Non-adiabatic molecular dynamics on graphics processing units: performance and application to rotary molecular motors

Laurens D. M. Peters,[†] Jörg Kussmann,[†] and Christian Ochsenfeld^{*,†,‡}

 †Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
 ‡Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart,

Germany

E-mail: c.ochsenfeld@fkf.mpg.de

Contents

1	Stru	uctures	2	
2	Per	formance	2	
3	Illu	strative Examples	5	
	3.1	Validation	5	
	3.2	Relaxed Difference Densities	8	
	3.3	Excited State Gradients and Non-adiabatic Coupling Vectors	10	
	3.4	Dihedrals	12	

1 Structures

All optimized structures and initial conditions (structure and velocity) are available at https://www.cup.uni-muenchen.de/pc/ochsenfeld/download/.

2 Performance

Figure S1: Log-log plot of the timings of (left) Coulomb and (right) exchange integral evaluations and their derivatives with respect to the nuclear coordinates of polyethine (III_n) with n = 40, 50, 75, 100 calculated at PBE0/def2-SVP level of theory on CPUs. The slope of the linear fit is equal to the effective scaling behavior of the routine.

Figure S2: Log-log plot of the timings of (left) Coulomb and (right) exchange integral evaluations and their derivatives with respect to the nuclear coordinates of polyethine (III_n) with n = 40, 50, 75, 100 calculated at PBE0/def2-SVP level of theory on GPUs. The slope of the linear fit is equal to the effective scaling behavior of the routine.

Figure S3: Log-log plot of the timings of (left) Coulomb and (right) exchange integral evaluations and their derivatives with respect to the nuclear coordinates of dialkylethene (\mathbf{IV}_n) with n = 40, 50, 75, 100 calculated at PBE0/def2-SVP level of theory on GPUs. The slope of the linear fit is equal to the effective scaling behavior of the routine.

3 Illustrative Examples

3.1 Validation

Table 1: Mean absolute errors (MAE; in atomic units) of excited state energies (ω_I), gradients (ω_I^{ξ}), and non-adiabatic coupling vectors ($\tau_{I \to J}^{\xi}$) of the four rotary molecular machines (**C**, **N**, **S**, and **O**) calculated at RPA and TDA (ω B97/def2-SVP) level of theory on GPUs, comparing two different thresholds for preLink ($\vartheta_{\rm pre}$), the preLink gradient ($\vartheta_{\rm pre}^{\nabla}$), and the TDDFT convergence ($\vartheta_{\rm TDDFT}$).

servergence enterna										
$\vartheta_{ m pre}$	$10^{-3} \text{ vs } 10^{-4}$									
$\vartheta_{\mathrm{pre}}^{\nabla}$	$10^{-10} \text{ vs } 10^{-11}$									
$\vartheta_{\mathrm{TDDFT}}$	10^{-5} vs 10^{-6}									
С										
	RPA	TDA								
$MAE(\omega_1)$	3.19×10^{-4}	6.55×10^{-7}								
$MAE(\omega_1^{\xi})$	4.03×10^{-5}	4.34×10^{-6}								
$MAE(\tau_{0\to 1}^{\xi})$	9.89×10^{-4}	2.71×10^{-5}								
Ν										
	RPA	TDA								
$MAE(\omega_1)$	1.98×10^{-4}	2.90×10^{-6}								
$MAE(\omega_1^{\xi})$	2.42×10^{-5}	1.22×10^{-5}								
$MAE(\tau_{0\to 1}^{\xi})$	9.43×10^{-4}	6.34×10^{-5}								
S										
	RPA	TDA								
$MAE(\omega_1)$	3.91×10^{-4}	1.09×10^{-6}								
$MAE(\omega_1^{\xi})$	2.84×10^{-5}	8.33×10^{-6}								
$MAE(\tau_{0\to 1}^{\xi})$	7.85×10^{-4}	4.32×10^{-5}								
0										
	RPA	TDA								
$MAE(\omega_1)$	1.94×10^{-4}	9.07×10^{-7}								
$MAE(\omega_1^{\xi})$	2.82×10^{-5}	7.30×10^{-6}								
$MAE(\tau_{0\to 1}^{\xi})$	6.35×10^{-4}	3.59×10^{-5}								

Screening Thresholds and Convergence Criteria

Table 2: Mean absolute errors (MAE; in atomic units) of excitation energies (ω_I), gradients (ω_I^{ξ}), and non-adiabatic coupling vectors ($\tau_{I\to J}^{\xi}$) of the four rotary molecular machines (**C**, **N**, **S**, and **O**) calculated at RPA and TDA (ω B97/def2-SVP) level of theory on GPUs, comparing RPA and TDA.

RPA vs. TDA								
	C	\mathbf{N}	\mathbf{S}	0				
$MAE(\omega_1)$	6.49×10^{-3}	8.17×10^{-3}	5.41×10^{-3}	6.70×10^{-3}				
$MAE(\omega_1^{\xi})$	6.43×10^{-4}	5.86×10^{-4}	5.28×10^{-4}	4.60×10^{-4}				
$MAE(\tau_{0\to 1}^{\xi})$	8.73×10^{-3}	8.14×10^{-3}	8.81×10^{-3}	8.86×10^{-3}				

Figure S4: Excitation energies of the four rotary molecular machines (C, N, S, and O) calculated at (left) RPA and (right) TDA (ω B97/def2-SVP) level of theory.

Figure S5: Comparison of relative S_0 and S_1 energies of the four rotary molecular machines (**C**, **N**, **S**, and **O**) calculated at TDA (ω B97/def2-SVP) and CASSCF(2,2)/def2-SVP level of theory. The two geometries were obtained from geometry optimizations of the ground state (*opt*) and the S_1 state (close to the conical intersection, cx) at TDA (ω B97/def2-SVP) level of theory. CASSCF calculations were performed with ORCA v4.0 (Neese, F. The ORCA program system, *Wiley Interdiscip. Rev.: Comput. Mol. Sci.* **2012**, *2*, 73-78). TDA describes both states at cx and trends between the different molecular machines remarkably well.

3.2 Relaxed Difference Densities

Figure S6: Plots of the relaxed difference densities of the first excited state (\mathbf{P}_1) of (up) \mathbf{C} and (down) \mathbf{N} calculated at (left) RPA and (right) TDA (ω B97/def2-SVP) level of theory.

Figure S7: Plots of the relaxed difference densities of the first excited state (\mathbf{P}_1) of (up) **S** and (down) **O** calculated at (left) RPA and (right) TDA (ω B97/def2-SVP) level of theory.

3.3 Excited State Gradients and Non-adiabatic Coupling Vectors

Figure S8: Excited state gradients of the first excited state $(E_0^{\xi} + \omega_1^{\xi})$ and non-adiabatic coupling vectors between the ground and the first excited state $(\tau_{0\to 1}^{\xi})$ of (up) **C** and (down) **N** calculated at RPA and TDA (ω B97/def2-SVP) level of theory.

Figure S9: Excited state gradients of the first excited state $(E_0^{\xi} + \omega_1^{\xi})$ and non-adiabatic coupling vectors between the ground and the first excited state $(\tau_{0\to 1}^{\xi})$ of (up) **S** and (down) **O** calculated at RPA and TDA (ω B97/def2-SVP) level of theory.

3.4 Dihedrals

Figure S10: Dihedrals during the non-adiabatic molecular dynamics simulations of \mathbf{C} , \mathbf{N} , \mathbf{S} , and \mathbf{O} . Blue lines indicate simulations starting from a dihedral > 0 and red a dihedral < 0. All rotors show no clear preference towards clockwise (< 0) or counterclockwise (> 0) rotations.