Structural basis of protection against H7N9 influenza

virus by human anti-N9 neuraminidase antibodies

Xueyong Zhu^{1#}, Hannah L. Turner^{1#}, Shanshan Lang¹, Ryan McBride², Sandhya Bangaru³, Iuliia M. Gilchuk³, Wenli Yu¹, James C. Paulson², James E. Crowe, Jr.^{3,4,5}, Andrew B. Ward^{1*}, Ian A. Wilson^{1,6*}

¹Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.

²Departments of Molecular Medicine, and Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.

³Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.

⁴Department of Pathology, Microbiology and Immunology, Vanderbilt, University Medical Center, Nashville, TN, 37232, USA.

⁵Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.

⁶Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla,

CA, 92037, USA

[#]These authors contributed equally to this work.

^{*}Correspondence: wilson@scripps.edu (I.A.W.); andrew@scripps.edu (A.B.W.)

Figure S1. X-ray and cryo-EM structures of NA-45 and NA-73 Fabs with N9 NAs. Related to Figures 2, 3, 6.

(A) Interaction of Sh2 N9 Y169aH NA mutant with NA-45 Fab CDRs from the crystal structure of the Fab-NA complex at 2.3 Å resolution. NA-45 light chain is shown in yellow carbon atoms, and heavy chain in orange carbon atoms. The NA side-chains are shown in green carbon atoms. Hydrogen bonds or salt bridges are in black dotted lines.

(B) Interaction of Sh2 N9 NA with NA-73 Fab CDRs from the cryo-EM structure of the Fab-NA complex at 3.2 Å resolution. NA-73 light chain is shown in yellow carbon atoms, and heavy chain in orange carbon atoms. The NA side-chains are shown in green carbon atoms. Hydrogen bonds or salt bridges are in black dotted lines.

Fig. S2. Structural comparison of the NA ectodomain of Hunan N9 from its complex with NA-45 (A) and the *apo* Sh2 N9 NA (PDB code 5L14) (B). Related to Figures 1, 2, 3. The NA tetramer is viewed from above the viral surface and consists of four identical monomers in C4 symmetry. One monomer is colored in green. Four amino acid differences are found in the ectodomains of Hunan N9 and Sh2 N9 NA. The side-chains of these residues are shown in sticks.

Figure S3. Crystal and cryo-EM structures of NA-63 Fab with N9 NAs. Related to Figure 2.

(A) Crystal structure at 2.8 Å resolution of NA-63 with Hunan N9 NA ectodomain illustrating the Fab CDR interactions with N9 NA. The NA-63 light chain is shown in yellow carbon atoms, and heavy chain in orange carbon atoms. The side-chains of NA are shown in green carbon atoms. Hydrogen bonds or salt bridges are in black dotted lines.

(B) Cryo-EM structure of NA-63 Fab in complex with Sh2 N9 NA ectodomain plus stalk at 3.1 Å resolution. (top left) Overall structure of antibody NA-63 Fab in complex with Sh2 N9 NA. (top right) The epitope of NA-63 is mapped onto Sh2 N9 NA. (bottom) The zoomed-in molecular surface depicting the epitope of NA-63 on Sh2 N9 NA (left). The key interacting residues on NA-63 are illustrated by the antibody side chains (sticks) on a backbone ribbon on the Sh2 N9 surface NA depicting the epitope (green) (right).

Α

		1	10	20	30	40	50	60
NA-80	VL	DIVMTQSE	SSLSASVGDR	VTISC <mark>RASQS</mark>	ISSYLN <mark>WYQQ</mark>	KPGKAPKLLI	Y <mark>AASSLQS</mark> G	VPS
NA-63	VL			T.			G .	
	6	51	70	80	90	100		
NA-80	VL	RFSGSASC	GTDFTLTISSL	QPEDFATYYC	QQSYSAP-FT	FGPGTKVDIE		
NA-63	VL	G			T.LY.	QLE.K		
		1	10	20	30	40	50	59
NA-80	VH	QVQLVQSO	GAEVKRPGASV	KVSCKASGYT	'FI <mark>SYGIS</mark> WVR	QAPGQGLEWM	GWISAYNGN'	TNY
NA-63	VH	EE	GGLVQG.L	RLAF.	.swm	KD.V	AN.KQDGSE	KY.
	6	50	70	80	90	100	11	0
NA-80	VH	AQNLQGRV	TMTTDTSTST	AYMELRSLRS	DDTAVYYCAR	VIPGTAVDYF	DYWGQGTLV	rvss
NA-63	VH	VDSVK	.ISRHNAKNS	L.LQMNA	.es	STAAEFF		
D								
D			~					
($\langle \rangle$	1542						
		hart	K K S S					

С

Figure S4. Cryo-EM structure of NA-80 Fab with Sh2 N9 NA at 3.6 Å resolution, angle of approach versus NA-63, and comparison of *apo* and bound NA-80 Fab. Related to Figure 2.

(A) Sequence comparison of NA-80 and NA-63 light and heavy chain variable domains with Kabat CDRs highlighted in cyan. Both antibodies use the IGKV1-39 germline, but IGHV1-18 for NA-80 and IGHV3-7 for NA-63. "-" indicates sequence deletion, "." indicates sequence identity.

(B) NA-80 and NA-63 use an almost similar angle of approach when binding to Sh2 N9 NA. Structural comparison of NA-80 Fab (yellow and orange for light and heavy chains, respectively) in complex with Sh2 N9 NA (green) with NA-63 Fab (grey) in complex with Sh2 N9 NA (green) with NA-63 Fab (grey) after superimposition of Sh2 N9 NA structures in both complexes.

(C) Interaction of the NA-80 Fab CDRs with Sh2 N9 NA. The NA-80 light chain is shown in yellow carbon atoms, and heavy chain in orange carbon atoms. The side-chains of NA are shown in green carbon atoms. Hydrogen bonds or salt bridges are in black dotted lines.

(D) Comparison of NA-80 Fab in its *apo* form (light grey and dark grey) and in its complex with Sh2 N9 NA (yellow and orange). Upon binding to Sh2 N9 NA, the CDR H3 makes large conformational changes from residues 98 to 100a.

Figure S5. Cryo-EM structure of NA-22 Fab with N9 NA at 3.0 Å resolution and comparison of *apo* and bound forms. Related to Figure 2.

(A) Interaction of NA-22 Fab CDRs with Sh2 N9 NA. The NA-22 light chain is shown in yellow carbon atoms, and heavy chain in orange carbon atoms. NA-22 interacts with two NA monomers of the tetramer with one monomer shown in light grey backbone C_a atoms and the other monomer in dark grey backbone C_a atoms. The NA side-chains are shown in green carbon atoms. Hydrogen bonds or salt bridges are in black dotted lines.

(B) Structural comparison of NA-22 Fab in complex with Sh2 N9 NA (green and cyan for two adjacent protomers) with Sh2 N9 NA *apo* form (grey). Upon binding to Sh2 N9 NA, NA-22 interacts with the N-linked glycans from Asn200 of the N9 NA as indicated in highlight ellipse. The Asn200-linked glycan interacts with the adjacent N9 NA protomer in the tetramer.

(C) Comparison of NA-22 Fab in its *apo* form (light grey and dark grey) and in complex with Sh2 N9 NA (yellow and orange). No significant conformational changes of NA-22 are observed upon binding to Sh2 N9 NA.

Figure S6. Epitope comparison of human antibodies NA-80, NA-63, NA-22 to Sh2 N9 NA with mouse antibodies NC10 and NC41 to whale N9 (PDB codes 1NMB and 1NCD) and mouse antibody CD6 to Cali07 N1 NA (PDB code 4QNP). Related to Figures 2 and 6.

(A) The epitope of NA-63 is mapped onto Sh2 N9 (green).

(B) The epitope of NA-80 is mapped onto Sh2 N9 (green).

(C) The epitope of NC-10 is mapped onto whale N9 (green and orange) with the overlapped epitope residues with NA-63 or NA-80 shown in orange.

(D) The epitope of NC-41 is mapped onto whale N9 (green and orange) with the overlapped epitope residues with NA-63 or NA-80 shown in orange.

(E) The epitope of NA-22 is mapped onto Sh2 N9 NA (green).

(F) The epitope of CD6 is mapped onto Cali07 N1 NA (green and orange) with the overlapping epitope residues with NA-22 shown in orange.

Data set	Sh2 N9 Y169aH	Sh2 N9 Y169aH	Hunan N9
		NA-45 Fab	NA-63 Fab
Data Collection			
X-ray source	SSRL 12-2	SSRL 12-2 A	APS 23ID-D
Space group	1432	P42 ₁ 2	P42 ₁ 2
Unit cell (Å)	a = b = c = 182.2	a = b = 161.3,	<i>a</i> = <i>b</i> = 164.6,
		<i>c</i> = 87.4	c = 192.6
Resolution (Å) ^a	43.0-1.12 (1.13-1.12)	45.8-2.30 (2.35-2.30)	49.8-2.80 (2.85-2.80)
Unique reflections	194,141	51,133	63,525
Redundancy ^a	22.3 (4.8)	6.6 (6.7)	8.4 (7.7)
Average I/o(I) ^a	30.8 (1.1)	11.7 (2.1)	10.0 (1.0)
Completeness ^a	99.9 (97.6)	98.3 (99.2)	96.5 (78.4)
R _{sym} ^{a,b}	0.10 (0.92)	0.12 (0.62)	0.17 (0.98)
R _{pim} ^{a,b}	0.02 (0.45)	0.05 (0.26)	0.06 (0.35)
CC _{1/2} ^a	0.999 (0.834)	0.997 (0.962)	0.998 (0.853)
No. molecules per ASU ^c	1	1	2
Refinement			
Reflections in refinement	194,104	51,085	63,487
Refined residues	389	818	1,634
Refined waters	593	590	76
R _{cryst} ^d	0.112	0.156	0.203
<i>R</i> _{free} ^e	0.128	0.197	0.249
<i>B</i> -values (Å ²)			
Protein	11	33	77
Waters	27	36	51
Wilson <i>B</i> -values (Å ²)	7	23	59
Ramachandran values (%) [†]	96.4, 0	95.3, 0.2	94.3, 0.2
r.m.s.d. bond (Å)	0.008	0.007	0.009
r.m.s.d. angle (deg.)	1.17	0.94	1.25
PDB codes	6PZD	6PZE	6PZF

Table S1. Data collection and refinement statistics of crystal structures of SH2 N9 NA, NA antibodies and complexes. Related to Figures 1, 2, 3, 6.

^a Parentheses denote outer-shell statistics.

^b $R_{sym} = \sum_{hkl \sum i} |I_{hkl,i} - \langle I_{hkl} \rangle | I_{hkl,i} and R_{pim} = \sum_{hkl} [1/(N-1)]^{1/2} \sum_i |I_{hkl,i} - \langle I_{hkl} \rangle | I_{hkl,i}$, where $I_{hkl,i}$ is the scaled intensity of the ith measurement of reflection h, k, l, $\langle I_{hkl} \rangle$ is the average intensity for that reflection, and N is the redundancy. $R_{pim} = \sum_{hkl} (1/(n-1))^{1/2} \sum_i |I_{hkl,i} - \langle I_{hkl} \rangle | I_{hkl,i}$, where n is the redundancy. asymmetric unit (ASU).

^d $R_{cryst} = \sum_{hkl} |F_o - F_c| / \sum_{hkl} |F_o|$, where F_o and F_c are the observed and calculated structure factors. ^e R_{free} was calculated as for R_{cryst} , but on 5% of data excluded before refinement. ^f The values are percentage of residues in the favored and outliers regions analyzed by MolProbity (Chen et al., 2010).

Data set	NA-80 Fab	NA-22 Fab
Data Collection		
X-ray source	SSRL 9-2	SSRL 9-2
Space group	P3 ₂ 21	P2 ₁ 2 ₁ 2 ₁
Unit cell (Å)	a = b = 102.8,	a = 72.3, b = 74.5,
	<i>c</i> = 80.4	<i>c</i> = 178.3
Resolution (Å) ^a	44.5-1.59 (1.62-1.59)	44.8-2.30 (2.34-2.30)
Unique reflections	66,498 (3,234)	43,271 (2,184)
Redundancy ^a	18.1 (7.2)	4.7 (4.4)
Average I/ơ(I) ^a	58.0 (1.3)	23.4 (2.2)
Completeness ^a	99.9 (98.3)	99.3 (99.7)
R _{sym} ^{a,b}	0.08 (0.90)	0.08 (0.48)
R _{pim} ^{a,b}	0.02 (0.35)	0.04 (0.25)
CC _{1/2} ^a	0.999 (0.63)	0.996 (0.83)
No. molecules per ASU ^c	1	2
Refinement		
Reflections in refinement	66,460	43,207
Refined residues	451	872
Refined waters	446	341
<i>R</i> _{cryst} ^d	0.168	0.193
$R_{\rm free}^{\rm e}$	0.204	0.236
B-values (Å ²)		
Protein	38	46
Waters	44	47
Wilson <i>B</i> -values (Å ²)	26	46
Ramachandran values $(\%)^{t}$	97.9, 0.2	96.6, 0.2
r.m.s.d. bond (Å)	0.010	0.005
r.m.s.d. angle (deg.)	1.06	0.79
PDB codes	6PZG	6PZH

Table S1. Data collection and refinement statistics - continued

^a Parentheses denote outer-shell statistics. ^b $R_{sym} = \sum_{hkl} \sum_{i} |I_{hkl,i} - \langle I_{hkl} \rangle | \sum_{hkl} \sum_{i} I_{hkl,i}$ and $R_{pim} = \sum_{hkl} [1/(N-1)]^{1/2} \sum_{i} |I_{hkl,i} - \langle I_{hkl} \rangle | \sum_{hkl} \sum_{i} I_{hkl,i}$, where $I_{hkl,i}$ is the scaled intensity of the ith measurement of reflection h, k, l, $\langle I_{hkl} \rangle$ is the average intensity for that reflection, and N is the redundancy. $R_{pim} = \sum_{hkl} (1/(n-1))^{1/2} \sum_{i} |I_{hkl,i} - \langle I_{hkl} \rangle | \sum_{hkl} \sum_{i} I_{hkl,i}$, where n is the redundancy ^c No. molecules for complexes refers to number of antibody Fabs per asymmetric unit (ASU). ^d $R_{cryst} = \sum_{hkl} |F_o - F_c| / \sum_{hkl} |F_o|$, where F_o and F_c are the observed and calculated structure factors. ^e R_{free} was calculated as for R_{cryst} , but on 5% of data excluded before refinement.

^f The values are percentage of residues in the favored and outliers regions analyzed by MolProbity (Chen et al., 2010).

Data set	Sh2 N9 NA	Sh2 N9 NA	Sh2 N9 NA	Sh2 N9 NA
	NA-73 Fab	NA-63 Fab	NA-80 Fab	NA-22 Fab
Data Collection				
Microscope	Thermo Fisher	Thermo Fisher	Thermo Fisher	Thermo Fisher
	Titan Krios	Titan Krios	Titan Krios	Titan Krios
Voltage (kV)	300	300	300	300
Detector	Gatan K2	Gatan K2	Gatan K2	Gatan K2
	Summit	Summit	Summit	Summit
Recording mode	Counting	Counting	Counting	Counting
Nominal magnification	29,000	29,000	29,000	29,000
Movie micrograph pixel size (Å)	1.03	1.03	1.03	1.03
Dose rate (e /[(camera pixel) s])	6.421	4.406	4.053	5.111
Number of frames per movie micrograph	33	48	52	42
Frame exposure time (ms)	250	250	250	250
Movie micrograph exposure time (s)	8.25	12	13	10.5
Total dose (e ⁻ /Å ²)	50	50	50	50
Defocus range (µm)	-0.5 to -1.5	-0.5 to -1.5	-0.8 to -2.0	-1.2 to -2.0
EM data processing				
Number of movie micrographs	1,355	916	946	823
Number of molecular projection images				
in map	157,751	91,117	11,240	20,922
Symmetry	C4	C4	C4	C4
Map resolution (FSC 0.143; Å)	3.17	3.11	3.60	3.00
Local resolution range (Å)	2.2-3.4	2.3-3.2	2.3-6.5	2.9-3.5
Map sharpening B-factor (Å ²)	-161	-149	-112	-103
Structure building and validation				
Number of atoms in deposited model				
NA (protomer)	3,051	3,068	3,054	3,068
Fab variable region	1,801	1,733	1,752	1,742
Glycans	147	119	147	133
MolProbity score	1.05	0.80	1.05	1.19
Clash score	1.39	0.42	1.48	2.63
Map correlation coefficient	0.90	0.87	0.86	0.88
EMRinger score	4.89	4.87	4.03	5.80
r.m.s.d. bond (Å)	0.024	0.022	0.020	0.020
r.m.s.d. angle (deg.)	1.89	1.82	1.92	1.76
Ramachandran values (%) ^a	97.0, 0.3	97.2, 0.5	97.1, 0.2	97.2, 0
Side-chain rotamer outliers(%)	0	0	0	0
PDB codes	6PZY	6U02	6PZZ	6PZW

Table S2. Data collection and refinement statistics of cryo-EM structures. Relatedto Figures 2 and 6.

^aValues are percentage of residues in the favored and outliers regions analyzed by MolProbity (Chen et al., 2010).

Table S3. Sequence conservation of NA-45 epitope by influenza NA subtype.

\mathbf{X}	Related	to	Figures	2,	3,	6.
--------------	---------	----	---------	----	----	----

NA	Sh2	Hunan		A Gr	oup 1			A	Group	2		В
number	N9	N9	N1 (9,744) a	N4 (149)	N5 (237)	N8 (1,290)	N2 (12,826)	N3 (772)	N6 (1,218)	N7 (473)	N9 (587)	B NA (3,469)
<mark>118</mark>	R	R	R ^b (99.9) ^c	R (99.3)	R (99.6)	R (99.8)	R (100)	R (100)	R (100)	R (100)	R (99.8)	R (100)
149			(00.0) V	V	V (00.0)	(00.0) V	V (100)					(100) R
150		U U	(54.4) K	(98.7) K	(99.6) K	(95.5) K	(65.3) H	(90.3) K	(99.2) H	(97.3) H	(99.5) H	(99.9) E
150			(99.5)	(100)	(99.2)	(99.5)	(65.9)	(98.4) D	(99.3)	(98.7)	(100)	(53.3)
<mark>151</mark>	D	D	(99.2)	(100)	(99.6)	(99.9)	(93.5)	(99.1)	(99.9)	(100)	(99.7)	(99.4)
<mark>152</mark>	R	R	R (100)	R (100)	R (99.6)	R (99.8)	R (99.9)	R (99.7)	R (99.8)	R (99.8)	R (99.3)	R (99.9)
198	N	N	D	D	D	D	D	D	N	N	N	D
100			(99.5) N	(100) A	(99.6) D	(99.9) A	(99.6) K	(99.4) N	(97.8) N	(100) D	(99.5) N	(99.4) S
199	N	N	(81.7)	(56.4)	(98.7)	(66.0)	(59.3)	(97.8)	(98.1)	(88.4)	(99.8)	(52.7)
<mark>222</mark>	I	I	(99.2)	(99.3)	l (99.6)	(99.7)	(99.3)	l (99.4)	(99.3)	ا (99.8)	(100)	(99.5)
224	R	R	R	R	R	R	R	R	R	R (100)	R (100)	R
246		-	(99.9) S	(100) S	(99.2) A	(99.9) A	(99.9) A	(99.2) A	(99.5) A	(100) A	(100) A	(99.8) A
240	A	A	(99.2)	(99.3)	(99.6)	(99.5)	(99.8)	(99.5)	(99.5)	(100)	(99.5)	(99.9)
<mark>276</mark>	E	E	⊑ (99.9)	(100)	⊑ (99.6)	∟ (99.9)	⊑ (99.9)	⊑ (99.6)	⊑ (99.6)	(100)	(100)	∟ (100)
277	E	E	E (100)	E (100)	E (00.6)	E (100)	E (100)	E (00.6)	E (00.6)	E (100)	E (100)	E (100)
202	D		(100) R	(100) R	(99.0) R	(100) R	(100) R	(99.0) R	(99.0) R	(100) R	(100) R	(100) R
232	<u> </u>		(99.9)	(100)	(99.6)	(99.9)	(99.9)	(99.6)	(99.9)	(100)	(98.8)	(100)
<mark>294</mark>	N	N	(99.8)	(100)	(99.2)	(99.9)	(99.9)	(99.6)	(99.8)	(100)	(100)	(99.9)
346	Ν	N	A (98.1)	R (100)	N (99.6)	-	G (66.8)	G (88.2)	D (99.8)	A (99.6)	N (100)	-
347	N	N	N	Y	Y	Y	H	P	P	P	N (100)	G
547			(66.2) R	(100) R	(100) R	(100) R	(73.1) R	(89.5) R	(99.8) R	(99.6) R	(99.3) R	(99.7) R
<mark>371</mark>	R	R	(99.9)	(100)	(100)	(100)	(99.9)	(100)	(100)	(100)	(100)	(99.9)
<mark>406</mark>	Y	Y	Y (99.9)	Y (100)	Y (99.6)	Y (99.9)	Y (99.9)	Y (100)	Y (100)	Y (100)	Y (100)	Y (99.9)
430	R	R	Q		K	K	R	R	R	R	R	G
404			(100) P	(99.3) T	(98.3) P	(90.6) P	(98.8) K	(86.9) P	(98.4) P	(99.8) P	(99.1) P	(99.6) G
431	Ч	<u>Р</u>	(99.3)	(99.3)	(99.6)	(100)	(69.3)	(99.7)	(100)	(100)	(100)	(99.8)
434	D	D	N (66.7)	_ ^d	к (97.0)	-	(89.3)	N (99.5)	95.6)	A (99.4)	(99.5)	-
437	W	W	(98.6)	l (100)	(100)	 (99.1)	W (57.6)	S (99.6)	L (99.0)	W (97.0)	W (99.5)	T (99.7)

NA residues conserved in influenza A N1 to N9 and influenza B NA are highlighted in cyan.
^a Number of non-redundant influenza NA sequences for subtype from the Influenza Virus Resource at the National Center for Biotechnology Information (NCBI) database (https://www.ncbi.nlm.nih.gov/genomes/FLU/) in Nov 28, 2018.
^b Most common residue at position for subtype.
^c Percent identity for most common residue.
^d Sequence deletion as aligned to N2 NA.

Table S4. Sequence conservation of NA-73, NA-63, NA-80, and NA-22 epitopes by

influenza NA subtype. Related to Figures 2 and 6.

NA	Sh2	Hunan		A Gr	oup 1			Α	Group	2		В
number	N9	N9	N1 (9,744) ^a	N4 (149)	N5 (237)	N8 (1,290)	N2 (12,826)	N3 (772)	N6 (1,218)	N7 (473)	N9 (587)	B NA (3,469)
150	н	н	К ^ь (99.5) ^с	K (100)	K (99.2)	K (99.5)	H (65.9)	K (98.4)	H (99.3)	H (98.7)	H (100)	E (53.3)
<mark>152</mark>	R	R	R (100)	R (100)	R (99.6)	R (99.8)	R (99.9)	R (99.7)	R (99.8)	R (99.8)	R (99.3)	R (99.9)
198	Ν	N	D (99.5)	D (100)	D (99.6)	D (99.9)	D (99.6)	D (99.4)	N (97.8)	N (100)	N (99.5)	D (99.4)
199	Ν	N	N (81.7)	A (56.4)	D (98.7)	A (66.0)	K (59.3)	N (97.8)	N (98.1)	D (88.4)	N (99.8)	S (52.7)
220	R	R	N (85.0)	G (100)	K (98.7)	G (99.7)	K (80.5)	K (74.9)	G (99.1)	G (56.4)	R (98.1)	N (51.9)
221	Ν	N	N (72.0)	N (100)	Q (98.7)	D (97.8)	N (50.6)	D (90.2)	N (99.6)	N (98.9)	N (99.8)	P (99.6)
<mark>245</mark>	S	P	P (99.5)	P (100)	P (99.6)	P (100)	S (89.0)	P (99.4)	P (99.4)	S (96.8)	S (92.7)	G (100)
247	Т	Т	N (59.7)	D (98.7)	N (92.4)	N (99.0)	S (89.7)	A (89.8)	N (99.0)	S (96.0)	T (99.7)	D (77.5)
249	Р	Р	Q (89.5)	Q (100)	Q (99.6)	Q (99.9)	K (73.1)	S (88.2)	R (84.5)	Q (99.6)	P (100)	D (99.4)
345	Ν	N	G (100)	G (100)	N (95.8)	G (98.9)	G (99.9)	G (99.6)	P (99.7)	G (98.7)	N (98.1)	D (77.5)
346	Ν	Ν	A (98.1)	Ř (100)	N (99.6)	_d	Ğ (66.8)	Ğ (88.2)	D (99.8)	A (99.6)	N (100)	-

(A) Sequence conservation of NA-73 epitope by NA subtype.

(B) Sequence conservation of NA-63 epitope by NA subtype.

NA	NA Sh2 Hunan			A Gr	oup 1		A Group 2					В
number N9	N9	N1 (9,744) a	N4 (149)	N5 (237)	N8 (1,290)	N2 (12,826)	N3 (772)	N6 (1,218)	N7 (473)	N9 (587)	B NA (3,469)	
329	Ν	N	N⁵ (85.7) ^c	V (94.0)	Q (99.6)	E (99.6)	N (59.0)	A (80.6)	N (94.3)	S (59.0)	N (99.0)	N (72.9)
<mark>330</mark>	D	D	D (99.9)	D (100)	D (100)	D (100)	D (99.9)	D (99.6)	D (99.9)	D (100)	D (99.8)	D (100)
331	Р	Р	G (55.2)	G (98.7)	S (79.3)	S (75.8)	S (84.3)	P (99.6)	P (99.8)	K (98.5)	P (99.8)	G (100)
333	N	N	_d	-	F (100)	F (100)	S (99.8)	S (99.6)	G (47.5)	S (86.7)	N (48.9) A (27.4) T (21.8)	l (99.7)
334	I	I	T (70.9)	T (98.0)	T (83.5)	T (89.1)	S (91.2)	T (97.5)	S (56.2)	S (26.8)	V (57.9) I (41.7)	T (99.0)
336	К	к	S (83.7)	S (100)	S (100)	S (100)	H (54.0)	S (99.4)	N (96.7)	D (98.1)	K (99.3)	P (99.6)
341	Y	Y	V (93.6)	V (64.4)	V (89.0)	M (79.4)	N (99.9)	S (99.2)	l (97.6)	l (99.8)	Y (100)	G (100)
342	Р	Р	S (68.8)	N (100)	G (100)	G (99.9)	N (97.9)	N (89.9)	T (97.5)	T (99.6)	P (99.8)	D (77.5)
387	R	R	-	D (100)	S (100)	S (100)	N (66.3)	P (84.6)	Q (99.6)	N (95.8)	R (98.3)	D (99.4)

NA	NA Sh2 Hunan		A Group 1				A Group 2					в
number N9	N9	N9	N1 (9,744) a	N4 (149)	N5 (237)	N8 (1,290)	N2 (12,826)	N3 (772)	N6 (1,218)	N7 (473)	N9 (587)	B NA (3,469)
329	Ν	Ν	N ^b (85.7) ^c	V (94.0)	Q (99.6)	E (99.6)	N (59.0)	A (80.6)	N (94.3)	S (59.0)	N (99.0)	N (72.9)
<mark>330</mark>	D	D	D (99.9)	D (100)	D (100)	D (100)	D (99.9)	D (99.6)	D (99.9)	D (100)	D (99.8)	D (100)
331	Р	Р	G (55.2)	G (98.7)	S (79.3)	S (75.8)	S (84.3)	P (99.6)	P (99.8)	K (98.5)	P (99.8)	G (100)
333	Ζ	Ν	_d	-	F (100)	F (100)	S (99.8)	S (99.6)	G (47.5)	S (86.7)	N (48.9) A (27.4) T (21.8)	l (99.7)
334	Ι	I	T (70.9)	T (98.0)	T (83.5)	T (89.1)	S (91.2)	T (97.5)	S (56.2)	S (26.8)	V (57.9) I (41.7)	T (99.0)
336	κ	к	S (83.7)	S (100)	S (100)	S (100)	H (54.0)	S (99.4)	N (96.7)	D (98.1)	K (99.3)	P (99.6)
339	D	D	G (89.2)	S (66.4)	N (95.8)	S (93.9)	D (78.7)	S (94.9)	A (96.0)	N (100)	D (98.3)	S (99.5)
341	Y	Y	V (93.6)	V (64.4)	V (89.0)	M (79.5)	N (99.9)	S (99.2)	(97.6)	l (99.8)	Y (100)	G (100)
342	Р	Р	S (68.8)	N (100)	G (100)	G (99.9)	N (97.9)	N (89.9)	T (97.5)	T (99.6)	P (99.8)	D (77.5)

(C) Sequence conservation of NA-80 epitope by NA subtype.

(D) Sequence conservation of NA-22 epitope by NA subtype.

NA	Sh2	Huna		A Gro	oup 1			Α	Group	2		В
number	N9	n N9	N1 (9,744) ^a	N4 (149)	N5 (237)	N8 (1,290)	N2 (12,826)	N3 (772)	N6 (1,218)	N7 (473)	N9 (587)	B NA (3,469)
95	Ν	N	S ^b (82.7) ^c	K (56.4)	S (99.6)	K (81.7)	T (96.1)	R (89.2)	N (99.2)	E (98.9)	N (99.8)	S (99.7)
216	Ν	N	K (99.5)	K (99.3)	R (99.6)	N (98.8)	G (58.5)	K (98.7)	P (50.5)	K (98.5)	N (99.5)	H (99.7)
218	W	W	W (99.9)	W (100)	W (99.6)	W (99.9)	W (99.9)	W (99.2)	W (99.5)	W (100)	W (100)	Y (99.9)
220	R	R	N (85.0)	G (100)	K (98.7)	G (99.7)	K (80.5)	K (74.9)	G (99.1)	G (56.4)	R (98.1)	N (51.9)
253	R	R	K (98.2)	K (100)	K (99.2)	R (89.7)	K (71.8)	R (99.1)	K (98.9)	K (100)	R (100)	R (99.9)
262	Ι	I	l (55.9)	l (99.3)	V (99.6)	l (88.4)	l (98.4)	l (72.3)	l (95.8)	V (87.7)	l (97.8)	l (99.7)
265	W	w	S (99.0)	M (56.4)	E (99.6)	Q (96.9)	l (54.6)	Y (95.7)	l (91.7)	E (100)	W (100)	E (99.9)
358	A	A	N (98.4)	D (99.3)	N (84.8)	N (70.9)	N (85.6)	N (84.6)	E (49.9)	D (46.5)	G (41.6) A (34.9) V (15.5)	l (99.3)
378	Κ	К	W (99.9)	W (100)	L (96.6)	K (79.0)	K (76.6)	K (99.1)	K (98.9)	K (99.8)	K (99.8)	V (99.6)
380	Р	Р	P (99.8)	A (100)	E (99.6)	R (78.8)	(74.2)	T (88.7)	P (100)	P (99.8)	P (100)	Y (100)
392	I	I	S (98.4)	N (100)	V (63.7)	l (87.3)	l (59.8)	S (88.6)	V (47.5)	T (58.6)	l (49.9) T (49.6)	A (92.7)
450	Т	Т	N (89.5)	N (87.2)	S (99.2)	D (98.0)	S (99.7)	D (99.1)	K (73.4)	P (100)	T (99.3)	G (100)
451	Е	Е	S (94.9)	S (100)	S (98.3)	H (79.7)	G (99.8)	N (100)	E (99.7)	(39.3)	E (99.8)	S (99.8)
452	F	F	D (80.3)	D (100)	E (99.2)	E (85.9)	T (99.8)	E (99.9)	R (99.4)	S (51.0)	F (99.8)	G (99.7)

NA residues conserved in influenza A N1 to N9 and Influenza B NA are highlighted in cyan. NA residues not conserved in Sh2N9 and Hunan N9 is highlighted in yellow. ^a Number of non-redundant influenza NA sequences for subtype from the Influenza Virus Resource at the

- Number of non-redundant initianza NA sequences for subtype r National Center for Biotechnology Information (NCBI) database (https://www.ncbi.nlm.nih.gov/genomes/FLU/) in Nov 28, 2018. ^b Most common residue at position for subtype. ^c Percent identity for most common residue. ^d Sequence deletion as aligned to N2 NA.

Table S5. Oligonucleotides used in this study. Related to Key Resources Table.

REAGENT or RESOURCE	SOURCE	IDENTIFIER
NA-22-VH-F: GGT TCC ACT GGT GAC CAG GTG CAG CTG GTG GAG TCT	Integrated DNA Technologies	N/A
NA-22-VH-R: TCC CTT AGT AGA AGC TGA GGA GAC GGT GAC CAG GG	Integrated DNA Technologies	N/A
NA-22-VL-F: GGT TCC ACT GGT GAC CAG TCT GTG CTG ACT CAG CCT GC	Integrated DNA Technologies	N/A
NA-22-VL-R: AGC CTT TGG TTG TCC TAG GAC GGT GAC CTT GGT CCC	Integrated DNA Technologies	N/A
NA-45-VH-F: GGT TCC ACT GGT GAC CAG GTG CAG CTG GTG GAG TCG	Integrated DNA Technologies	N/A
NA-45-VH-R: TCC CTT AGT AGA AGC TGA GGA GAC GGT GAC CAG GG	Integrated DNA Technologies	N/A
NA-45-VL-F: GGT TCC ACT GGT GAC CAG TCT GTG CTG ACT CAG CCG C	Integrated DNA Technologies	N/A
NA-45-VL-R: AGC CTT TGG TTG TCC TAG GAC GGT GAC CTT GGT CCC	Integrated DNA Technologies	N/A
NA-63-VH-F: GGT TCC ACT GGT GAC GAG GTG CAG CTG GTG GAG TCT G	Integrated DNA Technologies	N/A
NA-63-VH-R: TCC CTT AGT AGA AGC TGA GGA GAC GGT GAC CAG GG	Integrated DNA Technologies	N/A
NA-63-VL-F: GGT TCC ACT GGT GAC GAC ATT GTG ATG ACT CAG TCT CCA TCC	Integrated DNA Technologies	N/A
NA-63-VL-R: AGC GGC CAC CGT ACG TTT GAT CTC CAG CTT GGT CCC C	Integrated DNA Technologies	N/A
NA-80-VH-F: GGT TCC ACT GGT GAC CAG GTT CAG CTG GTG CAG TCT G	Integrated DNA Technologies	N/A
NA-80-VH-R: TCC CTT AGT AGA AGC TGA GGA GAC GGT GAC CAG GG	Integrated DNA Technologies	N/A
NA-80-VL-F: GGT TCC ACT GGT GAC GAC ATT GTG ATG ACC CAG TCT CCA	Integrated DNA Technologies	N/A
NA-80-VL-R: AGC GGC CAC CGT ACG TTC GAT ATC CAC TTT GGT CCC AGG	Integrated DNA Technologies	N/A

NA-73-F: AGC CTT TGG TTG TCC TAG GAC GGT CAG CTT GGT CCC	Integrated DNA Technologies	N/A
NA-73-R:	Integrated DNA Technologies	N1/A
GGT GAC CAG GG	Integrated DNA Technologies	IN/A
Sh2N9ect-F:		
CTA GCT AGT CTA GAA GGA ATT TCA	Integrated DNA Technologies	N/A
	Integrated DNA Technologies	ΝΙ/Α
	Integrated DNA Technologies	N/A
	Integrated DNA Technologies	ΝΙ/Α
	Integrated DNA Technologies	N/A
	Integrated DNA Technologies	NI/A
	Integrated DNA Technologies	N/A
Sh2N9-Y169aH-F:	Integrated DNA Technologies	NI/A
CAC AGT GCA CAA CAG CAG GGT GGA	Integrated DNA Technologies	N/A
Sh2N9-Y169aH-R:	Integrated DNA Technologies	NI/A
CIG IIG IGC ACI GIG GGC GGI	Integrated DNA Technologies	N/A
GAIGAI AGI G		
HunanN9ect-F:		N1/A
CTA GCT AGT CTA GAA GGA ATT TCA	Integrated DNA Technologies	N/A
ATA ACT TAA CTA AAG GGC TCT GT		
HunanN9ect-R:		
GGA CTG GAA AGC TTT TAG AGG AAG	Integrated DNA Technologies	N/A
TAC TCT ATT TTA GCC CCA TCA		