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1 Structures

All optimized structures and initial conditions (structure and velocity)

https://www.cup.uni-muenchen.de/pc/ochsenfeld/download/.

2 Performance
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Figure S1: Log-log plot of the timings of (left) Coulomb and (right) exchange integral evalu-
ations and their derivatives with respect to the nuclear coordinates of polyethine (II1,,) with
n = 40,50, 75,100 calculated at PBE0/def2-SVP level of theory on CPUs. The slope of the
linear fit is equal to the effective scaling behavior of the routine.
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Figure S2: Log-log plot of the timings of (left) Coulomb and (right) exchange integral evalu-
ations and their derivatives with respect to the nuclear coordinates of polyethine (II1,,) with
n = 40,50, 75,100 calculated at PBE0/def2-SVP level of theory on GPUs. The slope of the
linear fit is equal to the effective scaling behavior of the routine.
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Figure S3: Log-log plot of the timings of (left) Coulomb and (right) exchange integral eval-
uations and their derivatives with respect to the nuclear coordinates of dialkylethene (IV,,)
with n = 40,50, 75,100 calculated at PBEO/def2-SVP level of theory on GPUs. The slope
of the linear fit is equal to the effective scaling behavior of the routine.



3 Illustrative Examples

3.1 Validation

Table 1: Mean absolute errors (MAE; in atomic units) of excited state energies (wy), gradients

(

wj

3

), and non-adiabatic coupling vectors (17_, ;

) of the four rotary molecular machines (C,

N, S, and O) calculated at RPA and TDA (wB97/def2-SVP) level of theory on GPUs,

comparing two different thresholds for preLink (¢.), the preLink gradient (

TDDFT convergence (J1pprr)-

Screening Thresholds and Convergence Criteria

D pre 1073 vs 101
e 10710 ys 101
YTDDET 1072 vs 1076
C
RPA TDA
MAE(w;) | 3.19 x10~* 6.55 x107
MAE(w$) | 4.03 x107° 4.34 x1076
MAE(75,,) | 9.89 x10~* 2.71 x107°
N
RPA TDA
MAE(w;) | 1.98 x10~* 2.90 x1076
MAE(w$) | 2.42 x107° 1.22 x1075
MAE(75,,) | 9.43 x10~* 6.34 x107°
S
RPA TDA
MAE(w;) | 3.91 x10~* 1.09 x10°°
MAE(w?) | 2.84 x1075 8.33 x107¢
MAE(75.,,) | 7.85 x1074 4.32 x1075
o)
RPA TDA
MAE(w;) | 1.94 x104 9.07 x10~7
MAE(w) | 2.82 x107° 7.30 x107°
MAE(7$,,) | 6.35 x10~* 3.59 x107°

19V

pre

), and the



Table 2: Mean absolute errors (MAE; in atomic units) of excitation energies (wy), gradients
(w$), and non-adiabatic coupling vectors (75, ;) of the four rotary molecular machines (C,

N, S, and O) calculated at RPA and TDA (wB97/def2-SVP) level of theory on GPUs,
comparing RPA and TDA.

RPA vs. TDA

C N S o)
MAE(w;) | 6.49 x103 8.17 x103 5.41 x10~3 6.70 x10~3
MAE(w$) |6.43 x10™* 5.86 x10™* 528 x10™* 4.60 x10~*
MAE(7S,,) | 8.73 x1073 8.14 x10~3 881 x10~% 8.86 x10~*
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Figure S4: Excitation energies of the four rotary molecular machines (C, N, S, and O)
calculated at (left) RPA and (right) TDA (wB97/def2-SVP) level of theory.
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Figure S5: Comparison of relative Sy and S; energies of the four rotary molecular machines
(C, N, S, and O) calculated at TDA (wB97/def2-SVP) and CASSCF(2,2)/def2-SVP level of
theory. The two geometries were obtained from geometry optimizations of the ground state
(opt) and the Sy state (close to the conical intersection, cx) at TDA (wB97/def2-SVP) level
of theory. CASSCF calculations were perfomed with ORCA v4.0 (Neese, F. The ORCA
program system, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73-78). TDA
describes both states at cz and trends between the different molecular machines remarkably
well.



3.2 Relaxed Difference Densities

Figure S6: Plots of the relaxed difference densities of the first excited state (P;) of (up) C
and (down) N calculated at (left) RPA and (right) TDA (wB97/def2-SVP) level of theory.



Figure S7: Plots of the relaxed difference densities of the first excited state (Py) of (up) S
and (down) O calculated at (left) RPA and (right) TDA (wB97/def2-SVP) level of theory.



3.3 Excited State Gradients and Non-adiabatic Coupling Vectors

C
Eg + wf T§—>1
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N
Eg + w§ Tg—ﬂ

RPA TDA RPA TDA

Figure S8: Excited state gradients of the first excited state (Eg + w?) and non-adiabatic
coupling vectors between the ground and the first excited state (75_,,) of (up) C and (down)
N calculated at RPA and TDA (wB97/def2-SVP) level of theory.
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Figure S9: Excited state gradients of the first excited state (E5 + w%) and non-adiabatic

coupling vectors between the ground and the first excited state (75.,) of (up) S and (down)
O calculated at RPA and TDA (wB97/def2-SVP) level of theory.
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3.4 Dihedrals
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Figure S10: Dihedrals during the non-adiabatic molecular dynamics simulations of C, N,
S, and O. Blue lines indicate simulations starting from a dihedral > 0 and red a dihedral
< 0. All rotors show no clear preference towards clockwise (< 0) or counterclockwise (> 0)

rotations.
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