Non-adiabatic molecular dynamics on graphics processing units: performance and application to rotary molecular motors

Laurens D. M. Peters, † Jörg Kussmann, † and Christian Ochsenfeld *,†,‡

†Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany ‡Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart,

Germany

E-mail: c.ochsenfeld@fkf.mpg.de

Contents

1 Structures

All optimized structures and initial conditions (structure and velocity) are available at https://www.cup.uni-muenchen.de/pc/ochsenfeld/download/.

2 Performance

Figure S1: Log-log plot of the timings of (left) Coulomb and (right) exchange integral evaluations and their derivatives with respect to the nuclear coordinates of polyethine (III_n) with $n = 40, 50, 75, 100$ calculated at PBE0/def2-SVP level of theory on CPUs. The slope of the linear fit is equal to the effective scaling behavior of the routine.

Figure S2: Log-log plot of the timings of (left) Coulomb and (right) exchange integral evaluations and their derivatives with respect to the nuclear coordinates of polyethine (III_n) with $n = 40, 50, 75, 100$ calculated at PBE0/def2-SVP level of theory on GPUs. The slope of the linear fit is equal to the effective scaling behavior of the routine.

Figure S3: Log-log plot of the timings of (left) Coulomb and (right) exchange integral evaluations and their derivatives with respect to the nuclear coordinates of dialkylethene (\mathbf{IV}_n) with $n = 40, 50, 75, 100$ calculated at PBE0/def2-SVP level of theory on GPUs. The slope of the linear fit is equal to the effective scaling behavior of the routine.

3 Illustrative Examples

3.1 Validation

Table 1: Mean absolute errors (MAE; in atomic units) of excited state energies (ω_I) , gradients $(\omega_I^{\xi}$ $\binom{\xi}{I}$, and non-adiabatic coupling vectors (τ_I^{ξ}) $\sum_{I \to J}^{k}$ of the four rotary molecular machines (C, \mathbf{N} , \mathbf{S} , and \mathbf{O}) calculated at RPA and TDA (ω B97/def2-SVP) level of theory on GPUs, comparing two different thresholds for preLink ($\vartheta_{\rm pre}$), the preLink gradient ($\vartheta_{\rm pre}^{\nabla}$), and the TDDFT convergence $(\vartheta_{\text{TDDFT}})$.

י \sim 0.1.0.000						
$\vartheta_{\underline{\text{pre}}}$	10^{-3} vs 10^{-4}					
η pre	10^{-10} vs 10^{-11}					
ϑ TDDFT	10^{-5} vs 10^{-6}					
$\mathbf C$						
	RPA	TDA				
$MAE(\omega_1)$	3.19×10^{-4}	6.55×10^{-7}				
$MAE(\omega_1^{\xi})$	4.03×10^{-5}	4.34×10^{-6}				
$MAE(\tau_{0\rightarrow 1}^{\xi})$	9.89×10^{-4}	2.71×10^{-5}				
$\overline{\mathbf{N}}$						
	RPA	TDA				
$MAE(\omega_1)$	1.98×10^{-4}	2.90×10^{-6}				
$MAE(\omega_1^{\xi})$	2.42×10^{-5}	1.22×10^{-5}				
$MAE(\tau_{0\rightarrow 1}^{\xi})$	9.43×10^{-4}	6.34×10^{-5}				
S						
	RPA	TDA				
$MAE(\omega_1)$	3.91×10^{-4}	1.09×10^{-6}				
$MAE(\omega_1^{\xi})$	2.84×10^{-5}	8.33×10^{-6}				
$MAE(\tau_{0\rightarrow 1}^{\xi})$	7.85×10^{-4}	4.32×10^{-5}				
O						
	RPA	TDA				
$MAE(\omega_1)$	1.94×10^{-4}	9.07×10^{-7}				
$MAE(\omega_1^{\xi})$	2.82×10^{-5}	7.30×10^{-6}				
$MAE(\tau_{0\rightarrow 1}^{\xi})$	$6.35\ \times 10^{-4}$	3.59×10^{-5}				

Screening Thresholds and Convergence Criteria

Table 2: Mean absolute errors (MAE; in atomic units) of excitation energies (ω_I) , gradients $(\omega_I^\xi$ $\binom{\xi}{I}$, and non-adiabatic coupling vectors (τ_I^{ξ}) $\sum_{I \to J}^{S}$ of the four rotary molecular machines (C, $\mathbf{N}, \mathbf{S}, \text{ and } \mathbf{O}$ calculated at RPA and TDA (ω B97/def2-SVP) level of theory on GPUs, comparing RPA and TDA.

RPA vs. TDA						
		N				
	MAE (ω_1) 6.49 $\times 10^{-3}$ 8.17 $\times 10^{-3}$ 5.41 $\times 10^{-3}$ 6.70 $\times 10^{-3}$					
	MAE(ω_1^{ξ}) 6.43 × 10 ⁻⁴ 5.86 × 10 ⁻⁴ 5.28 × 10 ⁻⁴ 4.60 × 10 ⁻⁴					
	$MAE(\tau_{0\rightarrow1}^{\xi})$ 8.73 $\times 10^{-3}$ 8.14 $\times 10^{-3}$ 8.81 $\times 10^{-3}$ 8.86 $\times 10^{-3}$					

Figure S4: Excitation energies of the four rotary molecular machines $(C, N, S, \text{ and } O)$ calculated at (left) RPA and (right) TDA $(\omega B97/\text{def2-SVP})$ level of theory.

Figure S5: Comparison of relative S_0 and S_1 energies of the four rotary molecular machines $(C, N, S, \text{ and } O)$ calculated at TDA $(\omega B97/\text{def2-SVP})$ and $CASSCF(2,2)/\text{def2-SVP}$ level of theory. The two geometries were obtained from geometry optimizations of the ground state (*opt*) and the S₁ state (close to the conical intersection, cx) at TDA (ω B97/def2-SVP) level of theory. CASSCF calculations were perfomed with ORCA v4.0 (Neese, F. The ORCA program system, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73-78). TDA describes both states at cx and trends between the different molecular machines remarkably well.

3.2 Relaxed Difference Densities

Figure S6: Plots of the relaxed difference densities of the first excited state (\mathbf{P}_1) of $(\text{up}) \mathbf{C}$ and (down) N calculated at (left) RPA and (right) TDA $(\omega B97/\text{def2-SVP})$ level of theory.

Figure S7: Plots of the relaxed difference densities of the first excited state (\mathbf{P}_1) of (up) S and (down) O calculated at (left) RPA and (right) TDA $(\omega B97/\text{def2-SVP})$ level of theory.

C $E_0^{\xi} + \omega_1^{\xi}$ 1 τ_0^ξ $0\rightarrow 1$ RPA TDA RPA TDA N $E_0^{\xi} + \omega_1^{\xi}$ 1 τ_0^ξ $0\rightarrow 1$ RPA TDA RPA TDA

3.3 Excited State Gradients and Non-adiabatic Coupling Vectors

Figure S8: Excited state gradients of the first excited state $(E_0^{\xi} + \omega_1^{\xi})$ $_{1}^{\xi}$) and non-adiabatic coupling vectors between the ground and the first excited state (τ_0^{ξ}) $\binom{.5}{0}$ of (up) **C** and (down) N calculated at RPA and TDA $(\omega B97/\text{def2-SVP})$ level of theory.

Figure S9: Excited state gradients of the first excited state $(E_0^{\xi} + \omega_1^{\xi})$ $_{1}^{\xi}$) and non-adiabatic coupling vectors between the ground and the first excited state $(\tilde{\tau}_0^{\xi})$ $\binom{.5}{0}$ of (up) **S** and (down) O calculated at RPA and TDA $(\omega B97/\text{def2-SVP})$ level of theory.

3.4 Dihedrals

Figure S10: Dihedrals during the non-adiabatic molecular dynamics simulations of C, N, S , and O . Blue lines indicate simulations starting from a dihedral > 0 and red a dihedral < 0 . All rotors show no clear preference towards clockwise (< 0) or counterclockwise (> 0) rotations.