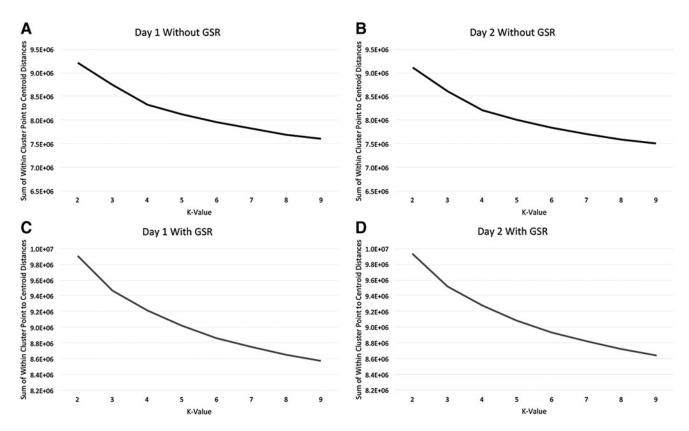
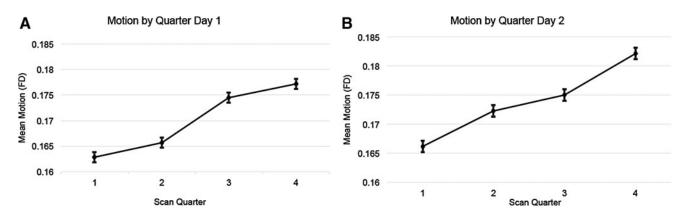
Note on the Intraclass Correlation

The variance ratio used can be found in Shrout and Fleiss (1979) labeled as intraclass correlation coefficient [ICC (1,1)].


Supplementary Post Hoc Comparisons

Differences in global signal regression for the time frames of brain states derived before the application of global signal regression


To account for multiple comparisons, a Bonferronicorrected alpha of 0.0083 applied to each set of tests. For both sessions, the only difference between the average global signal for States 1 and 2 was not significant, t(99)=0.916, p=0.362. During the first session, both mean global signals for State 1, t(99)=23.362, p<0.001, and State 2, t(99)=25.159, p<0.001, were significantly greater than the mean global signal for State 3. State 1, t(99)=-29.546, p<0.001, State 2, t(99)=-26.390, p<0.001, and State 3, t(99)=-27.533, p<0.001, all had mean global signal significantly less than State 4. The same pattern of significant differences was found for the second session's brain states [State 1 vs. 2, t(99)=2.245, p=0.027; State 1 vs. 3, t(99)=20.496, p<0.001; State 1 vs. 4, t(99)=-25.216, p<0.001; State 2 vs. 3, t(99) = 21.102, p < 0.001; State 2 vs. 4, t(99) = -23.645, p < 0.001; State 3 vs. 4, t(99) = -23.241, p < 0.001].

Differences in global signal regression for the time frames of brain states derived after the application of global signal regression

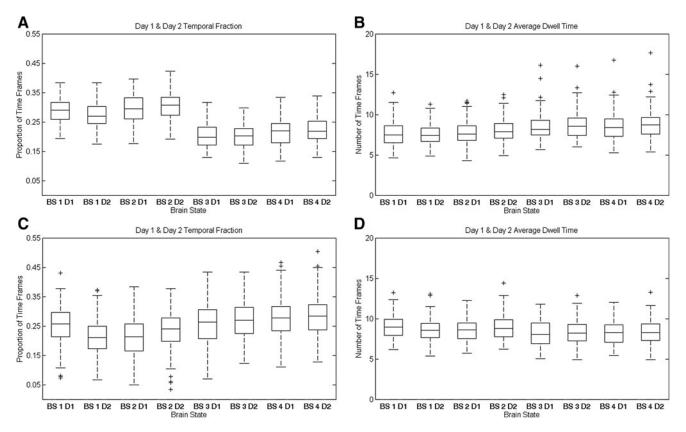
For the first session, preregression mean global signal was greater for State 1 than State 2, t(99) = 3.605, p < 0.001, State 3, t(99) = 5.544, p < 0.001, and State 4, t(99) = 4.743, p < 0.0010.001. State 2 was significantly greater than State 3, t(99) =4.991, p < 0.001, and State 3's mean global signal was significantly less than State 4's, t(99) = -2.982, p = 0.004. The difference between States 2 and 4 did not reach significance, t(99) = -0.414, p = 0.680. Things were generally the same for second session with global signal being greater in State 1 than in State 2, t(99) = 5.133, p < 0.001, State 3, t(99) =5.304, p < 0.001, and State 4, t(99) = 3.762, p < 0.001. State 3's mean global signal was also less than State 4's, t(99) = -3.470, p = 0.001, as it was for the first session, but State 2 had significantly lower mean global signal than State 4, t(99) = -3.081, p = 0.003. In addition, the difference between the mean signal for States 2 and 3 was not statistically significant after correction, t(99) = 2.646, p = 0.009.

SUPPLEMENTARY FIG. S1. The *x* axis marks the *k* values and the *y* axis marks the cumulative error across *k* clusters. For the clusters derived before GSR, the kink in the curve occurs at a *k* of 4 for Session 1 (**A**) and Session 2 (**B**). This *k* value was used for both days, but for the clusters derived after GSR, elbows were present at a *k* of 3 for Session 1 (**C**) and Session 2 (**D**) although elbow is not well formed for Session 2. For the sake of comparison, *k* remained fixed at 4. GSR, global signal regression.

SUPPLEMENTARY FIG. S2. Grand average FD for each scan quarter for Session 1 (A) and Session 2 (B). The error bars represent the error of the main effect of scan quarter for the given scan day. FD, framewise displacement.

Differences in motion for brain states derived before the application of global signal regression

Bonferroni-corrected *post hoc* paired *t* tests for each session's brain states did not yield a significant difference between States 1 and 2, for Session 1, t(99) = -0.155, p = 0.878, and Session 2, t(99) = -0.012, p = 0.990, but all other comparisons reached significance. State 3 had the lowest grand average motion on both sessions, while State 4 had the highest (Supplementary Table S4). Motion was greater for State 1 versus State 3, t(99) = 4.406, p < 0.001, during Sessions 1 and 2, t(99) =3.551, p = 0.001. State 2 also exhibited significantly greater motion than State 3 during Session 1, t(99) = 5.719, p < 0.001, and during Session 2, t(99) = 3.482, p = 0.001. All states possessed significantly lower grand average motion than State 4 during Session 1 [State 1 vs. 4, t(99) = -4.803, p < 0.001; State 2 vs. 4, t(99) = -5.552, p < 0.001; State 3 vs. 4, t(99) = -9.817, p < 0.0010.001] and during Session 2 [State 1 vs. 4, t(99) = -6.455, p < -6.4550.001; State 2 vs. 4, t(99) = -5.824, p < 0.001; State 3 vs. 4, t(99) = -7.271, p < 0.001].


Supplementary Nonparametric Analysis of Motion

Motion between brain states was accessed with nonparametric methods in addition to analysis of variance. Given the same pattern of results, it is likely that the parametric analysis was robust to normality violations. The Friedman test yielded a chi-square value of 81.180 (p < 0.001) for Session 1 and 81.588 (p < 0.001) for the brain states derived without global signal regression (GSR). The motion did not significantly differ between states detected post-GSR on Session 1 with chi-square of 5.436 (p=0.143) and Session 2 with a chi-square of 2.292 (p=0.514).

The Wilcoxon signed-rank test determined that the ranks did not differ between States 1 and 2 for Session 1, z=-1.423, p=0.155, and Session 2, z=-1.090, p=0.276. During Session 1, motion was significantly lower during State 3 than State 1, z=-4.353, p<0.001, and motion during State 1 was less than State 4, z=-5.443, p<0.001, and State 3 exhibited significantly less motion than State 2, z=-5.701, p<0.001. Motion for both State 2, z=-5.078, p<0.001, and State 3, z=-7.588, p<0.001, was significantly less than State 4. This pattern of significant results was replicated during Session 2 (State 3 vs. 1, z=-3.538, p<0.001, State 1 vs. 4, z=-6.835, p<0.001, State 3 vs. 2, z=-3.531, p<0.001, State 2 vs. 4, z=-5.580, p<0.001, State 3 vs. 4, z=-7.190, p<0.001).

Supplementary Reference

Shrout PE, Fleiss JL. 1979. Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428.

SUPPLEMENTARY FIG. S3. Box plots for the temporal fraction and the average dwell time for each scan day (session). The temporal fraction (**A**) and average dwell time (**B**) are presented for the brain states obtained without GSR (days 1 and 2). In the lower panels, the temporal fraction (**C**) and average dwell times (**D**) for the brain states obtained with GSR. The crosses denote outliers.

GLOBAL SIGNAL REGRESSION			
Brain state	Mean	SD	
Session 1			
State 1	10,004.262	35.377	
State 2	10,004.079	35.484	
State 3	9,989.320	35.679	
State 4	10,018.200	36.130	
Session 2			
State 1	10,020.101	39.145	
State 2	10,019.663	39.255	
State 3	10,004.252	38.990	
State 4	10,034.655	40.370	

SUPPLEMENTARY TABLE S2. MEANS AND STANDARD Deviations of the Global Signal (Signal Intensity Normalized to 10,000) for the Time Frames of the Brain States Derived Without

SUPPLEMENTARY TABLE S1. GLOBAL SIGNAL TEMPORAL
STANDARD DEVIATION INDICES OF RELIABILITY

Pearson correlation	Mean absolute difference	Intraclass correlation	
0.73*	3.21	0.72*	

An asterisk denotes values that survived the Bonferroni-corrected threshold. *p < 0.025.

SD, standard deviation.

SUPPLEMENTARY TABLE S3. MEANS AND STANDARD
DEVIATIONS OF THE PREREGRESSION GLOBAL SIGNAL
for the Brain States Derived After
GLOBAL SIGNAL REGRESSION

SUPPLEMENTARY TABLE S5. MEANS AND STANDARD
DEVIATIONS OF THE AVERAGE MOTION FOR THE BRAIN
STATES DERIVED AFTER GLOBAL SIGNAL REGRESSION

Brain state	Mean	SD
Session 1		
State 1	10,006.277	35.414
State 2	10,004.293	35.614
State 3	10,001.782	36.549
State 4	10,004.526	35.024
Session 2		
State 1	e 1 10.022.563	
State 2	10,018.999	39.164
State 3	10,017.696	39.514
State 4	10,021.123	39.793

Brain state	Mean	SD
Session 1		
State 1	0.171	0.055
State 2	0.170	0.053
State 3	0.168	0.051
State 4	0.171	0.053
Session 2		
State 1	0.176	0.061
State 2	0.174	0.062
State 3	0.172	0.053
State 4	0.175	0.058

SUPPLEMENTARY TABLE S4. MEANS AND STANDARD DEVIATIONS OF MOTION (GRAND AVERAGE FRAMEWISE DISPLACEMENT) FOR THE TIME FRAMES OF THE BRAIN STATES DERIVED WITHOUT GLOBAL SIGNAL REGRESSION

Brain state	Mean	SD
Session 1		
State 1	0.170	0.054
State 2	0.170	0.054
State 3	0.164	0.049
State 4	0.176	0.053
Session 2		
State 1	0.174	0.060
State 2	0.174	0.059
State 3	0.167	0.053
State 4	0.182	0.060

SUPPLEMENTARY TABLE S6. BRAIN-STATE CENTROID INDICES OF RELIABILITY

Brain state	Pearson correlation	Mean absolute difference	Intraclass correlation
Without GSI	ર		
State 1	0.99*	0.03	0.99*
State 2	0.99*	0.03	0.99*
State 3	0.97*	0.05	0.95*
State 4	0.97*	0.04	0.96*
With GSR			
State 1	0.99*	0.07	0.98*
State 2	0.98*	0.08	0.98*
State 3	0.95*	0.08	0.95*
State 4	0.99*	0.03	0.99*

An asterisk denotes values that survived the Bonferroni-corrected threshold. *p < 0.0125. GSR, global signal regression.