SUPPLEMENTARY INFORMATION FOR THE MANUSCRIPT

Minor compositional alterations in faecal microbiota after five weeks and five months storage at room temperature on filter papers (SREP-19-24101).

Authors

Sebastian von Huth^{1,3}, Louise Bruun Thingholm^{2,3}, Corinna Bang², Malte C. Rühlemann², Andre Franke², Uffe Holmskov^{1*}

Author affiliations

¹Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winslows Vej 25.3, DK-5000 Odense C, Denmark.

² Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany.

³ These authors contributed equally to this work and share first authorship.

* Corresponding author.

Correspondence to uholmskov@health.sdu.dk

File list:

- **Supplementary Table 1:** Summary statistics for analysis of alpha-diversity, Firmicutes/Bacteroidetes-ratio, pairwise dissimilarity, and dispersion.
- **Supplementary Table 2:** Altered taxa upon five weeks and five months storage at RT.
- **Supplementary Figure 1:** Jaccard similarity based MDS and relative abundance of core class-level taxa.
- Supplementary Figure 2: Dispersion between storage methods and storage duration.
- **Supplementary Figure 3:** Hierarchical cluster analysis of paired fresh-frozen and filterpaper stored samples from 19 subjects after 5 weeks and 5 months of storage.
- Supplementary Figure 4: Alpha diversity and F/B-ratio for each sample across subjects.

Supplementary Table 1: Altered taxa upon five weeks and five months storage at RT. Single taxa at the genera, family, class and phyla levels were evaluated for association with storage method (**A**) and storage time (**B**) using a both paired Wilcoxon signed rank test and analysis of composition of microbiomes (ANCOM). All taxa with Wilcoxon adjusted p<0.1 are listed along with results from ANCOM. **A**) Four genera, marked with red font, are significantly altered by RT storage for five weeks (TP1) on FOBT-cards, and five genera are significantly altered after five months (TP2) (Wilcoxon adjusted p<0.05). After five months, two family and two class-level taxa, respectively, deviated in relative abundance between storage methods, while no single taxa differed after five weeks. As indicated in **Supplementary Figure 1B**, Negativicutes and Betaproteobacteria were found to deviate at TP2. Relative abundances of associated genera are seen in **Figure 2**. **B**) Single taxa at the genera, family and class levels were evaluated for association with storage time when stored as fresh-frozen samples (left) or using filter-paper (right). While two genera and five class-level taxa deviated significantly in relative abundance between TP1 and TP2 in fresh-frozen samples, no single taxa deviated significantly in abundance between TP1 and TP2 when stored using filter-paper (Wilcoxon adjusted p<0.05).

A) Association with storage method																
Level	Timepoint 1							Timepoint 2								
	Wilcoxon signed rank test				ANCOM			Wilcoxon signed rank test								
	Таха	Statistic	Location shift	p-value	Adjusted p-value	Statistic	Detected shift (cutoff 0.6)	Таха	Statistic	Location shift	p-value	Adjusted p-value	Statistic	Detected shift (cutoff 0.6)		
	g.Anaerostipes	188	0,277	1,14E-05	4,22E-04	32	TRUE	g.Anaerostipes	175	0,352	5,23E-04	7,96E-03	21	FALSE		
	g.Blautia	186	0,783	2,67E-05	4,94E-04	23	TRUE	g.Dialister	16	-6,63	6,45E-04	7,96E-03	13	FALSE		
6	g.Fusicatenibacter	171	0,409	1,17E-03	1,44E-02	19	FALSE	g.Odoribacter	177	0,242	3,36E-04	7,96E-03	16	FALSE		
cenus	g.Faecalibacterium	169	2,4	1,69E-03	1,56E-02	2	FALSE	g.Fusicatenibacter	171	0,819	1,17E-03	1,08E-02	25	TRUE		
6	g.Clostridium_XVIII	160	0,269	7,14E-03	5,28E-02	9	FALSE	g.Sutterella	154	4,76	3,06E-03	2,26E-02	19	FALSE		
	g.Collinsella	155	0,493	1,41E-02	7,45E-02	14	FALSE	g.Butyricimonas	158	0,206	9,45E-03	5,83E-02	1	FALSE		
	g.Lachnospiracea_ince	155	0,518	1,41E-02	7,45E-02	2	FALSE	g.Clostridium_XIVa	35	-0,428	1,41E-02	7,45E-02	12	FALSE		
milly								f.Sutterellaceae	183	4,96	7,25E-05	1,38E-03	17	TRUE		
4°.								f.Veillonellaceae	13	-6,8	3,36E-04	3,19E-03	12	TRUE		
5								c.Negativicutes	1	-6,83	7,63E-06	8,39E-05	7	TRUE		
00								c.Betaproteobacteria	184	5,79	5,34E-05	2,94E-04	9	TRUE		
								p.Bacteroidetes	145	7,52	4,46E-02	7,43E-02	3	TRUE		
No								p.Firmicutes	31	-11,6	8,23E-03	2,06E-02	2	FALSE		
8100								p.Proteobacteria	172	5,95	9,65E-04	4,83E-03	4	TRUE		
								p.Verrucomicrobia	27	-0,513	6,49E-02	8,11E-02	1	FALSE		

B) Association with storage time																
Level			Fres	h-frozen sampl	es				Filter-paper samples							
	Wilcoxon signed rank test					ANCOM			Wilcoxon signed rank test					ANCOM		
	Таха	Statistic	Location shift	p-value	Adjusted p-value	Statistic	Detected shift (cutoff 0.6)	Таха	Statistic	Location shift	p-value	Adjusted p-value	Statistic	Detected shift (cutoff 0.6)		
	g.Anaerostipes	12	0,0931	2,67E-04	6,22E-03	21	FALSE						1			
CIUS	g.Blautia	13	0,496	3,36E-04	6,22E-03	18	FALSE									
Ger	g.Akkermansia	16	0,555	7,74E-03	7,16E-02	7	FALSE									
	g.Odoribacter	160	-0,278	7,14E-03	7,16E-02	17	FALSE									
Family	f.Coriobacteriaceae	29	0,541	6,18E-03	7,35E-02	4	FALSE						1			
	f.Verrucomicrobiacea	16	0,555	7,74E-03	7,35E-02	4	FALSE									
	c.Actinobacteria	28	0,623	5,33E-03	2,84E-02	4	FALSE	c.Negativicutes	161	-2,36	6,18E-03	6,80E-02	0	FALSE		
6	c.Betaproteobacteria	166	-2,74	2,84E-03	2,84E-02	9	TRUE									
C1353	c.Verrucomicrobiae	16	0,555	7,74E-03	2,84E-02	3	FALSE									
ũ	c.Alphaproteobacteria	81	-0,0551	1,44E-02	3,96E-02	8	TRUE									
	c.Bacteroidia	153	-11	1,81E-02	3,98E-02	4	FALSE									
	p.Actinobacteria	28	0,623	5,33E-03	1,94E-02	2	FALSE									
onvia	p.Bacteroidetes	156	-12,7	1,24E-02	2,07E-02	3	TRUE									
	p.Firmicutes	48	10,9	6,02E-02	7,52E-02	2	FALSE									
`	p.Verrucomicrobia	16	0,555	7,74E-03	1,94E-02	2	FALSE									
1	p.Proteobacteria	125	-2,17	2,41E-01	2,41E-01	3	TRUE						1			

Location shift: positive means increase in filter-paper

Supplementary Table 2: Summary statistics for analysis of alpha-diversity, Firmicutes/Bacteroidetes-ratio, pairwise dissimilarity, and dispersion. A) Phylodiversity, as a measure of alpha diversity, was evaluated for association with storage time and method using a paired Wilcoxon signed rank test. B) Firmicutes/Bacteroidetes (F/B) ratio was evaluated for association with storage time and method using a paired Wilcoxon signed rank test. C) Differences in pairwise Bray-Curtis dissimilarities between samples stored (i) with same or different storage method and (ii) for the same or different time duration, was compared using linear mixed-effects models as described in Methods. D) Groups dispersions (variances) were compared with groups defined by timepoint or storage method. Significance of the difference in dispersion between groups was estimated using ANOVA (Methods). SE: standard error. Sum Sq: sum of squares.

A) Alpha diversity	(pseudo)medican	p-value
Comparing storage methods, across all samples	-0,789	4,64E-01
Comparing storage methods, at TP1	-0,364	8,91E-01
Comparing storage methods, at TP2	-0,030	2,41E-01
Comparing timepoints, across filter-paper samples	2,694	9,65E-04
Comparing timepoints, across fresh-frozen samples	4,239	3,12E-01
B) F/B-ratio	(pseudo)medican	p-value
Between timepoints, across filter-paper samples	0,183	7,99E-02
Between timepoints, across fresh-frozen samples	-0,843	9,65E-04
Between storage methods, at TP1	0,313	1,82E-01
Between storage methods, at TP2	-0,593	1,41E-03
Between storage methods, across both TP1 and TP2	-0,211	1,80E-01

C) Linear mixed-effects models (LMM)	Bray-Curtis						Jaccard				
	Estimate	SE	t-value	p-value	R2	Estimate	SE	t-value	p-value	R2	
Microbiota association with storage time, across filter-paper samples	-0,0026	0,0049	-0,544	5,86E-01	0,00014	-0,0029	0,0050	-0,584	5,59E-01	0,00014	
Microbiota association with storage time, across fresh-frozen samples	-0,0238	0,0056	-4,217	2,93E-05	0,01012	-0,0238	0,0053	-4,513	8,00E-06	0,0107	
Microbiota association with storage method, at TP1	-0,0164	0,0072	-2,276	2,33E-02	0,00501	-0,0184	0,0070	-2,650	8,31E-03	0,0066	
Microbiota association with storage method, at TP2	-0,0462	0,0044	-10,57	<2E-16	0,04949	-0,0457	0,0043	-10,64	<2E-16	0,0498	

D) Dispersion	Bray-Curtis				Jaccard		
	Sum Sq	F-statistic	p-value	Sum Sq	F-statistic	p-value	
Between storage methods, at TP1	0,06465	15,235	1,00E-03	0,0558	14,431	0,001	
Between storage methods, at TP2	0,00062	0,1367	7,02E-01	0,0009	0,1996	0,623	
Between timepoints, across fresh-frozen samples	0,02133	4,5593	3,90E-02	0,0159	3,9892	0,06	
Between timepoints, across filter-paper samples	0,00694	1,6933	1,77E-01	0,0065	1,5648	0,204	

Supplementary Figure 1: Jaccard similarity based MDS and relative abundance of core classlevel taxa. **A)** Jaccard similarity based MDS plot of genera community coloured by storage method and timepoint (red (TP1) and green (TP2) for filter paper; turquoise (TP1) and purple (TP2) for fresh-frozen) with individual samples and centroids connected for each group. The panel highlight the shift in location of fresh-frozen samples at TP2, as was also observed using Bray-Curtis dissimilarity. **B)** Relative abundance of core class-level taxa across 76 samples (19 subjects) clustered by storage method (fresh-frozen and filter-paper samples). Ten most abundant taxa are annotated and coloured as listed.

Supplementary Figure 2: Dispersion between storage methods and storage duration. Groups dispersions (variances) were evaluated using betadisper function in R package vegan (type ="centroid") with groups defined by timepoint (A) or storage method (B). Significance of the difference in dispersion between groups was estimated using the anova function in R package stats. The analysis showed a reduced dispersion for filter-paper samples as compared to conventionally stored samples at TP1, while there was no significant difference at TP2 (p<0.05 and p>0.05, respectively). When comparing dispersion between timepoints (B), we found a slight but significant difference for fresh-frozen samples, but no difference for filter-paper samples (p<0.05 and p>0.05, respectively).

Supplementary Figure 3: Hierarchical cluster analysis of paired fresh-frozen and filter-paper stored samples from 19 subjects after 5 weeks and 5 months of storage. The analysis was performed at each timepoint, and showed subject-distinctive clusters for 12 of 19 subjects at TP1 (A) and 14 of 19 subjects at TP2 (B). The analysis was performed using the hclust function in R package stats, Bray-Curtis and average agglomeration method, square root transformed genera. The hclust object was transformed to a dendrogram using the function as.dendrogram and plotted using plot both from the R package stats. Coloured bars for subject and storage method were then added using the function colored_bars in R package dendextend.

Supplementary Figure 4: Alpha diversity and F/B-ratio for each sample across subjects. A) Phylodiversity as a measure of alpha diversity across 19 subjects with one box for each sample (storage type: fresh-frozen=brown, filter-paper=grey; timepoint: TP1=light colour, TP2=dark colour) and horizontal lines indicating storage mean (fresh-frozen=brown, filter-paper=grey). B) Similar plot to A, however depicting the Firmicutes/Bacteroidetes (F/B) ratio across the 19 samples (colours as in panel A).

7