Table S1. Incorporation of 13C-labelled carbon during DNA-SIP experiments with willow soil

Length of Enrichment	13C incorporation (μmol g-1 *)	Time (h)
Un-enriched (T ₀)	0	0
Day 6 (T ₁)	22.3	138
Day 7 (T ₂)	47.3	172.5

* Consumption of isoprene in DNA-SIP microcosms was monitored by gas chromatography. Incorporation of carbon was estimated assuming that 50% isoprene consumed was assimilated.

Table S2. Identity of Iso polypeptides encoded by *iso* gene clusters when compared to the corresponding Iso polypeptides from *Rhodococcus* sp. strain AD45

Isoprene-degrading isolates are in bold. wsMG designations indicate *iso* gene-containing contigs retrieved from willow soil metagenomes. Percentage identities (% amino acid identity) are with respect to the Iso polypeptides of the most well-characterised isoprene-degrader *Rhodococcus* sp. AD45 (Crombie et al., 2015).

100-90 89-80 79-70 69-60 **59-50 49-35**

Isolate/contig												
Rhodococcus sp. AD45	IsoG	IsoH	Isol	IsoJ	-	IsoA	IsoB	IsoC	IsoD	IsoE	IsoF	AldH_1
Rhodococcus sp. strain WS3	100	100	99	100	-	100	100	100	100	100	100	100
Rhodococcus sp. strain WS7	90	88	86	77	AldH_2	91	77	82	94	83	77	74
Rhodococcus sp. strain WS4	91	88	86	80	94	90	84	87	96	83	81	77
wsMG6 Rhodococcus-like isoA	-	-	-	-	-	91	84	86	95	84	81	-
wsMG10 Nocardioides-like isoA	-	73	66	66	63	84	-	-	-	-	-	-
wsMG7 Nocardioides-like isoA	-	-	73	70	67	85	56	66	68	66	53	-
wsMG4 Sphingopyxis-like isoA	-	-		57	51	72	44	50	56	51	42	-
<i>Variovorax</i> sp. strain WS11	60	48	48	55	52	73	38	40	58	53	41	-
<i>Ramlibacter</i> sp. strain WS9	61	47	47	55	50	71	50	55	55	53	43	-
wsMG2 Ramlibacter-like isoA	63	49	49	55	50	71	-	-	-	-	-	-
wsMG3 Ramlibacter-like isoA	62	49	49	52	53	70	49	55	54	53	-	-

Percentages are rounded to the nearest whole number, except that all values in the range 99 – 100 are shown as 99.

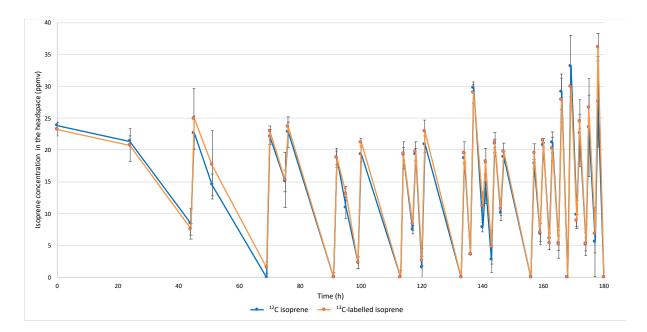
le alata/aantig

Table S3. Quality assessment and taxonomic assignment of genomic bins reconstructed from metagenome sequence data obtained with 13C-labelled heavy DNA from DNA-SIP experiments.

Data provided for bins with *isoA*-containing contigs, having more than 10% completeness, and less than 10% contamination, as determined using MiGA (Rodriguez-R et al., 2018). NA, Not assigned.

	Taxonomy						1	
Bin ID	Order	Family (Species)	Completeness (%)	Contamination (%)	Strain heterogeneity	Size (Mbp)	% mol GC	wsMG <i>isoA</i> - containing contig
23	Actinomycetales	Nocardiaceae (R. erythropolis)	73	2	40	5.99	61.6	5 and 8
21	Sphingomonadales	NA	49	0	0	1.94	62.2	4
13	Burkholderiales	NA	38	9	12.12	2.79	68.9	2
4	Burkholderiales	Comamonadaceae	30	2	0	4.30	65.3	1
11	Burkholderiales	Comamonadaceae	11	0	0	7.16	60.8	3

Table S4. Isoprene-degrading bacteria isolated during this study.


Isolates were obtained from enrichments using soil and leaves from isoprene-emitting trees. Isolates obtained from the DNA-SIP experiment with soil from the vicinity of a willow tree are indicated in bold. Taxonomic classification and p-value for isolates sequenced in this study were determined with the MiGA webserver (Rodriguez-R et al., 2018). Refer to Supplementary Table 5 for sampling dates and exact location of the isoprene-emitting trees. WS: willow soil, WL: willow leaves, OPL: oil palm leaves.

Isolate	Environment	Taxonomic classification (p-value)*
Rhodococcus sp. strain WS1	WS (Colney, UK)	
Rhodococcus sp. strain WS2	WS (Colney, UK)	
Rhodococcus sp. strain WS3	WS (Colney, UK)	Rhodococcus sp.
Rhodococcus sp. strain WS4	WS SIP (Colney, UK)	Rhodococcus opacus (0.05)
Rhodococcus sp. strain WS5	WS SIP (Colney, UK)	
Rhodococcus sp. strain WS6	WS SIP (Colney, UK)	
Rhodococcus sp. strain WS7	WS SIP (Colney, UK)	Rhodococcus erythropolis (0.001)
Rhodococcus sp. strain WS8	WS SIP (Colney, UK)	
Ramlibacter sp. strain WS9	WS SIP (Colney, UK)	Ramlibacter sp.
Rhodococcus sp. strain WS10	WS (Colney, UK)	
Variovorax sp. strain WS11	WS (University of East Anglia, UK)	Variovorax sp.
Nocardioides sp. strain WS12	WS (University of East Anglia, UK)	
Variovorax sp. strain WS13	WS (University of East Anglia, UK)	
Rhodococcus sp. strain WL1	WL (University of East Anglia, UK)	
Rhodococcus sp. strain OPL1	OPL (London, UK)	
Gordonia sp. strain OPL2	OPL (London, UK)	<i>Gordonia</i> sp.
Sphingopyxis sp. strain OPL5	OPL (London, UK)	

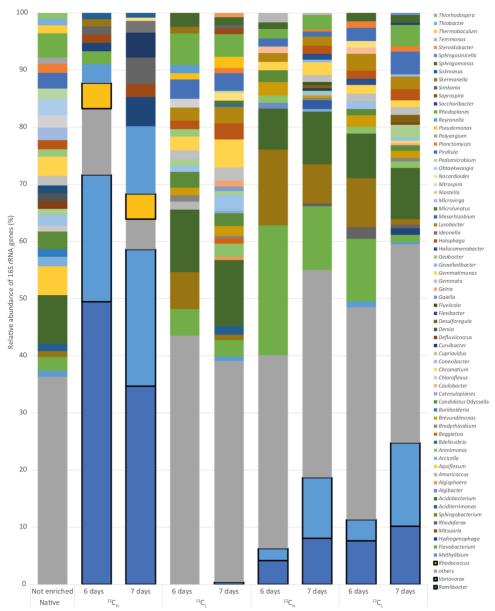
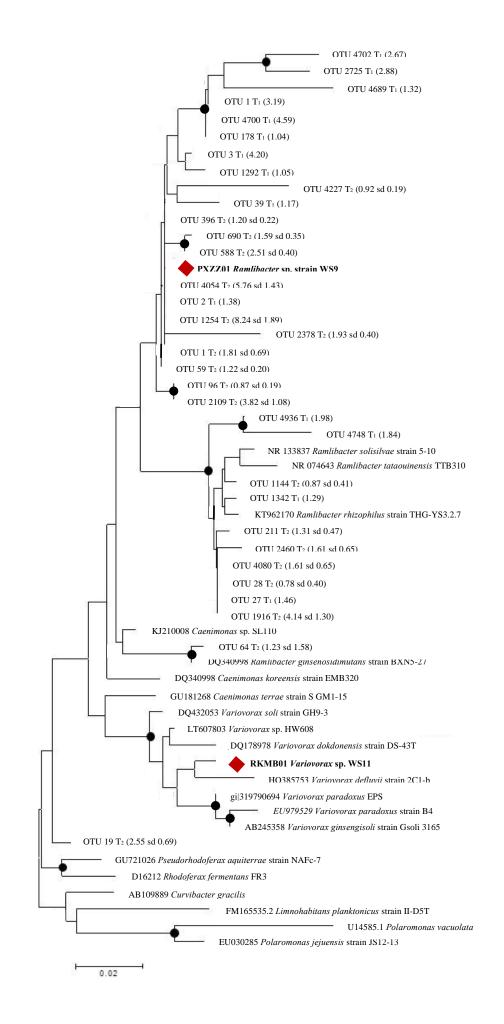
*p-values indicate the probability of incorrect taxonomic ranking at that level (Rodriguez-R et al., 2018).

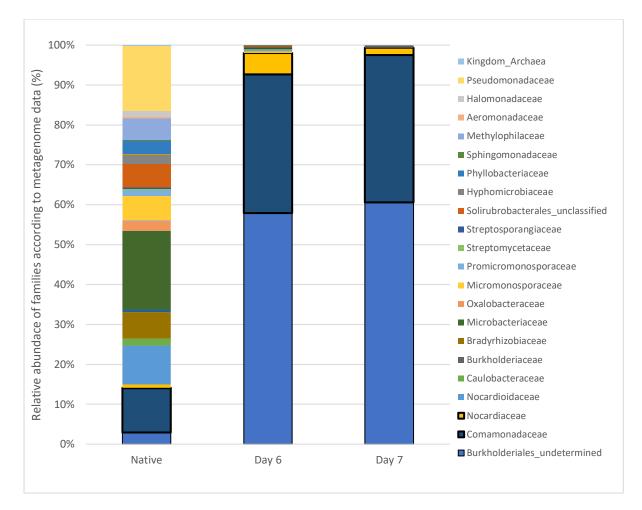
Table S5. Location of environmental samples used during this study.The table includes the dates at which soil and leaf samples were taken and a short description of the experiments carried out with each. The sample used for DNA-SIP enrichments is shown in bold.

Sample	Location	Coordinates	Dates	Description
Willow tree soil	Colney sport fields (Colney, UK)	52°37'17.2"N 1°13'46.3"E	April 2015 and July 2015	Used for enrichment and isolation of isoprene degraders, and for DNA-SIP experiments
Willow tree soil	UEA broad (Norwich, UK)	52°37'06.6"N 1°14'09.9"E	June 2016	Used for enrichment and targeted isolation of isoprene degraders
Willow tree leaves	UEA broad (Norwich, UK)	52°37'06.6"N 1°14'09.9"E	September 2015 and October 2016	Used for enrichment and isolation of epiphytic isoprene-degraders
Oil palm tree soil	Kew Gardens Palm House (London, UK)	51°28'43.6"N 0°17'33.1"W	November 2016 and February 2017	Used for enrichment and isolation of isoprene degraders
Oil palm tree leaves	Kew Gardens Palm House (London, UK)	51°28'43.6"N 0°17'33.1"W	November 2016 and February 2017	Used for enrichment and isolation of epiphytic isoprene-degraders

Figure S1. Isoprene consumption in microcosms used in DNA-SIP experiments with willow soil.

Microcosms were enriched with 12C- or 13C-labelled isoprene. Data points show the mean of triplicates and error bars show the standard deviation.


Figure S2. Relative abundance of 16S rRNA genes at the genus level in DNA isolated after DNA-SIP enrichments

The abundance of bacterial 16S rRNA genes retrieved by PCR from un-enriched (unfractionated DNA) is shown on the left. Subsequent bars describe the abundance of 16S rRNA genes retrieved from DNA-SIP experiments with isoprene-enriched willow soil samples after 6 and 7 days of enrichment with 12C- and 13C-labelled isoprene. DNA fractions arising after fractionation from willow soil samples enriched with 13C-isoprene and 12C-isoprene are designated heavy (H) and light (L), refer to Figure S5 and S6. Taxonomic affiliation of 16S rRNA genes is reported at the genus level. Only 16S rRNA gene sequences with a relative abundance of greater than 1% are shown. 16S rRNA gene sequences with a relative abundance of less than 1% are grouped together as "others". Genera (*Ramlibacter, Variovorax* and *Rhodococcus*) identified in these DNA-SIP experiments as putative isoprene-degrading bacteria according to 13C-labelling, are highlighted with a black border

Figure S3. 16S rRNA gene comparisons with newly isolated isoprene-degraders and 16S rRNA genes retrieved in DNA-SIP experiments.

Neighbour-joining phylogenetic tree with partial 16S rRNA gene sequences from representative members of the Comamonadaceae family, strains isolated in this study and the most abundant 16S rRNA gene sequence OTUs (>1% abundance) obtained from the willow soil DNA-SIP experiment. OTU sequences are differentiated between sequences obtained after 6 days (T₁) and 7 days of enrichment (T₂). OTU designations, for timepoint 2, include the average relative abundance (%) and standard deviation values in parentheses. 55 16S rRNA gene sequences were included in the analysis, with a total of 251 nucleotides used in the final dataset. Bootstrap values (1000 replications,[56]) over 75% are shown as solid circles in the nodes. Isoprene-degrading strains isolated in this study are indicated in bold and with a red diamond. The scale bar shows nucleotide substitutions per site.

Figure S4. Metagenome analysis of 13C-DNA at the family level obtained after DNA-SIP experiments.

Phylogenetic abundance obtained from un-enriched (unfractionated DNA) and 13C-enriched DNA obtained from willow soil samples in DNA-SIP experiments after 6 and 7 days of enrichment with 13C-labelled isoprene. Analysis was done using Metaphlan software using trimmed unassembled metagenome reads and the taxonomic affiliation is shown at the family level. Sequences identified as from putative isoprene-degrading bacteria, (according to 13C-labelling) are indicated with a black border

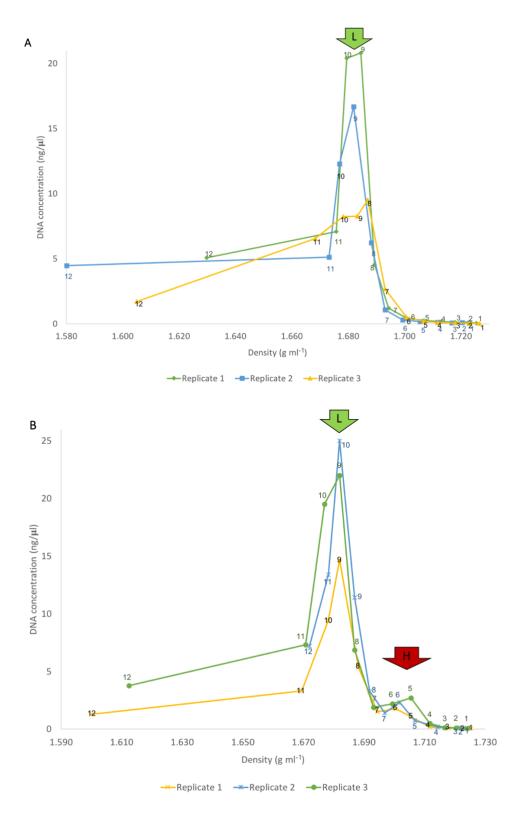


Figure S5. Separation of DNA after DNA-SIP experiments (6-day incubation).

DNA concentration and density of CsCl fractions obtained after ultracentrifugation of extracted DNA from enriched microcosms after 6 days of enrichment with A) 12C-isoprene and B) 13C-labelled isoprene. The CsCl fractions chosen to represent 13C-labelled (heavy fraction) and unlabelled 12C-DNA (light fraction) are indicated: H arrow: heavy DNA; L arrow: light DNA.

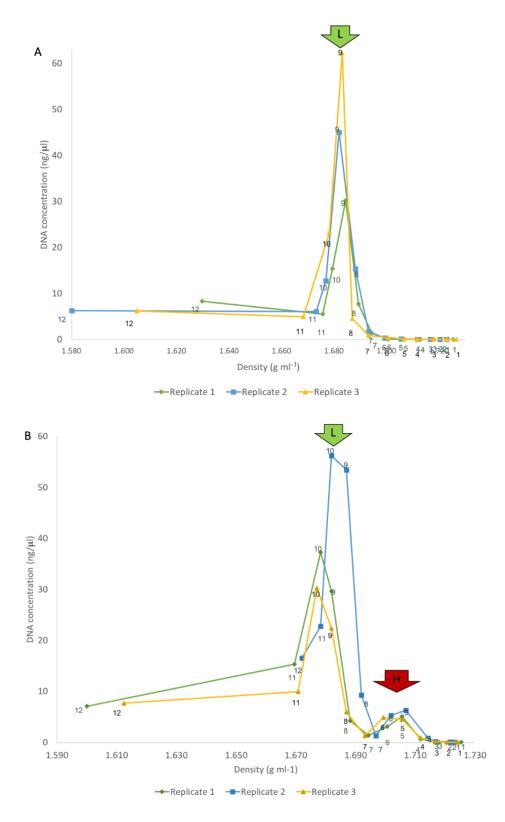
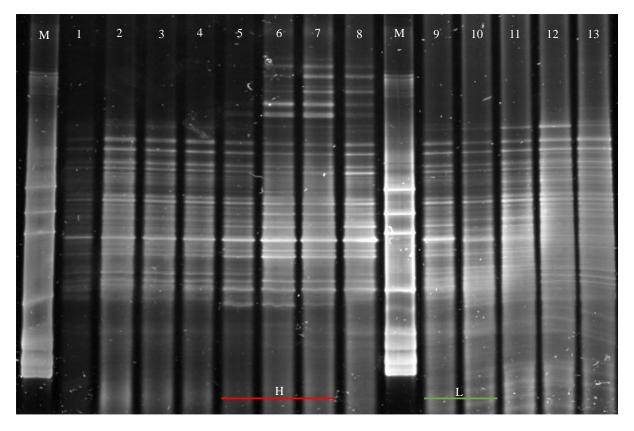



Figure S6. Separation of DNA after DNA-SIP experiments (7-day incubation).

DNA concentration and density of CsCl fractions obtained after ultracentrifugation of extracted DNA from enriched microcosms after 7 days of enrichment with A) 12C-isoprene and B) 13C-labelled isoprene. The CsCl fractions chosen to represent 13C-labelled (heavy fraction) and unlabelled 12C-DNA (light fraction) are indicated: H arrow: heavy DNA; L arrow: light DNA

Figure S7.

Representative denaturing gradient gel electrophoresis (DGGE) gel of CsCl fractions 1 to 13 after ultracentrifugation of extracted DNA from enriched microcosms after 6 days incubation with 13C-labelled isoprene. Each fraction number is shown on the top, along with the DGGE marker ladder (M). Samples that were considered light (L) and heavy (H) are shown with a green and red line below, respectively.

Reference:

- Crombie, A. T., Khawand, M. El, Rhodius, V. A., Fengler, K. A., Miller, M. C., Whited, G. M., et al. (2015). Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle. *Environ. Microbiol.* 17, 3314–3329. doi:10.1111/1462-2920.12793.
- Rodriguez-R, L. M., Gunturu, S., Harvey, W. T., Rosselló-Mora, R., Tiedje, J. M., Cole, J. R., et al. (2018). The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. *Nucleic Acids Res.* 46, W282–W288. doi:10.1093/nar/gky467.