19(3.658e�33-0.000171) �41.68 0.0133

ELOVL2 0.002013(5.646e�06-0.7177) �6.208070 0.0384

ALMS1P 1.7 � 109(1.075-2.687e+18) 21.25 0.0492
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Differentially Methylated Markers Associated with PTC Clinical

Prognoses

We used the log-rank test to analyze the DNA methylation patterns
of 1,239 genes that had high correlations with CIN, with 28 genes
being left. The DNA methylation patterns of thirteen genes that
had high correlations with CIN were significant (p < 0.05) using uni-
variate Cox regression analyses. The hazard ratios (HRs) and 95%
confidence intervals (CIs) of the clinical parameters for mortality
were calculated using univariate Cox proportional hazard model an-
alyses. The Kaplan-Meier method was used to estimate the overall
survival times of patients. The DNA methylation patterns of four
genes, TMEM18, UBAC2, ELOVL2, and ALMS1P, which had high
correlations with CIN, were finally identified as prognosis markers
of PTC. We developed four distinct risk scores, each of them based
on the methylation pattern of one of four genes. The risk score
formula for each patient was calculated as follows: risk score =
(�20.05 � TMEM18), (�41.68 � UBAC2), (�6.20807 � ELOVL2),
and (21.25�ALMS1P). If the regression coefficient estimated by the
univariate Cox proportional hazards model > 0, then the hyper-
methylation of the risk gene was bad for the survival time. We
subdivided the PTC patients into high-risk and low-risk groups
by using the median of the risk scores. The HRs (95% CI) of
TMEM18, UBAC2, ELOVL2, and ALMS1P were 1.951 � 10�9

(2.351e�17-0.1619), 7.909 � 10�19 (3.658e�33-0.000171),
0.002013 (5.646e�06-0.7177), and 1.7 � 109 (1.075-2.687e+18),
respectively (Table 2).

The DNA methylation pattern of UBAC2 that had a high correlation
with CIN significantly predicted the survival of PTC patients in the
training set (Figure 2A). The 5-year survival percentage of the high-
risk score patients was 68.2% ± 13.6% and was less than that of the
low-risk score patients (100%, p = 0.038). From the low-risk group
to the high-risk group, the methylation levels of the UBAC2
cg16941122 site showed a significant upward trend and had a strong
linear relationship with the risk index, although the expression levels
of UBAC2 and the average methylation levels had no obvious trend
(Figure 2B). Furthermore, a higher UBAC2 risk score was associated
with a worse PTC patient prognosis.

The DNA methylation pattern of TMEM18 that had a high correla-
tion with the CIN significantly predicted the survival of PTC pa-
tients in the training set. The 5-year survival percentage of the
high-risk score patients was 59.8% ± 16.3% and was significantly
lower than that of the low-risk score patients (100%, p = 0.01) (Fig-
ure S3). The DNA methylation pattern of ALMS1P that had a high
correlation with CIN significantly predicted the survival of PTC pa-
tients in the training set. The 5-year survival percentage of the high-
risk score patients was 67.6% ± 14.2% and was significantly lower
than that of the low-risk score patients (100%, p = 0.041) (Figure S4).
Therefore, a higher gene risk score predicted a worse PTC patient
prognosis.

The DNAmethylation pattern of ELOVL2 that had a high correlation
with CIN significantly predicted the survival of PTC patients in the
training set (Figure 3A). The 5-year survival percentage of the high-
risk score patients was 65.8% ± 14.6% and was significantly lower
than that of the low-risk score group (100%, p = 0.029). From the
low-risk group to the high-risk group, the methylation levels of the
ELOVL2 cg24724428 site showed a significant upward trend and
had a strong linear relationship with the risk index, although the
expression levels of ELOVL2 and the average methylation levels had
no obvious trend (Figure 3B). Moreover, the ELOVL2 risk score
was significantly different in the four stages of PTC (Kruskal-Wallis
test, p = 0.001527), suggesting that the DNA methylation pattern of
ELOVL2 that had a high correlation with CIN was related to the prog-
ress of PTC (Figure 3C). A higher ELOVL2 risk score correlated with a
worse PTC patient prognosis, further suggesting that the ELOVL2
score value that had a high correlation with CIN significantly influ-
enced the patient’s clinical condition, progression of the disease,
and survival time.

We performed a time-dependent receiver-operating characteristic
(ROC) curve analysis to compare the sensitivity and specificity for
survival predictions among the DNA methylation patterns of these
four genes. The area under the ROC curve (AUC) value was obtained
from the ROC analyses and was compared among the DNA methyl-
ation patterns of these four genes. The AUC values of TMEM18,
UBAC2, ELOVL2, and ALMS1P were 0.95, 0.886, 0.764, and 0.854,
respectively (Figure 4).

Verification of the Testing Set

The testing set was used to evaluate the reproducibility and availabil-
ity of these four genes in a prognostic model. The DNA methylation
patterns of ELOVL2 and UBAC2 were obtained using independent
cancer samples that not only associated with CIN but could also be
used to predict the prognosis of PTC.Moreover,UBAC2 and ELOVL2
were hypomethylation phenotypes. The DNA methylation pattern of
UBAC2 that had a high correlation with CIN predicted the survival of
PTC patients in the testing set (Figure 5A). The 5-year survival per-
centage of the high-risk score patients was 83.6% ± 6.2%, which
was significantly lower than that of the low-risk score group
(97.1% ± 2%, p = 0.024). From the low-risk group to the high-risk
group, the methylation levels of the UBAC2 cg16941122 site showed
a significant upward trend and had a strong linear relationship with
the risk index, although the expression levels of UBAC2 and the
average methylation levels had no obvious trend (Figure 5B). The
samples from the testing set were subgrouped based on the tumor
stage, and the survival times of patients from the high-risk score
Molecular Therapy: Nucleic Acids Vol. 18 December 2019 653
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Figure 2. The UBAC2 Risk Score Model Predicts

Overall Survival of Papillary Thyroid Carcinoma

Patients in the Training Dataset

(A) Kaplan-Meier analyses for overall survival of patients

with high-risk or low-risk scores. The p value was calcu-

lated using the two-sided log-rank test. (B) DNA methyl-

ation pattern, expression levels, and average methylation

levels of the prognostic UBAC2 that correlated with pa-

tients’ survival status and increased risk scores.
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group were significantly different from that of the low-risk score
group in stage III of PTC (p = 0.018) (Figure 5C). The survival times
of patients from the high-risk score group were the same as those
from the low-risk score group in stages I, II, and IV of PTC (p =
0.39, 0.355, 0.137, respectively). We subgrouped the testing samples
based on histological type, and the survival times of the patients in
the high-risk score group were significantly different from those of
the low-risk score group in the thyroid papillary carcinoma clas-
sical/usual group (p = 0.009) (Figure 5D). The thyroid papillary car-
cinoma tall cell (R50% tall cell features) histological group contained
33 samples, and there were no samples from patients who had died.
Therefore, we could not perform survival analyses. The survival times
of the patients in the high-risk score group were the same as those
from the low-risk score group in the thyroid papillary carcinoma-
follicular (R99% follicular patterned) histological group (p =
0.366). A higher UBAC2 risk score predicted a worse PTC patient
prognosis.

The DNAmethylation pattern of ELOVL2 that had a high correlation
with the CIN significantly predicted the survival of PTC patients in
the testing set (Figure 6A). The 5-year survival percentage of the
high-risk score patients was 83.4% ± 6.1% and was significantly lower
than that of the low-risk score group (97.1% ± 2.4%; p = 0.026). From
the low-risk group to the high-risk group, the methylation levels of
the ELOVL2 cg24724428 site showed a significant upward trend
and had a strong linear relationship with the risk index, although
the expression levels of ELOVL2 and the average methylation levels
had no obvious trend (Figure 6B). The samples from the testing set
were subgrouped based on the tumor stage, and the survival times
of patients from the high-risk score group were the same as those
of the low-risk score group in stages I, II, III, and IV of PTC (p =
0.324, 0.206, 0.19, and 0.05, respectively). We subgrouped the testing
samples based on histological type, and the survival times of the pa-
tients in the high-risk score group were the same as those from the
654 Molecular Therapy: Nucleic Acids Vol. 18 December 2019
low-risk score group in the thyroid papillary
carcinoma classical/usual group (p = 0.078).
The survival times of the patients in the high-
risk score group were the same as those of the
low-risk score group in the thyroid papillary
carcinoma-follicular (R99% follicular pattern)
histological group (p = 0.317). Moreover, the
ELOVL2 risk score was significantly different
in the four stages of PTC (Kruskal-Wallis test;
p = 9.915� 10�13) (Figure 6C), suggesting that the DNAmethylation
pattern of ELOVL2 that had a high correlation with CIN was related
to the progress of PTC. A higher ELOVL2 risk score was correlated
with a worse PTC patient prognosis, indicating that the ELOVL2
score value that had a high correlation with CIN significantly influ-
enced the patient’s clinical condition, progression of disease, and sur-
vival time. The AUC values of ELOVL2 and UBAC2 were 0.849 and
0.556, respectively (Figure 7).

DISCUSSION
To predict PTC patient clinical prognoses, tumor node metastasis
(TNM) staging; patient age, histologic grade of the tumor, tumor
extent (extrathyroidal invasion or distant metastases), and size of
the primary tumor (AGES) scoring; patient age, presence of distant
metastases, extent and size of the primary tumor (AMES) scoring;
and metastasis, patient age, completeness of resection, local invasion,
and tumor size (MACIS) scoring have been used.32–35 However, pa-
tients with similar clinical phenotypes do not have identical progno-
ses, suggesting that the present PTC prognostic evaluation system
does not provide an accurate clinical prognosis for every patient.36–39

The PTC prognostic evaluation system therefore needs improvement.
The accuracy of PTC prognoses could be significantly improved by
the use of molecular markers. Cancer patients with a higher CIN
have a worse clinical prognosis, so CIN could be used to evaluate
the clinical prognoses of tumor patients.40–43 To improve the existing
PTC prognostic evaluation system, it is important for PTC patient
treatment to identify reliable CIN-related prognostic markers.
Although CIN-related prognostic markers have been previously re-
ported,9 the results differed. Therefore, more valid CIN-related prog-
nostic markers are needed to improve the accuracy and credibility of
the prognoses.

DNA methylation plays an important role in the regulation of gene
expression and CIN. Based on PTC samples from TCGA database,



Figure 3. The ELOVL2 Risk Score Model Predicts

Overall Survival of Papillary Thyroid Carcinoma

Patients in the Training Dataset

(A) Kaplan-Meier analyses for overall survival of patients

with high-risk or low-risk scores. The p value was calcu-

lated using the two-sided log-rank test. (B) DNA methyl-

ation pattern, expression levels, and average methylation

levels of the prognostic ELOVL2 that correlated with pa-

tients’ survival status and increased risk scores. (C) Box

plot of the ELOVL2 risk scores in the four stages of

papillary thyroid carcinoma.
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we used the R Significance Analysis of Microarrays (SAM) package44

to identify 203,015 differentially methylated CpG sites between PTC
and normal samples. Then, we used multiple regression analyses to
obtain 7,541 methylation patterns of CpG sites with the strongest
correlation with gene expressions. A total of 4,997 genes were ob-
tained by combining the CpG sites, which were represented as
featured DNA methylation patterns. The results showed that the
Figure 4. Receiver-Operated Characteristic (ROC) Analyses of the

Sensitivity and Specificity for Survival Prediction among the DNA

Methylation Patterns of the Four Genes

The time-dependent ROC curve was used to evaluate the prognostic performance

for survival predictions. The performance comparison was assessed among the four

genes by calculating the area under the ROC curves (AUC) in the training dataset.
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distribution of DNA methylation patterns was
consistent with the normal distribution, which
was the same as gene expression. We subse-
quently developed a method to characterize
CIN based on DNA methylation patterns of
genes using the Student’s t statistics. PCC was
used to evaluate the correlation between the
DNA methylation patterns and the CIN of
each gene. We found that 1,239 genes were highly associated with
CIN.With the use of the log-rank test, univariate Cox regression an-
alyses, and the Kaplan-Meier method, DNA methylation patterns of
four genes, including TMEM18, UBAC2, ELOVL2, and ALMS1P,
which had high correlations with CIN, provided good prognostic
values for PTC. An independent test set was used to test the validity
of the methylation risk score of the four genes. Finally, ELOVL2 and
UBAC2 remained. In addition, the DNA methylation pattern of
ELOVL2 was involved in different stages of PTC, indicating that
the DNA methylation pattern of ELOVL2 with a high correlation
with CIN significantly influenced the patient’s clinical condition,
progression of disease, and survival time. The DNA methylation
pattern associated with CIN may therefore be a good predictor of
PTC survival.

Previous studies of ELOVL2 and UBAC2 emphasized their relation-
ships with lipid metabolism and obesity.45–48 González-Bengtsson
et al.45 suggested that ELOVL2 played an important role in doco-
sahexaenoic acid (DHA) synthesis. Kobayashi et al.46 reported
that cells overexpressing ELOVL2 showed enhanced triacylglycerol
synthesis and subsequent accumulation of lipid droplets. Pauter
et al.47 suggested that hepatic DHA synthesis of ELOVL2, in addi-
tion to controlling de novo lipogenesis, also regulated lipid storage
and fat mass expansion in an SREBP-1c-independent fashion.
Tikhonenko et al.48 reported that a decrease in long-chain polyun-
saturated fatty acids was associated with a decrease in the fatty acid
elongases, ELOVL2 and ELOVL4, in diabetes, and additional
studies showed that obesity increased the risk of thyroid can-
cer.49–52 Han et al.49 reported that the morbidity of thyroid cancer
in female patients was related to a high BMI. Hwang et al.50 sug-
gested that weight gain and annual increases in obesity indicators
in middle-aged adults increased the risk of developing PTC. Kim
et al.51 reported that a higher BMI was associated with more
y: Nucleic Acids Vol. 18 December 2019 655
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Figure 5. The UBAC2 Risk Score Model Predicts Overall Survival of Papillary Thyroid Carcinoma Patients in the Testing Dataset

(A) Kaplan-Meier analyses for overall survival of patients with high-risk or low-risk scores. The p value was calculated using the two-sided log-rank test. (B) DNA methylation

pattern, expression level, and average methylation level of the prognostic UBAC2 that correlated with patients’ survival status and increased risk scores. (C) Kaplan-Meier

analyses for overall survival of patients in the third stage of papillary thyroid carcinoma. The p value was calculated using the two-sided log-rank test. (D) Kaplan-Meier

analyses for overall survival of patients with thyroid papillary carcinoma-classical/usual histological types. The p value was calculated using the two-sided log-rank test.
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aggressive tumor features, such as lymph node metastasis,
lymphatic invasion, and tumor multiplicity in PTC patients. Ober-
man et al.52 reported that obesity was significantly associated with
thyroid cancer, with BMI, in particular, a strong predictor of thy-
roid cancer. ELOVL2 was also significantly related to biosynthesis
656 Molecular Therapy: Nucleic Acids Vol. 18 December 2019
of unsaturated fatty acids, and UBAC2 was significantly related to
protein localization to the endoplasmic reticulum. Therefore,
DNA methylation patterns of ELOVL2 and UBAC2 were not only
associated with CIN, but might also participate in the initiation
and development of PTC.
Figure 6. The ELOVL2 Risk Score Model Predicts

Overall Survival of Papillary Thyroid Carcinoma

Patients in the Testing Dataset

(A) Kaplan-Meier analyses for overall survival of patients

with high-risk or low-risk scores. The P value was calcu-

lated using the two-sided log-rank test. (B) DNA methyl-

ation pattern, expression level, and average methylation

level of the prognostic ELOVL2 that correlated with the

patients’ survival status and increased risk scores. (C) Box

plot of the ELOVL2 risk score in the four stages of papillary

thyroid carcinoma.



Figure 7. Receiver-Operated Characteristic (ROC) Analyses of the

Sensitivity and Specificity for Survival Prediction between the DNA

Methylation Patterns of the Two Genes

The time-dependent ROCcurvewas used to evaluate the prognostic performance for

survival predictions. The performance comparison was assessed between the two

genes by calculating the area under the ROC curves (AUC) in the testing dataset.
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Because of differences among individual patients, presently used
prognostic indicators cannot accurately predict the prognosis of
each patient. It is therefore difficult to evaluate the clinical progno-
ses of patients with similar clinical features. Our results showed that
the DNA methylation patterns of ELOVL2 and UBAC2, which had
high correlations with CIN, could be used to predict the prognosis of
PTC. Aberrant DNAmethylation was related to the risk of PTC, and
the epigenetic markers associated with CIN may be used as predic-
tors of PTC survival. The inclusion of these prognosis markers into
the present PTC prognostic evaluation system could therefore assist
the clinician in determining the prognoses of patients with similar
clinical features and could provide a more appropriate therapeutic
schedule for high-risk patients to enhance the efficacies of PTC
treatments.
Conclusions

UBAC2 and ELOVL2, which had high correlations with CIN, pro-
vided good prognostic values for PTC. The DNAmethylation pattern
associated with CIN may therefore be a good predictor of PTC
survival.
MATERIALS AND METHODS
Acquisition of Gene Expression and DNA Methylation Data

With the use of the Illumina Infinium HumanMethylation450
BeadChip assay, raw data (level 3 data), raw UNC RNAseqV2 level
3 expression data, and clinical prognostic information for PTC
were collected from TCGA (https://www.cancer.gov/tcga/).
Eliminating Batch Effects

In order to ensure the accuracy of experiments, we used the R Surro-
gate Variable Analysis (Bioconductor) package to eliminate batch
effects of all of the DNA methylation data and the gene-expression
data from all samples.

Identifying Differentially Methylated CpGs

To compare the differences of DNA methylation between cancer and
normal samples in the training set, we used the R SAM44 package to
identify differentially methylated CpG sites. To control for a FDR of
the results, we used the Benjamini-Hochberg method to correct the p
value obtained from the statistical test. The threshold for defining the
differentially methylated CpG site involved a value of p < 0.05, and the
differential level (delta beta value) between the cancer and normal
samples was >0.1.

Identifying Differentially Methylated CpGs Associatedwith Gene

Expression

For the differentially methylated CpG sites of the PTC samples from
the training set, we used multiple regression coefficients to evaluate
the correlation between DNA methylation and gene expression.
The dependent variable was gene expression of a single gene. The
independent variables were all CpG sites mapped to the gene, con-
taining all CpG sites under the gene sequence and all CpG sites in
the promoter of the analyzed gene. For a particular CpG site, we
calculated correlations with the expression of the nearest gene. A
value of p < 0.05 was identified as a significant methylation level high-
ly related to gene expression.

Quantitation of the Regulatory Effect of DNAMethylation (Score

Value)

With the consideration of the multiple CpGs mapped to the gene
and the variability of the DNA methylation levels of multiple
CpGs located in the same gene, the average methylation level may
not reflect the real ability of DNA methylation to regulate gene
expression. Multiple regression analyses were therefore used to
quantify the regulatory competence of differential CpG sites and
then to quantify the maximal regulatory effect of DNA methylation
on gene expression. The methylation pattern score (score value) was
defined31 as follows:

Scorek = ba1$cgk1 + ba2$cgk2 +.baj$cgkj: (Equation 1)

The j CpGs sites represented the significant methylation sites in mul-
tiple regression analyses (p < 0.05), a^j (j = 1,2,...,j) represented the mul-
tiple regression coefficient of the jth CpG sites of the gene, and cgkj
represented the methylation level of the jth CpG sites of the gene in
the kth sample.

Calculating the CIN Score (MFA)

This study downloaded the cytoband coordinate file (GRCh37/
hg19) from the UCSC Genome Bioinformatics and then mapped
the genes to chromosomal sub-bands. If fewer than five genes
were present in a given cytoband, we considered the statistical
Molecular Therapy: Nucleic Acids Vol. 18 December 2019 657
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measure unreliable, and that cytoband was eliminated from further
analysis. The fBi described the net deviation in score value contained
in each chromosomal region relative to the remainder of the
sampled score value:9

fBi =
mBi � mGiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs2

Bi=NBÞ+ ðs2
Gi=NGÞ

p : (Equation 2)

The mBi represented the average score value of all of the genes under
sample i in the band, s2Bi represented the variance of the score value of
all the genes under sample i in the band, mGi represented the average
score value of the rest of the genes under sample i, s2Gi represented the
variance of the score value of the rest of the genes under sample i, NB

represented the number of genes in the band, and NG represented the
number of the remaining genes.

As a measure of overall CIN, we defined the MFA of a sample as the
sum of the magnitudes of its fBi features:

9

MFAi =
X
Band

��fBi �� : (Equation 3)

Identification of Genes Related to MFA

PCC was used to evaluate the correlation between the score value and
the MFA of each gene. In order to control for a FDR of the PCC, we
adopted a permutation test to correct the p value of the statistical test.
For each gene, the MFA was permutated 1,000 times to calculate its
PCC value, and if the value of p was <0.05, this gene was identified
as highly related to MFA as follows:

p =
c+ 1
1001

; (Equation 4)

where c was the number of PCC square values that were no less than
the actual PCC square value of the gene from the 1,000 permutations.
Enrichment Analyses for the GO and KEGG Pathways

To analyze further the biological significance of the genes related to
CIN, we used Database for Annotation, Visualization and Integrated
Discovery (DAVID) software to perform GO function analyses for
the genes related to CIN.53 The Fisher exact test with multiple test
corrections (FDR < 0.05) was used to obtain significant GO terms
associated with PTC. We acquired the KEGG pathway terms using
the same method.

Prognosis Analyses

The log-rank test was used to obtain p values and to identify a subset
of genes for which a score value that had high correlations with CIN
showed significant differences between the high and low groups. The
high and low groups were groups with high and low score values,
grouped by their median values. The survival times were compared
between these two groups. Genes with p < 0.05 were used in the study.
The p values were uncorrected p values. Univariate Cox regression
analyses were performed to assess the survival prognosis capabilities
658 Molecular Therapy: Nucleic Acids Vol. 18 December 2019
of the selected gene set using the overall survival time as a dependent
variable. The HRs and 95% CIs of the clinical parameters for mortal-
ity were calculated using the univariate Cox proportional hazard
model. The risk score formula for each patient was calculated as
follows:

Risk Scorek = ci,geneik; (Equation 5)

where k was the kth sample, i denoted the feature genes filtered by
the univariate Cox proportional hazards models, and ci was the
regression coefficient estimated by the univariate Cox proportional
hazards model. The 5-year overall survival for each score
value scoring group (high versus low) was calculated using the
Kaplan-Meier method, and the statistical significance was assessed
using the log-rank test. The significance level of all statistical
tests was p < 0.05. We performed time-dependent ROC curve
analyses to compare the sensitivities and specificities for survival pre-
dictions between the predicted genes. The ROC AUC values were
obtained from ROC analyses and were compared between the
selected genes.

In order to verify the reproducibility and accuracy of the gene prog-
nostic model, as predicted in the training set, we used the testing set.
The regression coefficients and the thresholds of risk scores derived
from the training set were directly applied to the testing set, and
then the patients in the testing set were divided into high-risk and
low-risk groups. The evaluation of survival times and the comparison
of differences between the two groups were the same as that of the
training set.
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Supplementary Figures

Figure S1. Correlation distribution. (A) More than 50% of regression coefficient distribution of
the hypomethylated sites were negatively related to gene expression. (B) More than 50% of
regression coefficient distribution of the hypermethylated sites were negatively related to gene
expression. (C) Proportion of the hypomethylated sites significantly related to gene expression,
peak value was 9.607311%, 2,035 genes≥9.607311%, which was 70% of total, 7 of them with
100% proportion. (D) Proportion of the hypermethylated sites significantly related to gene
expression, peak value was 9.219488%, 2,082 genes≥9.219488%, which was 72% of total, 3 of



them with 100% proportion. (E) Distribution of the hypomethylated sites multiple regression
correlation coefficient (R2), 1,758 genes R2>0.25, which was more than 50% of total. (F)
Distribution of the hypermethylated sites multiple regression correlation coefficient (R2), 1,694
genes R2>0.25, which was more than 50% of total.

Figure S2. Data distribution. (A) The distribution of Score Value is consistent with the normal
distribution. (B) The distribution of gene expression is consistent with the normal distribution.

Figure S3. The TMEM18 risk score model predicts overall survival of papillary thyroid
carcinoma patients in the training dataset. (A) Kaplan-Meier analysis for overall survival of
patients with high-risk or low-risk scores. P value was calculated using the two-sided log-rank test.
(B) DNA methylation pattern, expression level and average methylation level of the prognostic
TMEM18 that correlates with patients’ survival status and increased risk scores.



Figure S4. The ALMS1P risk score model predicts overall survival of papillary thyroid
carcinoma patients in the training dataset. (A) Kaplan-Meier analysis for overall survival of
patients with high-risk or low-risk scores. P value was calculated using the two-sided log-rank test.
(B) DNA methylation pattern, expression level and average methylation level of the prognostic
ALMS1P that correlates with patients’ survival status and increased risk scores.



Table S1. 1,239 genes were significantly related to chromosomal instability.
Gene Name

PARM1 SLC7A10 CTNNA2 PDE4C GOLT1A KLHDC2
CACNB3 F10 RNASE1 GALR2 FER1L6 MKX
KRTDAP SLC16A11 RRP15 NES SYDE2 AGAP7
CCDC48 NRN1L ALG12 PML SNRNP48 CACNA1A
PLOD2 STRN3 CLDN14 PON3 C9orf170 CALM1
IRF5 PHF1 ANKH ZNF138 PGS1 GLI3
GGT6 PPARD CMAH SNX11 TPD52 AIF1
ZNF517 PIK3R1 KCNJ15 FJX1 GLCCI1 PITPNA
GJB3 ZC3HAV1 HEXIM2 KCTD15 CBX3 SLC17A7
HCRTR2 MPL TGM2 COL28A1 MCM3 SYT10
CRBN SUSD2 PLEKHG1 TPSAB1 TEX2 ALPL
KY PDIA6 ZNF300 CTF1 ABCA1 MGLL
IGSF11 MYLK4 FAM109A DNAJC3 TF SLC4A4
SNX22 DEPDC1B BMPR1A TBC1D22B FFAR2 EDARADD
MAN2B1 BSCL2 C8orf31 CISH DNAJC5B ENAH
GLT25D2 IRX1 SPINK5 SHROOM1 OLR1 SYNE2
MRPL44 DPF3 HLA-DMB CLUAP1 SMAD7 CUL4A
ALS2CL IL17RE AKR7L DARS HSPC157 ATG9B
PTGDS C21orf70 LOC728613 DGKB PEX19 TMEM175
PMM1 ACPL2 SPSB2 ZBTB20 FAM55D BEND7
PTPRA SNX29 TRPV2 BEND4 HCFC2 SLC6A7
UBE2Z ARHGAP10 LAMA4 GPR56 FAM63A ADAMTSL3
AIF1L SLC25A37 LEPREL2 LRRC16A TNS3 MAP3K8
MYLK2 GPHN KLF5 MMP9 FAM47E MDGA2
C20orf117 ADD3 SPIN3 RHOBTB1 CYR61 NT5C2
TMEM215 NPHP1 SATL1 CHST11 FSTL1 C14orf4
PVRL4 ERN2 ACIN1 SLC26A11 ANXA4 VARS2
UPK2 PRKCD RASSF8 TIGIT PSRC1 FFAR1
DNASE2 GATA3 LASS4 SNTG2 C13orf38 VANGL2
DGKI ASPRV1 ITFG3 SAFB MAFG IL12RB2
MTMR11 FERMT3 C9orf163 LINGO3 SLC45A2 TTC28
PLB1 MYB LFNG ELOVL5 CLIC1 C5orf20
SERPINA1 EP400 ATP6V0A2 HIPK2 SPRED1 STL
C1orf70 SEL1L3 DDRGK1 C1orf161 GABRP LHFPL5
PLXNA2 SOX1 TTC24 CCDC105 GPR31 HSPA1A
TMEM108 OTUD7A TIFAB DCTD F11 NAV3
APEH MFNG NAALADL2 HLA-E ANXA11 PROCR
PTPN22 VAC14 CMTM4 TBX1 SGK269 PTK2B
ZNF204P HGFAC MORN4 SEMA3B FLII MAPRE3
DIAPH1 TMC8 VDR FGF1 IFT172 GNLY
HHIPL1 SDHA C6orf155 HOXA2 RNH1 CCR9
ADORA1 ZFYVE21 SPINT2 ACCN1 KIAA1644 PTBP1



PRRT3 C5orf32 ARF6 FZR1 CFH MAP7D1
TRPC4AP DISP2 ACCN3 NSUN7 SHC4 SLC16A4
P4HA2 FAM13AOS LY9 C2orf54 TMEM179 SNX10
SEC14L4 TRAF2 SERPINA3 CDC42BPB WWP1 ZSWIM4
PDK4 DQX1 C17orf58 NSMCE1 ARIH2 SPARC
ALMS1P WBSCR16 SGCB CCDC42 MACROD2 RIN3
IKZF2 PTCRA RASSF6 SLC22A17 DISP1 THBS4
SHD FAM184B ENTPD7 KCTD1 PCYT1A TAP1

MLLT4 AEBP1 NET1 SATB1 IL4
ST6GALNA
C3

NPEPL1 ASCL3 CXorf56 THAP4 HGSNAT TARS
CAND2 RNF222 WDR19 HS3ST4 GPR120 KRT4
MLPH C16orf52 POU6F2 RAVER2 IMPACT TMEM121
CHI3L2 EPHA7 KIRREL3 PUM1 STK33 FCER1G

SLC24A4 TMEM156 TBC1D9 MYOF
CSGALNAC
T2

ASB18

OR6F1 PDE6B GMPR BAI3 CTTN FIBP
UTRN GKN2 DCP2 ADRA2A POLR3K RBMS2
RAG1AP1 EGFR SLC4A2 BAK1 NTSR1 SPINT1
NFATC4 LOC400657 PROKR2 C10orf11 POLA2 IQCJ
WISP2 PKNOX2 ACSM5 C2orf55 CLN8 OPN3
ADRM1 FGF23 STK17A SMYD2 KRTCAP3 AKR1B1
MEGF9 PEBP4 ROPN1L KIAA0495 ANKS1B CNNM1
CTNNA1 TRMT1 FCRL5 LMOD2 TREML2 IL10RB
ABTB2 NODAL C22orf43 SPTBN4 VAV3 FAM46B
TMEM233 IL21R EXT2 TRAK1 JAK1 LOC285033
ESYT3 MICALL1 MATR3 TBR1 ZC3H6 TUFT1
UACA TMEM18 APLP2 DYNC1I2 GDF6 SNX33
DNAJC6 OSR1 XPR1 FRAS1 EPHA10 PPP3CC
ERC1 PTPRCAP COBL CLDN11 TNFAIP3 PTGIR
PI4KB LAG3 THRA CHL1 RCN1 CYP27C1
C6orf168 INPP5F CEACAM1 AHR C6orf174 IMMP2L
C1orf111 EIF4G1 ALDH4A1 NEDD4L NPBWR2 ACLY
TRAP1 RAB5C BRE DPYD BTN3A3 ALOX12
CST6 SMTN RNF212 JRK CCM2 MGC29506
AP3S2 RGL3 TMIGD2 VPS13D EPHA8 ZAK
MGEA5 ZBTB24 C17orf82 ADCY6 LOC285954 FOSL2
CARD9 CPAMD8 ZNF217 TBC1D22A ABI2 C1orf173
LOX E2F6 YWHAB PSMB8 TOR1AIP1 ARHGAP23
KLRAQ1 TMEM132E ZNF704 MBOAT1 SLC39A4 DHRS11
NRIP1 TCFL5 DAGLA GZF1 GNA14 KCTD3
FAM92B C1orf230 TAS2R16 MMP14 MTUS1 GFI1
PTGER1 PPAPDC1A NCOA4 DEDD2 IL15 ASCL4
ZNF133 LOC283050 C7orf4 CYTH1 CYTH4 RFC1



NECAB2 GNB1 GPR83 C11orf75 ST6GAL2 SMAD3
PHACTR2 BTN1A1 ZNF606 ESPNP USP10 ATP6V1H
MN1 BCAM ZNF259 SHMT2 TESC KCNH4
TCF23 NDST1 C1orf187 ZFP37 EOMES UBE2QL1
NKX2-8 PDGFD SLC6A12 TJP3 PRSS42 INHBB
KIAA1191 MICB SPAG17 RAD9A ASB9 CDRT4
UNC5CL IL16 RPP14 KLHDC7A GRM2 NIPA1
NHSL1 FNDC3B TMEM87A ZNF544 ACY1 C6orf186
GATSL3 NECAB1 ZNF876P RABGAP1 SLC6A3 PDE4DIP
CREB3L1 ABCC1 EBAG9 DBC1 SGSM1 ZFP64
ABCB9 B3GALT4 KLF6 ZWINT CLIP4 EN2
MPHOSPH6 SGMS1 PTPLA GMIP HCG9 GBX2
RUFY3 KCNN4 IGF1 G0S2 RAPGEF3 XPNPEP2
KCNA6 DENND1C LGALS12 NAT8B SLC5A9 RFX4
AXL NR1H3 SFTA3 EPHB1 MFSD6 DDX47
TRIM54 SLFN12L FBXO32 ABHD15 NUAK2 ATP8B4
MED29 PHACTR1 RAB17 TINAGL1 HMG20B NKD2
FBXL18 PDCD1 CD80 FZD8 MTF1 COMMD3
ADAM15 TMC3 RAB31 ZNF774 RAPGEF1 SPATA7
TXNDC11 FLG2 SYNJ2 ATP6V1B2 WRNIP1 BAIAP2L1
NTHL1 STEAP3 GNAT1 SETD3 SHB CTNNBIP1
SUSD1 RIBC2 RHOBTB2 C2orf3 ARHGEF4 EGFLAM
CAPN5 PGCP LDB2 ZNF502 FZD5 SETMAR
ADCY7 SOAT2 PRPF4B FAT3 SGEF MASP1
NXF3 TAF4 SAMD11 LRRC1 WDR66 RAN
CDK6 VSNL1 FAM129B C12orf56 WNK2 PTPN7
TLR2 RORA MAPKAP1 POU2F2 TNC C20orf108
SLC12A6 TEDDM1 CDH2 LPAR4 NFIL3 TMEM140
TP53I3 RAD51L1 MFAP3L APBA2 TMEM72 ELOVL2
FAM101A CTBP1 FAM54B TMEM30B SCTR TRHR
ZFAT CTHRC1 HOMER2 CYP2W1 RFC2 KCTD10
NDUFA10 TSPAN9 SORT1 B4GALNT4 KIAA1045 PVT1
CPO RCSD1 AK3 MARCH10 C10orf26 CRTAM
GTSF1 XYLT1 HOXA10 NDUFA11 SLC38A3 PRMT2
SPIB CRTAP HCN4 MXRA5 EXT1 DPP9
FMOD KRBA1 CCND1 DEPDC5 SERPINC1 C10orf58
PGAP3 NUPR1 EDIL3 DCAKD TMEM149 ADARB1
MXD4 SLC16A5 MCTS1 GNAI1 GTPBP8 FAM13C
UBE2C ITGA4 PYCARD PDPN ZNF594 CRELD2
PYROXD2 CCDC81 ZNF560 SIGLEC6 ABCA2 NT5C3
RSPH4A IRF8 INADL B4GALT6 SHC3 RAB11FIP1
ETS1 GDF11 YAP1 ESRP1 CPT1C AKAP12
ABCA3 MFGE8 TRIM10 PROX1 SLC20A2 POU2F1
RGS9BP ZFPM2 UBAC2 IL24 DOK2 ORC4L



CDK5R1 BAIAP3 TM9SF1 ASIP MPDZ MKRN3
RNF135 C15orf23 CCDC85C ZNF322A DCAF12 EGR3
KIAA1274 ZNF839 JARID2 ITGAL GUCY2D ZNF793
C10orf82 RCOR1 TMEM110 SLC38A5 SSH2 PPP1R14C
MED16 LOC153328 GDI2 MGST3 KIAA0020 THSD1
ZSWIM5 RAP2B C1R LOC285692 FOXB2 SCML4
LRP12 TRAF3 EDNRA SDSL ZNF703 FBXL21
SDCBP2 ALX4 GLB1L3 FLT3 KEL SLC25A29
SUV420H1 PABPC4 FBXO21 ZNF397OS HUNK COL1A1
LOC148696 UBE2I DGKD CASP4 TPRKB EPHA5
GPATCH1 KRT6A WNT5A NFKBIL2 PADI4 TMEM150C
CRYBB1 BMP5 EFNA3 NOV KRT7 HOXA1
ULK2 HDLBP ELOVL4 SIAH2 GRIN3A NRBP2
SLC38A8 ASPH PSORS1C1 TUB PKLR SLC25A42
PNPLA7 EPB49 CD79A MLF1 FAM105B CPSF4
WDFY4 C1orf113 STK39 SMAD6 C2orf73 TTC7A
RSPO1 ASCL2 CORO1A GCOM1 C6orf132 TCOF1
CAPG LAMA5 PSMB9 SNX4 CDH22 UBTF
CYP27B1 PLEKHA1 C11orf24 SOX6 TNFRSF13C SPEN
WNT7A THEM4 CCDC12 EPOR WNK4 DNAL4
LOC399959 SPRY4 GOLGA3 PIP4K2B RASGEF1A ZNF814
SLC38A7 APPL1 SLC13A3 HAVCR2 LOC339674 C2orf85
FHL3 SLC5A11 CNRIP1 MTHFR GLUL RNF185
FAM84B PPP1R1B ZNF438 ABHD6 UBR4 TPCN1
RDH13 PABPN1L GATA4 FARS2 RBP7 PLAC2
C6orf142 PUSL1 SPATA2L L3MBTL4 HPN C21orf88
PPFIBP2 CABLES1 TPM4 BMP2 RAB19 KRT12
CHAC1 SPATS2L FLJ42709 NUDT16 ROBO1 GPR124
ZNF311 SNTG1 CYB5R4 CHRM3 ICOS SPATC1
PDE4A KIFC3 GNAQ CEACAM3 LAPTM5 C1orf168

IL6
MAP1LC3B
2

ABCB6 SHISA2 CASC3 RHOG

TMPRSS13 LMNB1 AQP2 TPBG CRHR2 BCL2L15
VPS37B MAPKAPK2 BCAR1 KIAA0040 BTN2A3 RASGRF1
SIAH1 EVC2 C1orf93 TMEM63A BAI2 PARP1
MRGPRE PLCG1 C14orf23 GPR158 TBC1D10C GOLIM4
FAM163A KHDC1L RNF126P1 LATS2 APOA4 PCCA
RNF186 ELMO3 KRT78 C1orf103 PPP1R1C VEGFA
N4BP2L2 ZDHHC23 HSD11B1 CRYBG3 RDX GPR20
ICK VWA3B TMC6 ZSCAN22 SLC40A1 UCP2
ZDHHC1 FAM3D GPR61 C6orf176 ENTPD4 CPA5
GRINA HOXB9 ENPP7 AP1M2 PPP2R5C C10orf110
ZFP1 RUNX1 CYB561 LOC284009 TPCN2 CCDC116
DNAH6 MIPOL1 PAX2 CCRL2 RNPEP SMYD5



ABCC3 C6orf118 LAX1 NAA25 NRM TGFA
CDH7 TRPM5 ANKK1 NFKBIE C6orf25 NRP1
SLC30A2 NRD1 IMPDH1 ST8SIA1 ONECUT1 CELSR2
HES5 BCL10 LAT SERPINI2 C2orf29 IFI30
SEC11A ARL9 GRB2 GAL3ST3 SPATA20 CX3CR1
FREM2 SLC22A5 C1orf86 SORCS1 KIAA0415 COL17A1
LRFN1 IL6R C22orf15 SHMT1 LIPC NID2
LOC100132
354

KALRN FCGRT NMI C10orf81 APOD

FASLG DYNLL2 ARPC1B MYO16 ZNF528 CDH1
BTBD19 SACS PRDX1 FBXL2 KIAA0427 SYT2

MBNL1 CCDC68 KCNJ1 RPS6KA1
ADCYAP1R
1

SNCA

MORN1 PDCD1LG2 PHLPP1 IL5RA MARCH4 KISS1
CRLF3 KRT8 RFWD2 FAAH FAM20C RNF40
PSMA8 MC1R TNFAIP8L3 MAP7 ZNF529 CENPN
SGIP1 IFIT3 TMEM132A METRNL EML1 FLJ33360
REG4 IFIH1 ZKSCAN2 EFNA1 MAPK10 RGL1
ABCB10 TTPA GLDN SETD6 RBM45 CMPK1
HMGCS1 IL31RA TBC1D12 ITPK1 FBXO6 NINJ1
LOXL1 SLC25A38 CCR7 CDKL1 TRUB1 PLCG2
DECR2 IGF2BP2 SH3BP1 MET HLA-DPB1 TACC2
TRAF3IP2 PARD3 FAM172A GRIN2C SDCBP NAA40

RAC1 CASP7 SLC4A9
GABARAPL
1

ASB16 SLC39A11

GRAP2 CNTN6 CLPTM1L ANKFN1 DDR2
LOC1001909
39

ICAM4 STRADA FAM115C SLC9A2 EEPD1 TFPI
TAF12 SLCO2A1 SIL1 CYB5R1 FAM57A GTF3C1
CXCL1 ZNF853 ORAOV1 SLC41A3 NR2E1 RFX1
CHN2 MED12L RAP1A MLN NSD1 MTIF2
VAMP1 LOC146880 RNF166 SLC6A1 FOXG1 RARRES2
TGFB1I1 FOXL1 GEMIN8 DIRC2 FAM181B MOXD1
UTF1 WRB SOCS2 MRAS CIB4 SIDT1
NCK2 CBLB CD3D IGFBP5 FAM171A2 CLEC18B
TAP2 ARHGAP6 DDX51 CX3CL1 PRDM10 UNKL
ST3GAL1 ADK CAMK2D LRRC42 PLXNA4 C12orf42
MOBKL1B ACVR1C CDH16 DNAH14 LCP1 CAMTA2
PHF21B E4F1 TLE2 C17orf97 MAPKBP1 TRIM58
PAX9 KIAA1199 SLC2A9



Table S2. 572 of 1,239 genes were hypermethylation phenotypes.
Gene Name

PARM1 RUFY3 PLCG1 CXorf56 NDUFA11 TPD52
CACNB3 KCNA6 KHDC1L WDR19 MXRA5 GLCCI1
KRTDAP AXL ELMO3 POU6F2 DEPDC5 CBX3
CCDC48 TRIM54 ZDHHC23 KIRREL3 DCAKD MCM3
PLOD2 MED29 VWA3B TBC1D9 GNAI1 TEX2
IRF5 FBXL18 FAM3D GMPR PDPN ABCA1
GGT6 ADAM15 HOXB9 DCP2 SIGLEC6 TF
ZNF517 TXNDC11 RUNX1 SLC4A2 B4GALT6 FFAR2
GJB3 NTHL1 MIPOL1 PROKR2 ESRP1 DNAJC5B
HCRTR2 SUSD1 C6orf118 ACSM5 PROX1 OLR1
CRBN CAPN5 TRPM5 STK17A IL24 SMAD7
KY ADCY7 NRD1 ROPN1L ASIP PEX19
IGSF11 NXF3 BCL10 FCRL5 ZNF322A FAM55D
SNX22 CDK6 ARL9 C22orf43 ITGAL HCFC2
MAN2B1 TLR2 SLC22A5 EXT2 SLC38A5 FAM63A
GLT25D2 SLC12A6 IL6R MATR3 MGST3 TNS3
MRPL44 TP53I3 KALRN APLP2 LOC285692 FAM47E
ALS2CL FAM101A DYNLL2 XPR1 SDSL CYR61
PTGDS ZFAT SACS COBL FLT3 FSTL1
PMM1 NDUFA10 CCDC68 THRA ZNF397OS ANXA4
PTPRA CPO PDCD1LG2 CEACAM1 CASP4 PSRC1
UBE2Z GTSF1 KRT8 ALDH4A1 NFKBIL2 C13orf38
AIF1L SPIB MC1R BRE NOV MAFG
MYLK2 FMOD IFIT3 RNF212 SIAH2 SLC45A2
C20orf117 PGAP3 IFIH1 TMIGD2 TUB CLIC1
TMEM215 MXD4 TTPA C17orf82 MLF1 SPRED1
PVRL4 UBE2C IL31RA ZNF217 SMAD6 GABRP
UPK2 PYROXD2 SLC25A38 YWHAB GCOM1 GPR31
DNASE2 RSPH4A IGF2BP2 ZNF704 SNX4 F11
DGKI ETS1 PARD3 DAGLA SOX6 ANXA11
MTMR11 ABCA3 CASP7 TAS2R16 EPOR SGK269
PLB1 RGS9BP CNTN6 NCOA4 PIP4K2B FLII
SERPINA1 CDK5R1 STRADA C7orf4 HAVCR2 IFT172
C1orf70 RNF135 SLCO2A1 GPR83 MTHFR RNH1
PLXNA2 KIAA1274 ZNF853 ZNF606 ABHD6 KIAA1644
TMEM108 C10orf82 MED12L ZNF259 FARS2 CFH
APEH MED16 LOC146880 C1orf187 L3MBTL4 SHC4
PTPN22 ZSWIM5 FOXL1 SLC6A12 BMP2 TMEM179
ZNF204P LRP12 WRB SPAG17 NUDT16 WWP1
DIAPH1 SDCBP2 CBLB RPP14 CHRM3 ARIH2
HHIPL1 SUV420H1 ARHGAP6 TMEM87A CEACAM3 MACROD2
ADORA1 LOC148696 ADK ZNF876P SHISA2 DISP1



PRRT3 GPATCH1 ACVR1C EBAG9 TPBG PCYT1A
TRPC4AP CRYBB1 E4F1 KLF6 KIAA0040 IL4
P4HA2 ULK2 KIAA1199 PTPLA TMEM63A HGSNAT
SEC14L4 SLC38A8 CTNNA2 IGF1 GPR158 GPR120
PDK4 PNPLA7 RNASE1 LGALS12 LATS2 IMPACT
ALMS1P WDFY4 RRP15 SFTA3 C1orf103 STK33

IKZF2 RSPO1 ALG12 FBXO32 CRYBG3
CSGALNAC
T2

SHD CAPG CLDN14 RAB17 ZSCAN22 CTTN
MLLT4 CYP27B1 ANKH CD80 C6orf176 FFAR1
NPEPL1 WNT7A CMAH RAB31 AP1M2 VANGL2
CAND2 LOC399959 KCNJ15 SYNJ2 LOC284009 IL12RB2
MLPH SLC38A7 HEXIM2 GNAT1 CCRL2 TTC28
CHI3L2 FHL3 TGM2 RHOBTB2 NAA25 C5orf20
SLC24A4 FAM84B PLEKHG1 LDB2 NFKBIE STL
OR6F1 RDH13 ZNF300 PRPF4B ST8SIA1 LHFPL5
UTRN C6orf142 FAM109A SAMD11 SERPINI2 HSPA1A
RAG1AP1 PPFIBP2 BMPR1A FAM129B GAL3ST3 NAV3
NFATC4 CHAC1 C8orf31 MAPKAP1 SORCS1 PROCR
WISP2 ZNF311 SPINK5 CDH2 SHMT1 PTK2B
ADRM1 PDE4A HLA-DMB MFAP3L NMI MAPRE3
MEGF9 IL6 AKR7L FAM54B MYO16 GNLY
CTNNA1 TMPRSS13 LOC728613 HOMER2 FBXL2 CCR9
ABTB2 VPS37B SPSB2 SORT1 RPS6KA1 PTBP1
TMEM233 SIAH1 TRPV2 AK3 IL5RA MAP7D1
ESYT3 MRGPRE LAMA4 ZFP37 FAAH SLC16A4
UACA FAM163A LEPREL2 TJP3 MAP7 SNX10
DNAJC6 RNF186 KLF5 RAD9A METRNL ZSWIM4
ERC1 N4BP2L2 SPIN3 KLHDC7A EFNA1 SPARC
PI4KB ICK SATL1 ZNF544 SETD6 RIN3
C6orf168 ZDHHC1 ACIN1 RABGAP1 ITPK1 THBS4
C1orf111 GRINA RASSF8 DBC1 CDKL1 TAP1

TRAP1 ZFP1 LASS4 ZWINT MET
ST6GALNA
C3

CST6 DNAH6 ITFG3 GMIP GRIN2C TARS

AP3S2 ABCC3 C9orf163 G0S2
GABARAPL
1

KRT4

MGEA5 CDH7 LFNG NAT8B ANKFN1 TMEM121
CARD9 SLC30A2 ATP6V0A2 EPHB1 SLC9A2 FCER1G
LOX HES5 DDRGK1 ABHD15 CYB5R1 ASB18
KLRAQ1 SEC11A TTC24 TINAGL1 SLC41A3 FIBP
NRIP1 FREM2 TIFAB FZD8 MLN RBMS2
FAM92B THEM4 NAALADL2 ZNF774 SLC6A1 SPINT1
PTGER1 SPRY4 CMTM4 ATP6V1B2 DIRC2 IQCJ



ZNF133 APPL1 MORN4 SETD3 MRAS OPN3
NECAB2 SLC5A11 VDR C2orf3 IGFBP5 AKR1B1
PHACTR2 PPP1R1B C6orf155 ZNF502 CX3CL1 CNNM1
MN1 PABPN1L SPINT2 FAT3 LRRC42 IL10RB
TCF23 PUSL1 ARF6 LRRC1 DNAH14 FAM46B
NKX2-8 CABLES1 ACCN3 C12orf56 C17orf97 LOC285033
KIAA1191 SPATS2L LY9 POU2F2 TRIM58 TUFT1
UNC5CL SNTG1 SERPINA3 LPAR4 GOLT1A SNX33
NHSL1 KIFC3 C17orf58 APBA2 FER1L6 HSPC157

GATSL3
MAP1LC3B
2

SGCB TMEM30B SYDE2 PGS1

CREB3L1 LMNB1 RASSF6 CYP2W1 SNRNP48 MARCH10
ABCB9 MAPKAPK2 ENTPD7 B4GALNT4 C9orf170 NET1
MPHOSPH6 EVC2

Table S3. 667 of 1,239 genes were hypomethylation phenotypes.
Gene Name

LRFN1 PPAPDC1A RNF126P1 FRAS1 LOC339674 GBX2
LOC100132
354

LOC283050 KRT78 CLDN11 GLUL XPNPEP2

FASLG GNB1 HSD11B1 CHL1 UBR4 RFX4
BTBD19 BTN1A1 TMC6 AHR RBP7 DDX47
MBNL1 BCAM GPR61 NEDD4L HPN ATP8B4
MORN1 NDST1 ENPP7 DPYD RAB19 NKD2
CRLF3 PDGFD CYB561 JRK ROBO1 COMMD3
PSMA8 MICB PAX2 VPS13D ICOS SPATA7
SGIP1 IL16 LAX1 ADCY6 LAPTM5 BAIAP2L1
REG4 FNDC3B ANKK1 TBC1D22A CASC3 CTNNBIP1
ABCB10 NECAB1 IMPDH1 PSMB8 CRHR2 EGFLAM
HMGCS1 ABCC1 LAT MBOAT1 BTN2A3 SETMAR
LOXL1 B3GALT4 GRB2 GZF1 BAI2 MASP1
DECR2 SGMS1 C1orf86 MMP14 TBC1D10C RAN
TRAF3IP2 KCNN4 C22orf15 DEDD2 APOA4 PTPN7
RAC1 DENND1C FCGRT CYTH1 PPP1R1C C20orf108
GRAP2 NR1H3 ARPC1B C11orf75 RDX TMEM140
ICAM4 SLFN12L PRDX1 ESPNP SLC40A1 TRHR
TAF12 PHACTR1 KCNJ1 SHMT2 ENTPD4 KCTD10
CXCL1 PDCD1 PHLPP1 POLR3K PPP2R5C PVT1
CHN2 TMC3 RFWD2 NTSR1 TPCN2 CRTAM
VAMP1 FLG2 TNFAIP8L3 POLA2 RNPEP PRMT2



TGFB1I1 STEAP3 TMEM132A CLN8 NRM DPP9
UTF1 RIBC2 ZKSCAN2 KRTCAP3 C6orf25 C10orf58
NCK2 PGCP GLDN ANKS1B ONECUT1 ADARB1
TAP2 SOAT2 TBC1D12 TREML2 C2orf29 FAM13C
ST3GAL1 TAF4 CCR7 VAV3 SPATA20 CRELD2
MOBKL1B VSNL1 SH3BP1 JAK1 KIAA0415 NT5C3
PHF21B RORA FAM172A ZC3H6 LIPC RAB11FIP1
PAX9 TEDDM1 SLC4A9 GDF6 C10orf81 AKAP12
SLC7A10 RAD51L1 CLPTM1L EPHA10 ZNF528 POU2F1
F10 CTBP1 FAM115C TNFAIP3 KIAA0427 ORC4L

SLC16A11 CTHRC1 SIL1 RCN1
ADCYAP1R
1

MKRN3

NRN1L TSPAN9 ORAOV1 C6orf174 FAM20C EGR3
STRN3 RCSD1 RAP1A NPBWR2 ZNF529 ZNF793
PHF1 XYLT1 RNF166 BTN3A3 EML1 PPP1R14C
PPARD CRTAP GEMIN8 CCM2 MAPK10 THSD1
PIK3R1 KRBA1 SOCS2 EPHA8 RBM45 SCML4
ZC3HAV1 NUPR1 CD3D LOC285954 FBXO6 FBXL21
MPL SLC16A5 DDX51 ABI2 TRUB1 SLC25A29
SUSD2 ITGA4 CAMK2D TOR1AIP1 HLA-DPB1 COL1A1
PDIA6 CCDC81 CDH16 SLC39A4 SDCBP EPHA5
MYLK4 IRF8 TLE2 GNA14 ASB16 TMEM150C
DEPDC1B GDF11 SLC2A9 MTUS1 DDR2 HOXA1
BSCL2 MFGE8 PDE4C IL15 EEPD1 NRBP2
IRX1 ZFPM2 GALR2 CYTH4 FAM57A SLC25A42
DPF3 BAIAP3 NES ST6GAL2 NR2E1 CPSF4
IL17RE C15orf23 PML USP10 NSD1 TTC7A
C21orf70 ZNF839 PON3 EOMES FOXG1 TCOF1
ACPL2 RCOR1 ZNF138 PRSS42 FAM181B UBTF
SNX29 LOC153328 SNX11 ASB9 CIB4 SPEN
ARHGAP10 RAP2B FJX1 GRM2 FAM171A2 DNAL4
SLC25A37 TRAF3 KCTD15 ACY1 PRDM10 ZNF814
GPHN ALX4 COL28A1 SLC6A3 PLXNA4 C2orf85
ADD3 PABPC4 TPSAB1 SGSM1 LCP1 RNF185
NPHP1 UBE2I CTF1 CLIP4 MAPKBP1 TPCN1
ERN2 KRT6A DNAJC3 HCG9 CAMTA2 PLAC2
PRKCD BMP5 TBC1D22B RAPGEF3 KLHDC2 C21orf88
GATA3 HDLBP CISH SLC5A9 MKX KRT12
ASPRV1 ASPH SHROOM1 MFSD6 AGAP7 GPR124
FERMT3 EPB49 CLUAP1 NUAK2 CACNA1A SPATC1
MYB C1orf113 DARS HMG20B CALM1 C1orf168
EP400 ASCL2 DGKB MTF1 GLI3 RHOG
SEL1L3 LAMA5 ZBTB20 RAPGEF1 AIF1 BCL2L15
SOX1 PLEKHA1 GPR56 WRNIP1 PITPNA RASGRF1



OTUD7A HOXA10 LRRC16A SHB SLC17A7 PARP1
MFNG HCN4 MMP9 ARHGEF4 SYT10 GOLIM4
VAC14 CCND1 RHOBTB1 FZD5 ALPL PCCA
HGFAC EDIL3 CHST11 SGEF MGLL VEGFA
TMC8 MCTS1 SLC26A11 WDR66 SLC4A4 GPR20
SDHA PYCARD TIGIT WNK2 EDARADD UCP2
ZFYVE21 ZNF560 SNTG2 TNC ENAH CPA5
C5orf32 INADL SAFB NFIL3 SYNE2 C10orf110
DISP2 YAP1 LINGO3 TMEM72 CUL4A CCDC116
FAM13AOS TRIM10 ELOVL5 SCTR ATG9B SMYD5
TRAF2 UBAC2 HIPK2 RFC2 TMEM175 TGFA
DQX1 TM9SF1 C1orf161 KIAA1045 BEND7 NRP1
WBSCR16 CCDC85C CCDC105 C10orf26 SLC6A7 CELSR2
PTCRA JARID2 DCTD SLC38A3 ADAMTSL3 IFI30
FAM184B TMEM110 HLA-E EXT1 MAP3K8 CX3CR1
AEBP1 GDI2 TBX1 SERPINC1 MDGA2 COL17A1
ASCL3 C1R SEMA3B TMEM149 NT5C2 NID2
RNF222 EDNRA FGF1 GTPBP8 C14orf4 APOD
C16orf52 GLB1L3 HOXA2 ZNF594 VARS2 CDH1
EPHA7 FBXO21 ACCN1 ABCA2 PPP3CC SYT2
TMEM156 DGKD FZR1 SHC3 PTGIR SNCA
PDE6B WNT5A NSUN7 CPT1C CYP27C1 KISS1
GKN2 EFNA3 C2orf54 MARCH4 IMMP2L RNF40
EGFR ELOVL4 CDC42BPB SLC20A2 ACLY CENPN
LOC400657 PSORS1C1 NSMCE1 DOK2 ALOX12 FLJ33360
PKNOX2 CD79A CCDC42 MPDZ MGC29506 RGL1
FGF23 STK39 SLC22A17 DCAF12 ZAK CMPK1
PEBP4 CORO1A KCTD1 GUCY2D FOSL2 NINJ1
TRMT1 PSMB9 SATB1 SSH2 C1orf173 PLCG2
NODAL C11orf24 THAP4 KIAA0020 ARHGAP23 TACC2
IL21R CCDC12 HS3ST4 FOXB2 DHRS11 NAA40
MICALL1 GOLGA3 RAVER2 ZNF703 KCTD3 SLC39A11

TMEM18 SLC13A3 PUM1 KEL GFI1
LOC1001909
39

OSR1 CNRIP1 MYOF HUNK ASCL4 TFPI
PTPRCAP ZNF438 BAI3 TPRKB RFC1 GTF3C1
LAG3 GATA4 ADRA2A PADI4 SMAD3 RFX1
INPP5F SPATA2L BAK1 KRT7 ATP6V1H MTIF2
EIF4G1 TPM4 C10orf11 GRIN3A KCNH4 RARRES2
RAB5C FLJ42709 C2orf55 PKLR UBE2QL1 MOXD1
SMTN CYB5R4 SMYD2 FAM105B INHBB SIDT1
RGL3 GNAQ KIAA0495 C2orf73 CDRT4 CLEC18B
ZBTB24 ABCB6 LMOD2 C6orf132 NIPA1 UNKL
CPAMD8 AQP2 SPTBN4 CDH22 C6orf186 C12orf42



E2F6 BCAR1 TRAK1 TNFRSF13C PDE4DIP ELOVL2
TMEM132E C1orf93 TBR1 WNK4 ZFP64 TESC
TCFL5 C14orf23 DYNC1I2 RASGEF1A EN2 BEND4
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