Appendix for

Damage Caps and Defensive Medicine: Reexamination with Patient Level Data

Ali Moghtaderi George Washington University, School of Medicine and Health Science

Steven Farmer George Washington University, School of Medicine and Health Science

Bernard Black Northwestern University, Pritzker School of Law, Institute for Policy Research, and Kellogg School of Management

(Draft May 2018)

Northwestern University Law School

Law and Economics Research Paper No. 16-xx

This Online Appendix can be downloaded without charge from SSRN at http://ssrn.com/abstract=2845391

The paper can be downloaded without charge from SSRN at: http://ssrn.com/abstract=2816969

Appendix for

Damage Caps and Defensive Medicine: Reexamination with Patient Level Data

Abstract: This online appendix provides additional results for Moghtaderi, Farmer, and Black, Damage Caps and Defensive Medicine: Reexamination with Patient Level Data (working paper 2018), available at <u>http://ssrn.com/abstract=2816969.</u>

1. Data and Methods Details

1.1. New-cap, no-cap, and old-cap states, and cap adoption years

The nine "new-cap" states, and the years in which they adopted caps on non-economic damages, are: Florida (2003), Georgia (2005; invalidated 2010), Illinois (2005; invalidated 2010), Mississippi (2003), Nevada (2002), Ohio (2003), Oklahoma (2003), South Carolina (2005), and Texas (2003).

The 20 no-cap states are: Alabama, Arizona, Arkansas, Connecticut, Delaware, District of Columbia, Iowa, Kentucky, Maine, Minnesota, New Hampshire, New Jersey, New York, North Carolina, Pennsylvania, Rhode Island, Tennessee, Vermont, Washington, and Wyoming. North Carolina and Tennessee adopted non-econ caps in late 2011. We therefore exclude them from the control group for 2012.

The 22 old-cap states are: Alaska, California, Colorado, Hawaii, Idaho, Indiana, Kansas, Louisiana, Maryland, Massachusetts, Michigan, Missouri, Montana, Nebraska, New Mexico, North Dakota, Oregon, South Dakota, Utah, Virginia, West Virginia, Wisconsin.

Table App-1 summarizes the caps in each of these states.

1.2. Procedure Codes

We used Healthcare Common Procedure Coding System (HCPCS), International Classification of Diseases (version ICD9-CM), and Diagnosis Related Group (DRG) codes to identify tests and procedures. Table App-2 presents coding details.

1.3. Counting Stress Tests

Most of the times, multiple claims are being generated for the same stress tests for multiple reasons. For example, a test can generate two claims, one for the technical component of the test, and another one for the professional service of the physician who interprets the image. These different claims usually have the same HCPCS codes accompanied by different claim modifiers. In case we see multiple claims associated with the same test in the same day, we count this is only one test. It is also unlikely to have multiple kinds of stress testing in a short period of time. Some HCPCS codes indicate some technical components of testing which are common for all types of stress tests. If we see indication of repeated stress testing in -3/+3 window, we count these as only one stress test. These are likely cases that different components of a test were claimed in multiple days, and they all indicate one test.

1.4. Physician Crosswalk

Our principal regression models use physician fixed effects. Physicians are uniquely identified by UPIN (unique physician identification number) for 1999-2006, and by NPI (national provider identifier) for 2007 on. We use a variety of sources to build a "Master Individual Provider Crosswalk," which links NPI and UPIN for the same physician where possible. The crosswalk is compiled from: (i) NPPES (National Plan and Provider Enumeration System) records since inception of NPPES in 2007; (ii) A UPIN directory compiled by ResDAC annually during 2003-2007; (iii) Medicare claims data (the 5% national Medicare random sample) over 1999-2014 (the "Carrier" file, which includes all claims by individual providers); (iv) a NPI-DEA directory available from 2010-2012, initially prepared by CMS.

The Master Individual Provider Crosswalk has 4,740,433 records including 1,518,291 distinct NPIs (unique providers), of whom 804,034 (53%) are physicians. The crosswalk includes all providers with claims included in the Medicare Carrier file. Each provider has a unique NPI, may have a unique UPIN, and can have one or more Medicare PINs. Of the 804,034 physicians in the Crosswalk: 571,119 have UPIN; 759,770 have at least one Medicare PIN (most have more than one); 549,741 have all three main identifiers (NPI, UPIN and Medicare PIN). The physicians with all three identifiers account for 83% of the cardiac stress tests performed by physicians for 1999 and 89% for 2006.

Our physician FE results use NPI if available, and UPIN for physicians with UPIN but not NPI; physicians with neither identifier are dropped. In robustness checks we obtain similar results if we limit the physician sample to those with both NPI and UPIN.

2. Univariate Graphical Results in Calendar Time

2.1. Imaging Tests

We begin with simple graphs of univariate results for imaging rates, both per patient and per physician, in calendar time, without covariates or fixed effects. Figure App 1 shows time trends in the diagnostic imaging rates between 1999-2013, separately for new-cap states (the treated states for our study), no-cap states (our narrow control group), and old-cap states (included in our broad control group). Figure App 1 provides graphs for any stress test, MRIs, and CT scans.¹ Overall, testing rates are higher in new-cap states than in old-cap states or no-cap states for overall stress tests, MRI, and CT. Rates are higher in old-cap than in no-cap states for cardiac tests, but lower for MRI and CT.

During the pre-treatment period from 1999-2002, the CT scan rate lines are reasonably parallel. But the MRI rate for new-cap states is rising somewhat more rapidly than the no-cap rate, and the cardiac testing rate is clearly rising more rapidly in new-cap states. Thus, at least without covariates, there is some evidence of non-parallel pre-treatment trends. These differential trends suggest caution in interpreting any post-treatment changes as causal. Unless the covariates absorb the pre-treatment differential trends, DiD estimates will be potentially biased.

¹ The outcome variables are dummy variables for whether a patient had one or more tests of a given type in a given year.

The different base rates in the three groups of states suggest that factors other than damages caps are important drivers of testing intensity. The secular factors that drive these time trends could differ between the three groups of states, either in intensity or when they arrive. This deepens concern with non-parallel trends. Standard DiD methods cannot distinguish between the effect of cap adoption and the possibly differing effects of these secular factors.

DiD estimation can face a further problem when base rates differ substantially, which can be illustrated with the Any Stress Test graph. In 2009, the mean rate per 1,000 patient in new-cap states was about 107 versus 86 for no-cap states. By 2013, mean rates fell to 79 in new-cap states and 67 in no-cap states. Measured as tests per 1,000 patients, rates fell faster in new-cap states: by 27 versus 19. But the *relative* drops in testing rates were much more similar, at 25.4% for new-cap versus 22.0% in no-cap states. Which is the right measure? Suppose that, damage caps aside, the same forces drove the secular drop in testing rates in all states. Did those forces operate on absolute rates, or relative rates? If the former, then rates in new-cap states dropped further, perhaps due to damage caps. If the latter, the drops were similar, and damage caps would appear to have little effect. Theory cannot tell us. If general pressures for fewer stress tests affect relative rates rather than percent-of-sample rates, this should bias our estimates *downward*. The true effect of cap adoption on stress testing rates would be higher than those we estimate from our regression models.²

We have no perfect response to these concerns with differing base rates and time-varying secular factors affecting those rates. As a partial response, we end our data period for the leads-and-lags graphs and regression results below in 2011; this allows at least 6 post-cap years in each treatment state, while cutting off some of the period of steep secular fall in stress testing rates.

2.2. Cardiac Procedures

Figure App 2 provides calendar time graphs, similar to Figure App 1, for the three main interventional cardiac procedures: LHC, PCI, and CABG, and for any revascularization (PCI or CABG).³ LHC, performed by itself, is a diagnostic procedure. Similar to the results in Figure 1 for imaging tests, both per-patient and per-physician rates for these procedures are higher in new-cap states; the exception is CABG, for which per physician CABG rates are similar in new-cap and no-cap states. PCI rates rise in the first half of our sample period, then fall steadily from about 2004 on, then drop sharply in 2007 and 2008; this is plausibly a response to the February 2007 publication of results from the Courage trial. LHC per-patient rates rise between 1999-2004, while per physician rates are reasonably flat, both sets of rates begin to fall in 2004. CABG rates drop steadily throughout the 1999-2013 period. Prior research, with data through 2009, also find similar time trends for PCI and CABG, including a sharp drop in PCI rates in 2007 (Riley et al., 2011).

The challenges in DiD estimation discussed above, when base levels are subject to secular trends, and differ substantially between treated and control states, apply here too, most strongly to LHC, for which base rates are most different.

² The drop in testing rates accelerates in 2010. The substantive reason for that may well be a sharp cut in reimbursement rates by the Centers for Medicare and Medicaid Services ("CMS") in 2010.

³ LHC and PCI are often performed in the same procedure. PCI and CABG are often substitutes, but can sometimes be performed on the same patient at similar times, although in different procedures.

2.3. Spending

Figure App 3, presents per-patient and per-physician graphs, similar to Figure App 1, for laboratory spending, radiology spending, both categories combined, and Medicare Part B; it also presents per-patient Medicare Part A and total spending.⁴ Lab spending rises rapidly through around 2006, then levels off; spending starts to fall in 2011. Lab spending rates are very similar in the three groups of states through 2003. After that, spending in new-cap states rises relative to no-cap and old-cap states. This divergence begins during the cap adoption period. This is consistent with damage caps leading to higher lab spending.

For radiology spending, spending levels rise through 2006 for all three groups of states, then fall after that. The three lines are reasonably parallel during the pre-treatment period, but new-cap spending rises during the cap adoption period, and remains well above spending in the other two groups after that. This provides initial evidence that radiology spending rises following adoption of damage caps. Combined laboratory and radiology spending trends rises through 2006. Combined spending falls sharply after that on a per-patient basis, but is flat on a per-physician basis.

Part B spending generally rises through 2011, then begins to fall on a per-patient basis. Both perpatient and per-physician, the new-cap line is parallel to and slightly above the no-cap line during the pre-cap-adoption period. The gap between the two lines grows during and after the cap adoption period, which suggests that cap adoption may increase Part B spending.

For part A spending, all three groups show a similar general pattern of a rise in spending through 2002, then roughly level through 2010, and generally falling after that. The new-cap line is in between the no-cap and old-cap lines throughout this period; all three lines converge to very similar levels for 2010-2013. The overall pattern provides little evidence of an effect of cap adoption on Part A spending. Also, the non-parallelism in what should be a placebo comparison between no-cap and old-cap states -- old-cap states have higher spending over 1999-2009; this difference then disappears – provides a warning against having confidence in any apparent cap effect we might find.

Part B spending generally rises through 2009, then flattens and begins to fall. The new-cap line is parallel to and slightly above the no-cap line during the pre-cap-adoption period. The gap between the two lines grows during and after the cap adoption period, which provide evidence suggestive that cap adoption may increase Part B spending.

Total spending is a blend of the Part A and Part B results. Prior to the cap adoption period, the new-cap and no-cap lines are both reasonably parallel and very close together. The new-cap line rises to modestly above the no-cap line in 2004, and remains slightly above the no-cap line thereafter. This graph provides mild evidence that caps may increase total Medicare spending.

3. Leads and Lags Graphs with Broad Control Group

In Figures App-4 to App-6, we present leads-and-lags graphs similar to those presented in the paper, but using the broad control group of both no-cap and old-cap states; the analogous figures in the text use No-Cap states as the control group . Results are generally similar with both control

⁴ Radiology and laboratory spending are cleanly identified in our data beginning in 2000, so we exclude 1999 when studying these spending categories.

groups. One notable difference: with the broad control group, in the patient FE graphs, the increases in radiology and laboratory spending, and drop in PCI rates, observed during the first four years after damage cap adoption, reverses in the last data year (year 6+).

4. Additional Graphs and Tables for Results Presented in The Paper

4.1. Additional Summary Statistics

Table App-3 is similar in form to Table 1 in the text, and provides a covariate balance table for the treated states versus 21 *old-cap* states in 2002.

4.2. Covariate Coefficients for Cardiac Interventions and Medicare Spending Regressions

Table App-4, Panel B presents the coefficients on covariates from the simple DiD regressions presented in the text of the effect of damage caps on cardiac intervention; and Panel C presents coefficients on covariates for the simple DiD regressions presented in the text of the effect of damage caps on laboratory and radiology spending; and Panel D presents coefficients on covariates for the simple DiD regressions presented in the text of damage caps on Medicare Part A, Part B, and total spending.

4.3. Including Other Tort Reforms

In Table App-5, we present results from a specification which includes other tort reforms, not just damage caps. We do not favor this specification (see Paik, Black, and Hyman, 2013b, for detailed discussion), and the results with these additional tort reform variables need to be interpreted with caution. The other reforms we include are: punitive damage caps, split recovery reform, punitive evidence reform, collateral source reform, joint and several liability reform, periodic payments reform, and certificate of merit requirements. We use no-cap states as the control group. Coefficients of other tort reforms are presented in Table App 4. Coefficients for other tort reforms are never statistically significant with either patient or physician FE.

4.3. Results from Leave Out Regressions

We have a patient level data, and we have disproportionally larger number of observations from states with higher Medicare population. We are concerned that our results might be entirely driven by these states. To address this concern, we run our regressions and leave one treatment state out each time. These results are presented in Table App-6.

4.4. Synthetic Controls

The synthetic control method is a data-driven procedure that provides single control unit as weighted average of several comparison units (Abadie et al., 2010). The synthetic control ensures the parallel pre-treatment trends by design, and it enables us to study the effect of reform by each state separately. We present the results for stress test, CT-Scan, MRI, and radiology spending. Other results are also very similar.

For imaging tests, we use *ln*(Number of beneficiaries with any stress test (MRI/CT scan per 1,000 beneficiaries) as our outcome variable and use the covariates listed in Table 1 (main paper) as predictor variables. The predictor variables are averaged over the pre-treatment period. For radiology spending, we specify ln (radiology spending per enrollee) as our outcome and other

covariates in Table 1 as predictors. Synthetic control graphs are presented in Figure App-7. State donor weights for synthetic control for each outcome is presented in Table App-7.

Figure App 1. Imaging Rates for New-cap, No-cap, and Old-cap States

Notes: Rates for indicated imaging tests, separately for 9 new-cap, 20 no-cap, and 22 old-cap states over 1999-2013. Means are weighted by county population, and calculated at state level from 1999-2013. Vertical lines in 2003 and 2006 indicate the third reform wave period. Outcome variable is number of indicated tests or procedures per 1,000 patients. We drop IL and GA from treatment group for 2010 on due to cap reversals in 2010, and drop NC and TN from control group for 2012 on, due to cap adoptions in late 2011.

Figure App-2.- Cardiac Intervention Rates for New-cap, No-cap, and Old-cap States

Notes: Rates of LHC, PCI, CABG, and any intervention rates per beneficiary and per physician separately for 9 new-cap, 20 no-cap, and 22 old-cap states over 1999-2013. Means are weighted by county population, and calculated at state level from 1999-2013. Vertical lines in 2003 and 2006 indicate the third reform wave period.

Figure App 3. Medicare Spending for New-cap, No-cap, and Old cap States

Notes: Annual average outpatient laboratory, radiology, combined (outpatient lab plus radiology), and part B spending per beneficiary and per physician, and Part A, and total (A + B) spending per beneficiary over 1999-2013, and for 20 no-cap, 9 new-cap, and 22 old-cap states. Means are weighted by county population, and are calculated at state level from 1999-2013. Vertical lines in 2003 and 2006 indicate the third reform wave period. Amounts in 1999 \$.

Figure App 4. Imaging Rates: Leads and Lags Graphs of Effect of Damage Cap Adoption, Broad Control Group

Notes: Leads and lags regressions (linear probability model) of dummy variables for whether a patient had the indicated imaging test in a given year, for 9 new-cap states, versus narrow control group of 20 no-cap states, over 1999-2011. Leads and lags coefficients are multiplied by 1,000, so provide predicted effect of cap on annual rates per 1,000 patients. Regressions include zip-code, and year fixed effects, and covariates described in section 3.1. y-axis shows coefficients on lead and lag dummies; vertical bars show 95% confidence intervals (CIs) around coefficients, using standard errors clustered on state. Coefficient for year -3 is set to zero.

Figure App 5- Cardiac Intervention Rates: Leads and Lags Graphs of Effect of Damage Cap Adoption, Broad Control Group

Notes: Leads and lags regressions (linear probability model) of dummy variables for whether a patient had the indicated procedure in a given year, for 9 new-cap states, versus narrow control group of 20 no-cap states, over 1999-2011. Coefficients on leads and lags are multiplied by 1,000, so provide predicted effect of cap on annual rates per 1,000 patients. y-axis shows the coefficients on the lead and lag dummies; vertical bars show 95% CIs around coefficients, using standard errors clustered on state. Coefficient for year -3 is set to zero.

Figure App 6. Medicare Spending: Leads and Lags Graphs of Effect of Damage Cap Adoption, Broad Control Group Panel A: Part B Spending

Notes: Leads and lags regressions of outpatient laboratory, radiology spending, and combined (lab and radiology) spending per beneficiary over 2000-2011, and Part A, Part B, and total Medicare spending over 1999-2011, for 9 new-cap states versus narrow control group of 20 no-cap states. y-axis shows coefficients on the lead and lag dummies; vertical bars show 95% CIs around coefficients, using standard errors clustered on state. Coefficient for year -3 is set to zero. Regressions include patient*zip fixed effects. Amounts in 1999 \$

Panel B: Part A and Total Spending

Figure App-7- Synthetic Control Analysis

Panel A-Any Stress Test

Panel B-MRI

Notes: Donor states for each synthetic control graph are drawn from the 20 No-Cap states, using data from 1999 through year before cap adoption. Vertical line separates the pre- and post- treatment periods.

For each new-cap state, graph shows *ln*(Number of beneficiaries with Any Stress Test in indicated year/1,000) for that state versus its synthetic control.

State	Cap adopted	Cap invalidated	Cap level (\$ '000)	Treatment	Control group
				group years	years
No-cap states					
Alabama	1987	1991			
Arizona					
Arkansas					
Connecticut					
Delaware					
Dist. Of					
Columbia					
Iowa					
Kentucky					
Maine					
Minnesota	1986	1989			
New Hampshire	1977; 1986	1980; 1990			
New Jersey					
New York					
North Carolina					
Pennsylvania					
Rhode Island					
Tennessee					
Vermont					
Washington	1986	1988			
Wyoming					
New-cap states					
Florida	2003		\$500 (\$1,000 in	2004-2012	1999-2002
			death cases)		
Georgia	2005	Feb. 2010	\$350-\$1,000	2006-2009	1999-2004
6			depending on number		
			and type of		
			defendents		
Illinois	2005	Eab 2010	\$500 areas $$1000$	2006 2000	1000 2004
minois	2003	reb. 2010	\$500, except \$1,000	2000-2009	1999-2004
) <i>(</i> ' · · · ·	2002		for hospitals	2004 2011	1000 2002
Mississippi	2003		\$500	2004-2011	1999-2002
Nevada	2002		\$350	2002-2011	1999-2001
Ohio	2003		Greater of \$250 or	2004-2011	1999-2002
			(3x economic		
			damages, up to \$500)		
Oklahoma	2003		\$300	2004-2011	1999-2002
South Carolina	2005		\$350-\$1,050,	2006-2011	1999-2004
			depending on number		
			and type of		
			defendants		
Texas	2003		\$250 -\$750.	1999-2002	2004-2011
			depending on number		

Table App-1. Details on Non-Econ Damage Caps

State	Cap adopted	Cap invalidated	Cap level (\$ '000)	Treatment	Control group
				group years	years
			and type of		
			defendants		
Old-cap states					
Alaska	1986-				
California	1975-				
Colorado	1986-				
Hawaii	1986-				
Idaho	1987-				
Indiana					
Kansas	1986-				
Louisiana					
Maryland	1986-				
Massachusetts	1986-				
Michigan	1986-				
Missouri	1986-				
Montana	1995-				
Nebraska	1976-				
New Mexico	1976-				
North Dakota	1995-				
Oregon	1987-99				
South Dakota	1976-85;				
	1996-				
Utah	1987-				
Virginia	1977-				
West Virginia	1986-				
Wisconsin	1986-90;				
	1995-				
Other recent ca	p adopters				
North Carolina	Nov. 2011		\$500		1999-2011
Tennessee	Nov. 2011		\$750		1999-2011

Notes: Table shows the 11 states which adopted caps during 2002-2011, details on each, and the period for which each is included in the treatment group or the control group. Caps are in nominal dollars unless otherwise specified.

Procedure	Code Type	Codes	Notes
	ICD-9	36.10, 36.11, 36.12, 36.13, 36.14, 36.15,	All codes were used from 1999-2015.
		36.16, 36.17, 36.19,	
	DRG	106, 107, 109, 547, 548, 549, 550, 231, 232,	Codes 107 and 109 are used from 1999-2005. Code 106 is used from 1999-
CABG		233, 234, 235, 236	2006. Codes 231, 232, 233, 234, 235 and 236 are used from 2008-2015.
	CPT/HCPCs	33510, 33511, 35512, 35513, 33514, 33516,	Codes S2205, S2206, S2207, S2208 and S2209 are used from 2000-2015. All
		33533, 33534, 33535, 33536, S2205, S2206,	other codes were used from 1999-2015.
		S2207, S2208, S2209	
	ICD-9	0.66, 36.01, 36.02, 36.03, 36.04, 36.05, 36.06,	Code 0.66 is used from 2006-2015. Codes 36.01 and 36.02 are used from 1999-
		36.07, 36.09, 17.55	2005. Code 17.55 is used from 2011-2015. All other codes are used from 1999-2015.
	DRG	112, 116, 246, 247, 248, 249, 250, 251, 516,	Code 112 is used in 2000. Code 116 is used from 1999-2000. Codes 246, 247,
		517, 518, 526, 527, 555, 556, 557, 558	248 and 249 are used from October 2007-2015. Codes 250 and 251 are used
			from 2008-2015. Codes 516 and 518 are used from 2001-2005. Code 517 is
PCI			used from 2001-September of 2005. Codes 526 and 527 are used from April
			2003-Septemeber 2005. Codes 555, 556, 557 and 558 are used from October
			2005-September 2007.
	CPT/HCPCs	92920, 92924, 92928, 92933, 92937, 92941,	Codes 92920, 92924, 92928, 92933, 92937, 92941, 92943, C9600, C9602,
		92943, 92980, 92982, 92995, C1874, C1875,	C9604, C9606, and C9607 are used from 2013-2015. Codes 92980, 92982 and
		C9600, C9602, C9604, C9606, C9607,	92995are used from 1999-2012. Codes C1874 and C1875 are used from 2001-
		G0290, G0291	2015. Codes G0290 and G0291 are used from 2003-2012.
	CPT/HCPCs	93501, 93508, 93510, 93511, 93524, 93526,	Codes 93501, 93508, 93510, 93511, 93524, 93526, 93527, 93539, 93540,
		93527, 93452, 93453, 93454, 93455, 93456,	93543, 93544, 93555 and 93556 are use from 1999-2010. Codes 93542, 93543,
LHC		93457, 93458, 93459, 93460, 93461, 93539,	93454, 93455, 93456, 93457, 93458, 93459, 93460, 93461, 93564, 93565,
		93540, 93543, 93544, 93545, 93555, 93556,	93567 are used from 2011-2015. All other codes are used from 1999-2015.
		93571, 93572, 93564, 93565, 93567	
SPECT	CPT/HCPCs	78451, 78452, 78464, 78465, 78468, 78469,	Codes 78451 and 78452 are used from 2010-2015. Codes 78464, 78465, 78478
		78478, 78480, G0038, G0039, G0042, G0043	and 78480 are used from 1999-2009. All other codes are used from 1999-2015.
	CPT/HCPCs	93350, 93351, 93015, 93016, 93017, 93018,	Code 93015 is used from 1999-2008. Codes 93351and C8930 are used from
Stress ECHO		93320, 93321, 93325, 93352, A9700, C1759,	2009-2015. Code C8928 is used from 2008-2015. Codes G8961 and G8962 are
		C8928, C8930, G8961, G8962	used from 2013-2015. All other codes are used from 1999-2015.
Stress ECG	CPT/HCPCs	93015, 93016, 93017, 93018	All codes are used from 1999-2015.

 Table App-2. Test and Procedure Coding Details

Procedure	Code Type	Codes	Notes
	CPT/HCPCs	70540, 70551, 70552, 70553, 71550, 72141,	Codes 71551, 71552, , 72195, 72197, 73218, 73219, , 73222, 73223, 73718,
		72142, 72146, 72147, 72148, 72149, 72156,	73719, 73722, 73723, 74182 and 74183 are used from 2001-2015. Codes 70542
		72157, 72158, 72196, 73220, 73221, 73720,	and 70543 are used from 2002-2015. Code 76498 is used from 2003-2015.
		73721, 74181, 75552, 75553, 75554, 75555,	Codes 70557, 70558 and 70559 are used from 2004-3015. Codes 70554 and
MRI		75556, 76390, 70542, 70543, 70554, 70555,	70555 are used from 2007-2015. Codes 75557, 75559, 75561 and 75563 are
		70557, 70558, 70559, , 71551, 71552, , 72195,	used from 2008-2015. Code 75565 is used from 2010-2015. Codes 75552,
		72197, 73218, 73219, , 73222, 73223, 73718,	75553, 75554, 75555 and 75556 are used from 1999-2007. All other codes are
		73719, 73722, 73723, 74182, 74183, 75557,	used from 1999-2015.
		75559, 75561, 75563, 75565, 76498	
	CPT/HCPCs	70450, 70460, 70470, 70480, 70481, 70482,	Codes 70496, 70498, 71275, 72191, 73206, 73706 and 74175 are used from
		70486, 70487, 70488, 70490, 70491, 70492,	2001-2015. Codes 74261, 74262, 74263, 75571, 75572, 75573, 75574, 75635
		70496, 70498, 71250, 71260, 71270, 71275,	and 76497 are used from 2010-2015. Codes 74176, 74177 and 74178 are used
		72125, 72126, 72127, 72128, 72129, 72130,	from 2011-2015. Code 74174 is used from 2012-2015. Code S8093 is used
		72131, 72132, 72133, 72191, 72192, 72193,	from 2004-2005. Codes 0066T, 0067T are used from 2005-2009. Codes 0144T,
CT-Scan		72194, 73200, 73201, 73202, 73206, 73700,	0145T, 0146T, 0147T, 0148T, 0149T, 0150T, 0151T are used from 2007-2009.
		73701, 73702, 73706, 74150, 74160, 74170,	All other codes are used from 1999-2015.
		74174, 74175, 74176, 74177, 74178, 74261,	
		74262, 74263, 75571, 75572, 75573, 75574,	
		75635, 76380, 76497, S8093, 0066T, 0067T,	
		0144T, 0145T, 0146T, 0147T, 0148T, 0149T,	
		0150T, 0151T	

Table App-3. Summary Statistics

				New-Cap v. Old-Cap		
States	New-cap	No-cap	Old-cap	ND	t-test	
Per-patient rates						
Imaging (number per 1000 patie	ents)					
strass acho	10.81	12.18	16.71	0.00	10 /1***	
stress echo	(0.41)	(0.42)	(0.48)	0.09	10.41	
SDECT	74.88	61.64	56.05	0.30	1/12***	
SFECT	(1.07)	(0.87)	(0.79)	0.50	14.15	
strass FCG	14.58	12.95	18.60	0.10	8 61***	
	(0.30)	(0.28)	(0.35)	0.10	0.01	
Any Stress Test	95.78	82.76	86.05	0.20	6 01	
	(1.09)	(0.92)	(0.89)	0.20	0.71	
MRI	87.73	81.07	77.65	0.11	8 17	
	(0.97)	(0.89)	(0.76)	0.11	0.17	
CT scan	190.23	185.88	169.31	0.03	10.29	
	(1.59)	(1.51)	(1.26)	0.05	10.27	
Cardiac procedures (number pe	<u>r 1,000 patie</u>	nts)		. <u> </u>		
IHC	32.22	26.42	25.47	0.29	10 66***	
	(0.53)	(0.41)	(0.35)	0.27	10.00	
I HC or stress test	110.02	94.56	97.15	0.21	8 61***	
	(1.16)	(0.99)	(0.94)	0.21	0.01	
PCI	10.26	9.00	8.94	0.17	5 54***	
	(0.18)	(0.18)	(0.15)	0.17	5.54	
CABG	4.99	4.59	4.31	0.10	4 23***	
	(0.12)	(0.11)	(0.10)	0.10	1.20	
PCI or CABG	14.82	13.28	12.88	0.15	6 37***	
	(0.24)	(0.21)	(0.37)	0.15	0.07	
Medicare Spending per Enrollee	e (in 1999 \$)		1	, ,		
Laboratory	219.46	220.97	225.03	0.01	1 53	
	(2.53)	(2.24)	(2.60)	0.01	1.55	
Imaging	193.56	187.55	175.31	0.04	6 25***	
11110G1116	(2.38)	(1.93)	(1.69)	0.04	0.20	
Imaging + lab	413.02	408.52	400.35	0.01	2 04**	
	(4.74)	(3.96)	(4.01)	0.01	2.07	

Part A	2732.96	2863.21	2693.99	0.06	0.96	
	(27.19)	(41.68)	(30.17)			
Part B	2033.04	(18.17)	(17.05)	0.04	2.67**	
	4765.00	(10.17)	4658.03			
Total	(12.63)	(56.06)	(14030.03)	0.02	1.75*	
Per nhysician rates	(42.03)	(30.00)	(1.57)			
Imaging (tests ordered by each r	hysician ner	· 1000 natier	nts)			
	1.74	1.79	2.69			
stress echo	(2.33)	(4.89)	(2.69)	0.41	7.93***	
	11.41	8.72	8.75			
SPECT	(5.93)	(5.70)	(6.96)	0.41	8.66***	
	2.79	2.19	3.47			
stress ECG	(2.37)	(1.80)	(2.62)	0.27	5.69***	
	15.31	12.28	14.27	0.1.4	0.11.1.1.1	
Any Stress Test	(6.61)	(7.50)	(7.54)	0.14	3.11***	
MDI	21.40	18.75	19.70	0.16	2 25444	
MRI	(10.25)	(7.54)	(10.94)	0.10	3.35***	
CT seen	42.86	40.08	39.33	0.26	5 72***	
C1 scan	(14.84)	(14.27)	(12.59)	0.20	5.25	
Cardiac procedures (number or	dered by eac	<u>h physician</u>	per 1,000 p	atients)		
IHC	5.04	3.98	3.96	0.35	7 06***	
	(3.49)	(3.21)	(2.62)	0.55	7.00	
I HC or stress test	18.11	14.62	16.44	0.22	4 57***	
	(7.49)	(8.23)	(10.25)	0.22	H.32	
PCI	1.46	1.23	1.32	0.11	2.22**	
	(1.31)	(1.66)	(1.19)	0.11		
CABG	1.35	1.32	1.52	0.11	2 40**	
	(1.44)	(1.78)	(1.51)	0.11	2.40	
PCI or CABG	2.79	2.54	2.83	0.02	0.42	
	(2.13)	(2.55)	(2.08)	0.02		
Medicare Spending per Physicia	<u>in (in 1999 \$)</u>			1 1		
Laboratory	57.40	54.26	59.04	0.08	1.65*	
	(19.06)	(15.47)	(23.00)			
Imaging	48.49	44.02	44.05	0.30	6.16***	
00	(15.88)	(12.64)	(13.34)	0.20	0.10	

Imaging + lab	105.88	98.28	103.08	0.09	1.83*	
	518.84	472.24	506.73			
Part B	(105.54)	(104.65)	(107.46)	0.11	2.37**	
Patient covariates						
M	75.65	75.957	75.71	0.01	1.15	
Mean age	(0.05)	(0.04)	(0.03)	0.01	1.15	
Number of Charlson	1.09	1.12	1.06	0.04		
comorbidities	(0.01)	(0.01)	(0.01)	0.04	2.82***	
Covariates (state averages, with	population v	veights)				
Demonstration of 5.74	6.53	6.70	5.99	0.04	(1(***	
Percent of population age 65-74	(0.08)	(0.05)	(0.04)	0.04	0.10***	
Demonst of a second strength 75.94	4.42	4.73	4.19	0.10	2 00444	
Percent of population age 75-84	(0.06)	(0.04)	(0.03)	0.10	3.08***	
Percent of population above age	1.45	1.65	1.45	0.10	0.25	
85	(0.02)	(0.01)	(0.01)	0.18	0.25	
Democrat white	80.16	82.41	82.14	0.04	2 12***	
Percent white	(0.46)	(0.52)	(0.37)	0.04	3.12	
Paraant blaak	16.41	13.11	10.15	0.28	10 60***	
reicent black	(0.45)	(0.47)	(0.37)	0.28	10.00	
Dereent Highenia	16.30	8.92	15.31	0.47	1 25	
r ercent mspanie	(0.65)	(0.34)	(0.46)	0.47	1.25	
Parcent male	49.11	48.77	49.36	0.01	1 17***	
	(0.04)	(0.04)	(0.03)	0.01	4.4/****	
Parcent below poverty line	13.24	11.75	11.63	0.17	7 11***	
referred below poverty line	(0.17)	(0.17)	(0.13)	0.17	/ 	
Unemployment rate	5.95	5.82	5.90	0.03	0.49	
	(0.06)	(0.07)	(0.06)	0.05	0.47	
Managed care penetration	10.78	13.04	17.66	0.13	10 75***	
	(0.42)	(0.45)	(0.48)	0.15	10.75	
Physician per capita	2.01	2.51	2.57	0.23	4 87***	
	(0.04)	(0.06)	(0.05)	0.25	4.07	
Percent of Medicare Enrollees	14.24	14.73	13.61	0.05	3 74***	
who are disabled	(0.13)	(0.14)	(0.11)	0.05	5.74	
Population (millions)	0.11	0.11	0.09	0.06	3 72***	
	(0.002)	(0.003)	(0.003)	0.00	3.14	

Median household income (\$	41.01	43.78	45.95	0.09	10 46***
thousands)	(0.33)	(0.39)	(0.34)	0.08	10.40

Notes: Table presents summary statistics for 2002 (just before third reform wave), for outcome variables and averages for outcome variables and selected covariates, for 9 treated states versus 21 old-cap states, normalized difference, and two-sample *t*-test for difference in means. Amounts in 1999\$. Normalized difference (ND) is defined as $ND_j = (\overline{x}_{jt} - \overline{x}_{jc})/[(s_{jt}^2 + s_{jc}^2)/2]^{1/2}$ (see Imbens and Rubin, 2015). *t*-test is for two-sample difference in means. *, **, *** indicates statistical significance at the 10%, 5%, and 1% level; significant differences at 5% level are in boldface.

Table App-4. Simple DiD Regressions, Showing Coefficient on Covariates

Panel A: Imaging Rates

See text for complete table, including covariates.

Panel B: Cardiac Intervention Rates

Patient or Physician FE	No	No	No	No		Patient*zip				Physician*zip			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	
Dependent variable	LHC	PCI	CABG	Any Revasc.	LHC	PCI	CABG	Any Revasc.	LHC	PCI	CABG	Any Revasc.	
Male	0.010***	0.005***	0.004***	0.009***					0.002***	0.001***	0.001***	0.001***	
White	(0.0002) 0.004*** (0.0003)	(0.0001) 0.002*** (0.0002)	(0.0001) 0.001*** (0.0002)	(0.0002) 0.002*** (0.0002)					(7.04e-03) 0.0003*** (0.0001)	(3.70e-03) 0.0001** (4.84e-05)	(3.42e-05) 3.11e-05 (3.28e-05)	(0.04e-03) 0.0001** (5.16e-05)	
Black	-0.003*** (0.001)	-0.002*** (0.0003)	-0.002*** (0.0002)	-0.004*** (0.0004)					-8.15e-05 (0.0001)	-0.0004*** (6.57e-05)	-0.0002*** (3.18e-05)	-0.0005*** (6.49e-05)	
Hispanic	0.003***	-7.37e-06 (0.0003)	3.9/e-05 (0.0002)	-2.7/e-06 (0.0005)					0.0005*** (0.0001)	1.71e-05 (6.21e-05)	5.30e-05 (3.72e-05)	(7.62e-05)	
Fraction of population age	0.079**	0.021	0.020	0.038*	0.073	0.023	0.015	0.034	0.041***	0.018**	0.020**	0.037**	
65-74	(0.034)	(0.015)	(0.013)	(0.022)	(0.043)	(0.020)	(0.016)	(0.022)	(0.015)	(0.007)	(0.008)	(0.014)	
Fraction age 75-84	-0.008 (0.054)	0.029 (0.021)	0.014 (0.015)	0.042 (0.028)	-0.039 (0.076)	0.057* (0.028)	0.001 (0.020)	0.052 (0.033)	-0.025 (0.019)	0.001 (0.007)	-0.006 (0.008)	-0.005 (0.013)	
Fraction age 85+	-0.086 (0.148)	-0.009 (0.075)	-0.038 (0.027)	-0.049 (0.083)	0.044 (0.195)	0.006 (0.105)	-0.023 (0.044)	-0.013 (0.125)	-0.010 (0.042)	0.003 (0.016)	-0.014 (0.014)	-0.012 (0.022)	
Fraction white	-0.003 (0.013)	-0.014 (0.011)	-0.013 (0.009)	-0.026* (0.014)	-0.011 (0.026)	-0.008 (0.020)	-0.010 (0.015)	-0.017 (0.022)	-0.0004 (0.008)	-0.001 (0.003)	0.003 (0.004)	0.002 (0.006)	
Fraction Black	0.009 (0.021)	-0.012 (0.016)	-0.015 (0.010)	-0.026 (0.019)	-0.006 (0.035)	-0.009 (0.023)	-0.015 (0.016)	-0.022 (0.028)	0.003 (0.009)	0.0003 (0.003)	-0.002 (0.003)	-0.002 (0.005)	
Fraction male	0.066 (0.046)	0.003 (0.023)	-0.003 (0.011)	-0.001 (0.027)	0.026 (0.053)	0.002 (0.028)	-0.013 (0.013)	-0.017 (0.026)	0.036** (0.016)	0.009 (0.008)	0.004 (0.007)	0.014 (0.012)	
Fraction Hispanic	-0.011 (0.009)	-0.004	0.005	0.0005	-0.026	-0.014*	0.002	-0.012	-0.015**	-0.006**	-0.0005	-0.007** (0.003)	
Fraction below poverty line	-0.0003	0.0004 (0.004)	0.001 (0.002)	0.002 (0.004)	-0.004 (0.007)	-0.001 (0.004)	0.003 (0.003)	0.002 (0.004)	0.001	-0.001	-0.0004	-0.001	
Unemployment rate	0.006	0.005	-0.002	0.004	0.0005 (0.012)	0.005	-0.005	0.001	-0.0002	0.002	-0.001	0.001 (0.002)	
Fraction of population	0.012	0.008	-0.002	0.007	-0.002	0.014*	-0.005	0.011	-0.005	-0.001	-0.006**	-0.006	
disabled	(0.010)	(0.007)	(0.004)	(0.007)	(0.012)	(0.007)	(0.005)	(0.009)	(0.006)	(0.003)	(0.002)	(0.005)	

Patient or Physician FE	No	No	No	No		Patie	nt*zip			Physician*zip			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	
Dependent variable	LHC	PCI	CABG	Any Revasc.	LHC	PCI	CABG	Any Revasc.	LHC	PCI	CABG	Any Revasc.	
Ln (population)	-0.002 (0.003)	-0.002 (0.001)	-0.001 (0.001)	-0.003 (0.002)	-0.005 (0.004)	-0.001 (0.002)	-0.002** (0.001)	-0.003 (0.003)	-0.002 (0.001)	-0.0005 (0.0005)	-0.0004 (0.0004)	-0.001 (0.001)	
Physician/1000 population	0.0004 (0.001)	0.0002 (0.0002)	-0.0002 (0.0002)	9.84e-05 (0.0004)	0.0002 (0.001)	0.0001 (0.0003)	-0.0002 (0.0001)	-5.60e-05 (0.0003)	-8.93e-05 (0.0001)	-0.0001 (6.88e-05)	-0.0001* (8.11e-05)	-0.0002** (0.0001)	
Ln(household median	0.003	0.002	0.001*	0.003	0.003	0.001	0.002**	0.003	0.001	-3.43e-05	0.0003	0.0003	
income)	(0.002)	(0.001)	(0.001)	(0.002)	(0.003)	(0.002)	(0.001)	(0.002)	(0.001)	(0.0003)	(0.0002)	(0.0003)	
Medicare penetration	-0.003 (0.004)	0.0004 (0.002)	-0.002 (0.001)	-0.001 (0.002)	-0.007 (0.005)	0.001 (0.002)	-0.002 (0.002)	-0.001 (0.003)	-0.004** (0.001)	-0.001* (0.0004)	-0.001 (0.0005)	-0.002** (0.001)	
(Medicare penetration) ²	-0.005 (0.008)	-0.004 (0.004)	0.003* (0.002)	-0.001 (0.004)	-0.008 (0.0102)	-0.010** (0.004)	0.002 (0.004)	-0.008 (0.006)	0.004 (0.002)	0.001 (0.001)	0.002* (0.001)	0.003* (0.001)	
Constant	-0.048 (0.028)	-0.002 (0.018)	0.009 (0.011)	0.007 (0.019)	-0.015 (0.032)	-0.003 (0.021)	0.016 (0.014)	0.015 (0.020)	-0.015 (0.013)	-0.003 (0.004)	-0.004 (0.005)	-0.006 (0.008)	
\mathbb{R}^2	0.026	0.011	0.007	0.015	0.30	0.28	0.24	0.28	0.07	0.04	0.13	0.08	

Patient or physician FE		No			Patient*zip]	Physician*zip	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Dependent variable	Lab	Radiology	Both	Lab	Radiology	Both	Lab	Radiology	Both
Mala	3.395	-21.31***	-17.91***				-1.304***	4.696***	3.392***
Iviale	(2.155)	(1.434)	(3.074)				(0.276)	(0.528)	(0.732)
White	40.65***	29.33***	69.98***				-0.558	0.446	-0.112
white	(2.692)	(1.392)	(3.603)				(0.516)	(0.896)	(1.350)
Dlash	3.338	-9.335***	-5.997				-4.017***	-0.210	-4.228***
Black	(2.887)	(2.256)	(4.803)				(0.497)	(0.979)	(1.310)
Uisponio	30.77**	25.69***	56.46***				1.798*	0.882	2.680
Hispanic	(13.39)	(7.247)	(19.87)				(0.916)	(1.476)	(2.252)
Fraction of population and 65 74	138.5	71.64	210.1	198.70	225.60	409.4	28.38	-46.39	-18.01
Fraction of population age 03-74	(371.8)	(245.1)	(391.0)	(408.10)	(319.90)	(497.9)	(101.4)	(124.9)	(196.6)
Fraction age 75 84	-106.3	289.3	183.0	-204.9	128.1	-95.74	71.27	78.07	149.3
Fraction age 75- 84	(810.9)	(224.4)	(920.7)	(1,072)	(303.0)	(1,266)	(91.26)	(221.5)	(279.9)
Fraction age 85+	-13.99	-1,960***	-1,974	345.90	-1,139**	-821.8	-576.9***	-296.0	-872.9
Traction age 85 -	(1,652)	(444.2)	(1,860)	(1,846)	(530.10)	(2,103)	(207.1)	(548.4)	(720.8)
Fraction white	-67.45	535.0***	467.5	228.8	662.70***	869.5*	66.45**	-97.54	-31.08
Traction white	(256.9)	(142.3)	(325.3)	(358.8)	(231.70)	(428.7)	(29.23)	(109.6)	(120.5)
Fraction Black	-71.39	495.4***	424.0	190.5	632.50**	797.2	29.48	-164.6	-135.1
Traction Diack	(319.8)	(160.0)	(355.7)	(505.1)	(234.90)	(501.2)	(40.18)	(143.4)	(161.5)
Fraction male	76.08	273.0	349.1	378.0	305.00	630.1	58.26	40.01	98.27
Traction mate	(268.5)	(250.8)	ty Both Lab Radiology Both Lab Radiology Both * -17.91*** -1.304*** 4.696^{***} 3.392^{**} * 69.98*** -0.558 0.446 -0.112 (3.603) -0.558 0.446 -0.112 * 5.997 -4.017*** -0.210 -4.228* (4.803) * (0.477) (0.979) (1.310 * 56.46*** (0.916) (1.476) (2.225 (19.87) - - - - - (391.0) (408.10) (319.90) (497.9) (101.4) (124.9) (196.6) (183.0 -204.9 128.1 -95.74 71.27 78.07 149.3 (920.7) (1,072) (303.0) (2,103) (207.1) (548.4) (720.8) * 467.5 228.8 662.70*** 89.5* 66.45** -97.54 -31.00 (325.3) (358.8) (231.70) (428.7) <td>(155.0)</td>	(155.0)					
Fraction Hispanic	79.99	-137.8	-57.85	104.30	-139.40	-52.32	-8.364	68.20**	59.83
Traction Thispanic	(80.51)	(93.42)	(108.8)	(110.80)	(135.50)	(125.9)	(18.28)	(30.12)	(36.52)
Fraction below poverty line	9.529	4.328	13.86	-26.18	-6.147	-29.13	-8.218	-13.57	-21.78
The non-below poverty line	(49.86)	(39.69)	(60.80)	(41.17)	(46.55)	(61.67)	(9.790)	(16.48)	(18.29)
Unemployment rate	-34.92	-51.46	-86.38	-41.24	-72.44	-116.0	-5.566	16.09	10.53
Chempioyment fate	(44.30)	(81.90)	(114.0)	(52.47)	(103.9)	(130.8)	(18.93)	(13.93)	(18.98)
Fraction of nonulation disabled	-573.8***	-24.33	-598.1***	-619.1***	-36.63	-658.2***	-27.50	-201.3***	-228.8***
r raedon or population disabled	(154.1)	(87.88)	(208.7)	(186.40)	(104.40)	(234.9)	(27.17)	(57.02)	(76.46)
Ln (population)	-23.34	6.501	-16.84	-65.35**	8.983	-57.56	0.909	-17.66	-16.75
En (population)	(22.57)	(21.17)	(37.00)	(30.83)	(23.84)	(44.73)	(8.576)	(11.51)	(18.41)
Physicians/1000 population	-5.772*	0.567	-5.205	-10.88*	-1.10	-13.88	-1.475*	-5.126***	-6.601***
Thysicians, 1000 population	(3.374)	(3.323)	(6.441)	(5.792)	(4.04)	(8.748)	(0.821)	(1.668)	(2.373)
<i>Ln</i> (household median income)	65.90***	17.16	83.06***	62.45***	18.70	80.59***	11.51**	26.43***	37.94***
	(22.75)	(16.14)	(26.58)	(19.59)	(14.47)	(21.52)	(5.335)	(5.259)	(8.618)
Medicare penetration	53.14	-16.71	36.43	17.34	-10.22	3.617	-17.21***	-4.555	-21.77*

Panel C. Laboratory and Radiology Spending

Patient or physician FE	or physician FE No				Patient*zip	Physician*zip			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Dependent variable	Lab	Radiology	Both	Lab	Radiology	Both	Lab	Radiology	Both
	(41.62)	(22.57)	(59.01)	(40.72)	(35.43)	(71.30)	(5.467)	(7.778)	(11.84)
(Madicana manaturation) ²	-152.1**	13.29	-138.8	-164.70**	-51.07	-208.5	22.78**	-7.092	15.69
(Medicare penetration)-	(73.32)	(47.07)	(112.1)	(73.24)	(76.88)	(136.9)	(10.67)	(14.77)	(22.61)
Constant	-182.3	-670.2***	-852.5**	-1,152***	-1,115***	-2,205***	-87.12*	28.58	-58.55
Constant	(221.8)	(236.9)	(328.9)	(350.90)	(295.50)	(469.1)	(48.09)	(99.32)	(113.3)
R ²	0.196	0.117	0.192	0.61	0.50	0.60	0.12	0.21	0.19

Patient or physician FE		No			Patient*zip		Physician*zip
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Dependent variable	Part A	Part B	Total	Part A	Part B	Total	Part B
Mala	117.9***	-32.84***	85.10***				35.03***
Iviale	(19.57)	(9.457)	(24.73)				(2.558)
White	505.9***	285.8***	791.7***				1.933
white	(133.9)	(34.96)	(148.5)				(5.354)
Black	619.9***	250.3***	870.2***				49.43***
Diack	(164.6)	(37.53)	(171.3)				(5.787)
Hisponia	297.3**	243.6***	540.9***				15.86*
Inspanie	(117.5)	(70.63)	(135.1)				(8.229)
Fraction of population age 65 74	4,380*	-1,937*	2,443	-3,898	-4,871***	-8,768	-465.3
Praction of population age 05- 74	(2,218)	(1,129)	(2,790)	(4,455)	(1,413)	(5,178)	(432.3)
Fraction age 75-84	-2,492	-3,868	-6,361	12,722***	-3,432	9,290	-919.9*
Theuton age 75- 64	(2,890)	(2,645)	(4,010)	(4,023)	(4,305)	(6,180)	(528.9)
Fraction age 85+	-12,313	11,169*	-1,144	-31,123	23,324**	-7,799	2,559**
Theorem age 65	(7,983)	(6,381)	(9,302)	(18,939)	(8,548)	(23,848)	(976.3)
Fraction white	-4,060	717.8	-3,343	-8,941*	1,616	-7,325	-267.7
Traction winte	(2,512)	(770.7)	(2,514)	(5,190)	(2,038)	(5,954)	(244.4)
Fraction Black	-3,570	885.1	-2,685	-10,293	2,527	-7,766	-384.4
Traction Black	(2,775)	(1, 178)	(3,014)	(7,246)	(2,747)	(8,392)	(307.8)
Fraction male	100.8	-2,701*	-2,600	-1,425	-3,587	-5,012	-447.3
Traction male	(2,745)	(1,447)	(3,888)	(4,492)	(2,342)	(6,030)	(498.3)
Fraction Hispanic	25.22	606.8	632.1	620.00	1,423*	2,043	263.0**
Traction Inspanie	(744.4)	(425.6)	(902.6)	(1,692)	(802.1)	(2,121)	(108.7)
Fraction below poverty line	1,180**	402.8*	1,582**	601.90	216.1	818.0	-11.49
Praction below poverty line	(549.1)	(211.7)	(623.4)	(560.50)	(241.50)	(727.90)	(54.29)
Unemployment rate	-90.28	-160.5	-250.8	31.03	20.35	51.38	-38.58
Chemployment rate	(626.2)	(394.4)	(753.6)	(1,057)	(381.2)	(1,234)	(74.36)
Fraction of population disabled	400.4	-1,965***	-1,565	1,549	-2,345***	-796.3	-256.8**
r raction of population disabled	(879.2)	(547.9)	(1,151)	(2,609)	(719.00)	(3,032)	(111.6)
In (nonulation)	-349.8*	59.38	-290.5	-1,20**	-145.10	-1,349**	-37.74
	(197.6)	(88.85)	(200.6)	(447.60)	(150.10)	(554.5)	(41.46)
Physicians/1000 population	104.1**	58.66***	162.8***	34.96	16.98	51.94	-1.225
Thysicians/1000 population	(44.78)	(18.68)	(51.67)	(47.36)	(24.72)	(67.15)	(5.799)
<i>Ln</i> (household median income)	-16.51	-24.28	-40.79	317.60	75.06	392.6	32.97*
En nousenora median medine)	(228.0)	(121.5)	(250.0)	(263.50)	(79.24)	(256.7)	(16.66)
Medicare penetration	-288.9	332.8*	43.85	-1,152***	-158.00	-1,310**	-65.02

Panel D: Overall Medicare Spending

Patient or physician FE		No			Patient*zip		Physician*zip
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Dependent variable	Part A	Part B	Total	Part A	Part B	Total	Part B
	(195.3)	(180.4)	(235.9)	(368.2)	(231.00)	(516.40)	(48.28)
$(\mathbf{M}_{2}, \mathbf{I}_{2}^{*}, \dots, \mathbf{I}_{n}^{*}, \dots, \mathbf{I}_{n}^{*})^{2}$	390.2	-1,326***	-935.6*	966.7	-1,149***	-182.20	-54.12
(Medicare penetration)-	(469.9)	(377.5)	(532.7)	(790.2)	(406.6)	(745.30)	(73.66)
Constant	2,291	714.9	3,006	13,304**	-3,401*	9,903	569.9**
Constant	(2,419)	(913.3)	(2,526)	(6,145)	(1,901)	(7,106)	(264.8)
R ²	0.088	0.175	0.134	0.41	0.63	0.48	0.11

Notes: All panels: Standard errors, clustered on state, in parentheses. *,**, *** indicates statistical significance at the 10%, 5%, and 1% level. Significant results, at 5% level or better, in **boldface**.

Panel B: Table is same as simple DiD regressions in text Table 3, Panel A, but includes coefficients on covariates, which are suppressed in the text. **Panel C:** Table is same as simple DiD regressions in text Table 4, Panel A, but includes coefficients on covariates, which are suppressed in the text. **Panel D:** Table is same as simple DiD regressions in text Table 5, Panel A, but includes coefficients on covariates, which are suppressed in the text. **Panel D:** Table is same as simple DiD regressions in text Table 5, Panel A, but includes coefficients on covariates, which are suppressed in the text.

Table APP-5. Simple DiD Regressions with Other Tort Reforms

Panel A: Imaging Tests

Patient or physician FE		No		Pa	atient*zip		Ph	ysician*zip	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Dependent variable	Any Stress Test	MRI	СТ	Any Stress Test	MRI	СТ	Any Stress Test	MRI	СТ
Damage can dummy	4.510*	2.000	5.560***	6.04***	2.84**	6.98**	1.010**	0.176	0.479
Damage cap duminy	(2.260)	(1.510)	(1.470)	(2.050)	(1.270)	(3.000)	(0.444)	(0.328)	(0.710)
Punitivo domogo con	-4.320**	-0.167	-1.540	-3.47*	0.887	0.697	-0.923**	0.064	-0.071
Punitive damage cap	(1.600)	(0.827)	(1.780)	(1.880)	(0.945)	(2.820)	(0.443)	(0.233)	(0.679)
Punitive damage evidence reform	2.210	-1.440	3.170	2.39	-1.58	2.37	1.770*	1.140*	1.340
	(3.240)	(2.060)	(2.500)	(3.600)	(2.020)	(4.800)	(0.891)	(0.597)	(1.170)
Colletonal courses reform	-0.461	1.250	-0.199	-0.35	2.8	3.01	-0.574**	0.796	0.755
Conateral source reform	(1.020)	(1.860)	(1.190)	(1.750)	(2.170)	(2.250)	(0.238)	(0.521)	(0.610)
Salit verene veferm	-4.270	0.489	6.020**	-2.55	-1.53	1.24	-1.100*	-0.721	-1.150
Split recovery reform	(2.750)	(1.800)	(2.420)	(3.100)	(1.610)	(3.280)	(0.620)	(0.550)	(1.220)
Dania dia manusante mafarum	-0.157	-0.869	-2.020	-0.282	-0.264	-3.48*	0.328	0.498***	1.520***
Periodic payment reform	(1.670)	(1.170)	(1.480)	(1.310)	(1.810)	(1.860)	(0.421)	(0.179)	(0.549)
	-0.047	-2.220*	-0.739	-0.698	-1.22	0.796	-0.232	-0.247	0.255
Certificate of merit requirement	(1.780)	(1.140)	(1.010)	(1.750)	(1.080)	(2.110)	(0.408)	(0.263)	(0.612)
Taint and sevenal liskility	2.490	1.600***	1.020	1.51	0.598	2.15	0.761*	0.265	0.316
Joint and several hadinty	(1.550)	(0.574)	(0.855)	(1.020)	(0.982)	(1.500)	(0.386)	(0.193)	(0.578)

Panel B: Cardiac Interventions

Patient or Physician FE	No	No	No	No		Patie	nt*zip			Physic	cian*zip	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Dependent variable	LHC	PCI	CABG	Any Revasc.	LHC	PCI	CABG	Any Revasc.	LHC	PCI	CABG	Any Revasc.
Damage can dummy	-0.495	-0.122	-0.185	-0.279	-0.151	0.0919	-0.217	-0.0948	-0.371**	-0.175***	-0.042	-0.207***
Damage cap duminy	(0.433)	(0.168)	(0.134)	(0.253)	(0.429)	(0.174)	(0.178)	(0.260)	(0.138)	(0.054)	(0.041)	(0.071)
Dunitivo domogo con	-1.190**	-0.149	-0.332	-0.484	-0.204	-0.0447	0.0498	0.00452	-0.173	-0.003	-0.002	-0.012
r unitive damage cap	(0.528)	(0.225)	(0.197)	(0.333)	(0.878)	(0.322)	(0.195)	(0.416)	(0.290)	(0.091)	(0.041)	(0.104)
D	4.700***	2.640***	-0.032	2.510***	2.46*	2.8***	-0.501*	2.21***	1.610***	0.623***	-0.093	0.526***
Funitive damage evidence reform	(0.803)	(0.369)	(0.210)	(0.453)	(1.280)	(0.441)	(0.270)	(0.482)	(0.423)	(0.130)	(0.093)	(0.163)
	1.560***	0.167	0.303**	0.491**	1.42	0.0375	0.365***	0.408*	0.217	0.109	-0.024	0.077
Conateral source reform	(0.543)	(0.176)	(0.118)	(0.218)	(0.848)	(0.164)	(0.135)	(0.205)	(0.222)	(0.089)	(0.048)	(0.110)
S	-1.850*	0.121	-0.643**	-0.536	-0.82	0.544	-0.407	0.0867	-0.183	-0.023	0.206**	0.184
Split recovery reform	(1.010)	(0.291)	(0.279)	(0.460)	(1.210)	(0.451)	(0.256)	(0.599)	(0.452)	(0.157)	(0.094)	(0.221)
	0.136	0.094	0.139	0.210	0.123	0.0291	0.236	0.227	0.049	-0.016	-0.034	-0.053
Periodic payment reform	(0.387)	(0.179)	(0.115)	(0.251)	(0.573)	(0.233)	(0.182)	(0.339)	(0.221)	(0.068)	(0.100)	(0.149)
	-0.102	-0.015	0.009	0.011	0.186	-0.0353	-0.0329	-0.0534	-0.311**	-0.084	-0.054	-0.140**
Certificate of merit requirement	(0.315)	(0.181)	(0.093)	(0.220)	(0.485)	(0.205)	(0.142)	(0.235)	(0.134)	(0.053)	(0.038)	(0.060)
T • <i>J</i> • 1 •	-0.486	-0.454	0.035	-0.395	-1.21	-0.788***	-0.264**	-1.03***	0.038	-0.060	-0.013	-0.069
Joint and several liability	(0.395)	(0.315)	(0.140)	(0.405)	(0.753)	(0.302)	(0.126)	(0.333)	(0.161)	(0.064)	(0.053)	(0.102)

Patient or physician FE		No			Patient*zip]	Physician*zip	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Dependent variable	Lab	Radiology	Both	Lab	Radiology	Both	Lab	Radiology	Both
Damaga age dummy	8.798*	12.17***	20.96***	7.279	11.64***	18.869**	1.183	3.704***	4.887***
Damage cap duminy	(4.755)	(2.886)	(6.954)	(5.412)	(3.839)	(8.472)	(1.072)	(0.739)	(1.622)
Punitive damage cap	-3.568	-4.123	-7.691	-1.399	-1.907	-3.273	-1.215	-1.114	-2.329
	(4.216)	(4.203)	(6.854)	(5.086)	(5.779)	(9.801)	(1.000)	(1.125)	(1.706)
Dunitivo domogo ovidence voferm	10.17	12.89**	23.06*	9.749	6.008	15.605	8.128***	7.636***	15.76***
Punitive damage evidence reform	(8.744)	(5.760)	(11.40)	(10.55)	(7.746)	(15.266)	(2.552)	(1.660)	(3.651)
Colletonal common meferina	-18.89**	-7.631**	-26.52***	-13.80	-6.345	-20.038**	-2.613	-1.509	-4.122**
Conateral source reform	(7.293)	(3.395)	(5.656)	(9.266)	(4.514)	(7.642)	(1.777)	(1.027)	(1.935)
Salit magazione noform	9.476	1.944	11.42	3.296	-2.591	0.525	-1.036	-1.925	-2.961
Split recovery reform	(9.306)	(6.844)	(12.10)	(10.51)	(8.285)	(15.400)	(2.132)	(2.017)	(3.360)
Davidia normant reform	-3.446	-0.769	-4.215	1.815	2.696	4.703	1.346	0.846	2.192
Periodic payment reform	(2.801)	(3.904)	(4.618)	(4.562)	(4.553)	(7.284)	(1.421)	(2.003)	(3.194)
Contificate of monitor continues and	-6.552	1.213	-5.339	-5.033	1.862	-3.230	-2.127*	-0.171	-2.298
Certificate of merit requirement	(3.978)	(2.844)	(5.731)	(4.451)	(3.461)	(6.763)	(1.175)	(0.920)	(1.812)
Ising and sevenal lisbility	1.405	1.218	2.623	-1.699	-0.124	-1.804	-0.604	0.0981	-0.506
Joint and several hability	(3.273)	(2.202)	(2.902)	(4.297)	(3.007)	(5.263)	(1.078)	(0.585)	(1.357)

Panel C: Laboratory and Radiology Spending

Panel D. Overall Medicare Spending

Patient or physician FE		No			Patient*zip		Physician*zip
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Dependent variable	Part A	Part B	Total	Part A	Part B	Total	Part B
Damaga aan dummu	-45.87	71.92***	26.05	-81.41	67.71*	-13.70	13.76***
Damage cap duminy	(49.84)	(20.34)	(40.07)	(55.76)	(36.85)	(76.70)	(4.649)
Bunitiva damaga san	90.59***	-22.70	67.90*	154.5	9.047	163.5	-5.172*
runnive damage cap	(32.56)	(17.11)	(34.35)	Patient*zipPhysicia(4)(5)(6)(7)alPart APart BTotalPar 15 -81.41 67.71^* -13.70 13.76 17 (55.76) (36.85) (76.70) (4.6) 0^* 154.5 9.047 163.5 $-5.1'$ 35 (40.01) (32.33) (66.23) (2.7) $.7$ -107.3 -57.10 -164.4 32.73 08 (86.31) (58.11) (125.6) (6.8) $7**$ -28.53 -34.82 -63.35 -3.9 72 (42.28) (49.72) (62.00) (5.1) $***$ -25.50 62.50 37.00 9.9 22 (80.72) (61.09) (128.1) (6.0) 63 87.59 -25.43 62.16 -2.2 28 (55.64) (27.94) (74.81) (3.7) $52*$ 67.61 -3.049 64.56 -2.6 44 (44.14) (30.63) (63.70) (2.9) $***$ 25.54 -3.027 22.51 -5.0 40 (29.99) (21.56) (44.07) (2.9)	(2.731)		
Dunitivo domogo ovidonos roform	-101.4	-0.296	-101.7	-107.3	-57.10	-164.4	32.73***
r unitive damage evidence reform	(92.91)	(25.95)	(79.08)	(86.31)	(58.11)	(125.6)	(6.812)
Colletoral source reform	-44.74	-61.00	-105.7**	-28.53	-34.82	-63.35	-3.918
Conateral source reform	(31.20)	(40.30)	(43.72)	(42.28)	(49.72)	(62.00)	(5.198)
Split nogovory noform	126.6**	125.0**	251.6***	-25.50	62.50	37.00	9.987
Split recovery reform	(60.81)	(46.29)	(85.12)	(3)(4)(5)(6)TotalPart APart BTotal 26.05 -81.41 67.71^* -13.701 (40.07) (55.76)(36.85)(76.70) $(7.90^*$ 154.59.047163.5 (34.35) (40.01)(32.33)(66.23)-101.7-107.3-57.10-164.43 (79.08) (86.31)(58.11)(125.6) 105.7^{**} -28.53-34.82-63.35 (43.72) (42.28)(49.72)(62.00) 251.6^{***} -25.5062.5037.00 (85.12) (80.72)(61.09)(128.1)-45.6387.59-25.4362.16 (44.28) (55.64)(27.94)(74.81)-75.62*67.61-3.04964.56 (40.44) (44.14)(30.63)(63.70) 06.58^{***} 25.54-3.02722.51 (32.40) (29.99)(21.56)(44.07)	(6.010)		
Daviadia navmant vafarm	25.23	-70.87***	-45.63	87.59	-25.43	62.16	-2.214
renouic payment reform	(41.64)	(10.90)	(44.28)	(55.64)	(27.94)	(74.81)	(3.705)
Contificate of marit requirement	-52.07	-23.55	-75.62*	67.61	-3.049	64.56	-2.614
Certificate of merit requirement	(47.95)	(16.88)	(40.44)	(44.14)	(30.63)	(63.70)	(2.948)
Loint and soveral liability	77.57**	19.00	96.58***	25.54	-3.027	22.51	-5.072*
Joint and several habinty	(36.17)	(11.27)	(32.40)	(29.99)	(21.56)	(44.07)	(2.969)

Notes: All panels: Standard errors, clustered on state, in parentheses. *,**, *** indicates statistical significance at the 10%, 5%, and 1% level. Significant results, at 5% level or better, in **boldface**.

Panel A: Regression specification is same as simple DiD regressions in text Table 2, Panel A, except that we include variables for indicated tort reforms. **Panel B:** Regression specification is same as simple DiD regressions in text Table 3, Panel A, except that we include variables for indicated tort reforms. **Panel C:** Regression specification is same as simple DiD regressions in text Table 4, Panel A, except that we include variables for indicated tort reforms. **Panel D:** Regression specification is same as simple DiD regressions in text Table 4, Panel A, except that we include variables for indicated tort reforms. **Panel D:** Regression specification is same as simple DiD regressions in text Table 5, Panel A, except that we include variables for indicated tort reforms.

Table App-6. Simple DiD	: Leave-one-state-out Regressions,	Imaging Tests
---------------------------------	------------------------------------	----------------------

Panel A. Imaging Tests

Row	Patient or physician FE	No			Pa	atient*zip		Physician*zip		
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Dependent variable	Any Stress Test	MRI	СТ	Any Stress Test	MRI	СТ	Any Stress Test	MRI	СТ
	Main Specification (from toxt)	4.040***	1.480	3.920**	5.300***	3.050**	6.380**	0.993***	0.421	1.210*
	Main Specification (from text)	(1.440)	(1.210)	(1.450)	(1.320)	(1.350)	(2.720)	(0.336)	(0.322)	(0.633)
(1)	Equally weighted states	5.470***	1.590	4.950**	5.560***	2.310	6.970*	1.150**	0.330	1.400*
(1)	Equany weighted states	(1.630)	(1.410)	(1.800)	(1.670)	(1.580)	(3.480)	(0.431)	(0.355)	(0.728)
(\mathbf{n})	Evoludo FI	3.880**	0.630	3.070**	4.98***	2.59	5.14*	0.989**	0.454	1.630**
(2)		(1.480)	(1.190)	(1.470)	(1.320)	(1.380)	(2.850)	(0.358)	(0.337)	(0.600)
(2)	Evoludo CA	4.070**	1.580	4.580***	5.62***	3.15**	6.98**	1.030***	0.369	1.310*
(3)	(5) Exclude GA	(1.510)	(1.280)	(1.390)	(1.340)	(1.410)	(2.810)	(0.348)	(0.342)	(0.654)
(1)	(4) Exclude IL	4.910***	2.430**	3.780**	5.64***	3.71**	5.96**	1.150***	0.617*	1.090
(4)		(1.350)	(1.040)	(1.540)	(1.400)	(1.340)	(2.900)	(0.339)	(0.315)	(0.716)
(5)		4.280***	1.530	4.150***	5.65***	3.09**	6.81**	1.070***	0.417	1.320**
(5)	Exclude WIS	(1.460)	(1.230)	(1.430)	(1.300)	(1.350)	(2.710)	(0.333)	(0.325)	(0.620)
(6)	Evoludo NV	4.060***	1.600	3.900**	5.34***	3.17**	6.55**	0.972***	0.455	1.190*
(0)	Exclude IN V	(1.450)	(1.220)	(1.470)	(1.330)	(1.340)	(2.760)	(0.339)	(0.323)	(0.640)
(7)	Evoludo OU	4.250**	0.986	4.050**	5.33***	2.47*	5.75**	0.911**	0.271	0.841
()	Exclude OH	(1.680)	(1.250)	(1.530)	(1.540)	(1.250)	(2.750)	(0.354)	(0.324)	(0.564)
(0)	Evoludo OV	4.060**	1.550	4.030**	5.17***	3.03	6.53**	1.040***	0.382	1.190*
(0)	Exclude OK	(1.480)	(1.240)	(1.470)	(1.340)	(1.370)	(2.760)	(0.343)	(0.324)	(0.652)
(0)	Evoludo SC	0.360**	1.470	3.740**	5.17***	3.20**	6.15**	0.887**	0.401	1.130*
(9)	Exclude SC	(1.440)	(1.260)	(1.490)	(1.390)	(1.380)	(2.790)	(0.357)	(0.333)	(0.659)
(10)	Evoludo TV	3.460**	1.520	3.840**	4.89***	2.68*	7.24**	0.809**	0.345	1.060
(10)	Exclude 1A	(1.450)	(1.370)	(1.540)	(1.350)	(1.390)	(2.780)	(0.331)	(0.335)	(0.698)

Panel B: Cardiac Intervention

Patient or Physician FE	No	No	No	No		Patie	nt*zip			Physic	ian*zip	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Dependent variable	LHC	PCI	CABG	Any Revasc.	LHC	PCI	CABG	Any Revasc.	LHC	PCI	CABG	Any Revasc.
Main Specification (from text)	-0.803**	-0.297	-0.144	-0.409*	-0.288	-0.171	-0.114	-0.257	-0.474***	-0.220***	-0.079*	-0.292***
	(0.391)	(0.194)	(0.109)	(0.232)	(0.445)	(0.221)	(0.139)	(0.254)	(0.160)	(0.060)	(0.043)	(0.078)
Equally weighted states	-0.662 (0.482)	-0.140 (0.273)	0.013 (0.129)	-0.112 (0.295)	-0.815 (0.672)	-0.306 (0.328)	0.021 (0.164)	-0.291 (0.346)	-0.630*** (0.197)	-0.256*** (0.077)	-0.062 (0.051)	-0.310*** (0.085)
Exclude FL	-0.884*	-0.276	-0.098	-0.351	-0.352	-0.226	-0.0621	-0.286	-0.573***	-0.223***	-0.108*	-0.325***
	(0.434)	(0.219)	(0.108)	(0.245)	(0.479)	(0.234)	(0.140)	(0.263)	(0.190)	(0.071)	(0.053)	(0.099)
Exclude GA	-0.936**	-0.294	-0.157	-0.413*	-0.306	-0.176	-0.116	-0.251	-0.500***	-0.215***	-0.071	-0.280***
	(0.388)	(0.202)	(0.110)	(0.238)	(0.478)	(0.234)	(0.138)	(0.263)	(0.162)	(0.062)	(0.043)	(0.076)
Exclude IL	-0.652	-0.280	-0.101	-0.357	-0.266	-0.164	-0.0866	-0.224	-0.450**	-0.227***	-0.079	-0.298***
	(0.413)	(0.205)	(0.122)	(0.252)	(0.490)	(0.237)	(0.146)	(0.267)	(0.179)	(0.065)	(0.048)	(0.085)
Exclude MS	-0.722*	-0.298	-0.144	-0.407*	-0.174	-0.165	-0.12	-0.252	-0.445***	-0.214***	-0.085 *	-0.290***
	(0.383)	(0.195)	(0.113)	(0.237)	(0.420)	(0.221)	(0.141)	(0.259)	(0.151)	(0.058)	(0.042)	(0.078)
Exclude NV	-0.777*	-0.264	-0.152	-0.383	-0.263	-0.15	-0.114	-0.235	-0.480***	-0.215***	-0.081*	-0.290***
	(0.395)	(0.195)	(0.110)	(0.233)	(0.449)	(0.219)	(0.140)	(0.252)	(0.162)	(0.061)	(0.044)	(0.080)
Exclude OH	-0.756*	-0.269	-0.091	-0.328	-0.394	-0.144	-0.108	-0.21	-0.580***	-0.254***	-0.071	-0.316***
	(0.437)	(0.201)	(0.127)	(0.249)	(0.506)	(0.247)	(0.148)	(0.285)	(0.153)	(0.059)	(0.045)	(0.078)
Exclude OK	-0.902**	-0.304	-0.167	-0.435*	-0.406	-0.176	-0.14	-0.284	-0.460**	-0.215***	-0.080*	-0.289***
	(0.387)	(0.193)	(0.110)	(0.235)	(0.455)	(0.219)	(0.140)	(0.256)	(0.168)	(0.061)	(0.045)	(0.082)
Exclude SC	-0.815* (0.404)	-0.329* (0.191)	-0.173 (0.102)	-0.471** (0.221)	-0.141 (0.415)	-0.119 (0.213)	-0.101 (0.139)	-0.197 (0.242)	-0.473*** (0.165)	-0.221*** (0.061)	-0.088** (0.042)	-0.303*** (0.079)
Exclude TX	-0.631 (0.388)	-0.268 (0.191)	-0.150 (0.125)	-0.390 (0.242)	-0.236 (0.516)	-0.14 (0.217)	-0.105 (0.166)	-0.231 (0.267)	-0.367** (0.147)	-0.188*** (0.060)	-0.046 (0.038)	-0.229*** (0.073)

Patient or physician FE		No			Patient*zip			Physician*zip	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Dependent variable	Lab	Radiology	Both	Lab	Radiology	Both	Lab	Radiology	Both
Main Snacification (from tont)	3.585	10.63***	14.21**	5.13	12.36***	17.53**	0.430	3.468***	3.898**
Main Specification (from text)	(4.039)	(2.927)	(5.923)	(4.32)	(3.34)	(6.654)	(1.110)	(0.945)	(1.843)
Equally weighted states	3.419	10.60***	14.02**	3.14	9.58**	12.99	1.030	3.488***	4.517**
Equany weighted states	(3.732)	(3.557)	(5.735)	(4.51)	(4.57)	(8.93)	(1.114)	(1.152)	(1.888)
Fueludo El	-0.419	9.181***	8.761*	1.912	10.44***	12.35*	-0.272	3.050***	2.778
	(2.860)	(2.713)	(4.543)	(3.564)	(3.198)	(6.16)	(1.187)	(1.042)	(2.066)
Evoludo CA	4.005	10.71***	14.71**	5.804	13.01***	18.81**	0.432	3.500***	3.932*
Exclude GA	(4.417)	(3.028)	(6.357)	(4.716)	(3.384)	(7.67)	(1.203)	(1.001)	(1.996)
Fuelude II	4.735	10.55***	15.29**	6.135	11.6***	17.74**	0.961	3.657***	4.619**
Exclude IL	(4.374)	(3.303)	(6.427)	(4.699)	(3.958)	(8.18)	(1.127)	(1.045)	(1.901)
Evoludo MS	3.683	11.27***	14.95**	5.401	13.21***	18.61**	0.426	3.602***	4.028**
	(4.084)	(2.819)	(5.922)	(4.337)	(3.131)	(7.10)	(1.129)	(0.923)	(1.850)
Evoludo NV	3.522	10.69***	14.22**	5.037	12.37***	17.40**	0.357	3.449***	3.806*
	(4.115)	(2.950)	(6.039)	(4.343)	(3.394)	(7.31)	(1.124)	(0.953)	(1.870)
Evoludo OU	5.566	10.68***	16.24**	6.358	11.55***	17.91**	0.810	3.431***	4.241**
	(4.265)	(3.062)	(6.304)	(4.702)	(3.704)	(8.10)	(1.234)	(0.994)	(2.018)
Evoludo OV	4.758	10.83***	15.59**	6.397	12.56***	18.95**	0.673	3.477***	4.149**
Exclude OK	(3.925)	(2.933)	(5.756)	(4.030)	(3.413)	(6.89)	(1.103)	(0.954)	(1.837)
Evoludo SC	3.707	10.33***	14.03**	6.085	12.87***	18.96**	0.654	3.490***	4.144**
Exclude SC	(4.296)	(2.993)	(6.254)	(4.409)	(3.371)	(7.28)	(1.157)	(0.986)	(1.932)
Evoludo TV	2.964	9.788***	12.75**	3.700	11.17***	14.86*	-0.329	2.746***	2.417
Exclude I A	(4.339)	(2.866)	(6.128)	(4.523)	(3.703)	(7.60)	(1.006)	(0.801)	(1.538)

Panel C. Laboratory and Radiology Spending

Patient or physician FE		No			Patient*zip		Physician*zip
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Dependent variable	Part A	Part B	Total	Part A	Part B	Total	Part B
Main Specification (from tort)	-17.52	24.99	7.471	11.97	55.11**	67.08	8.735**
Wall Specification (If on text)	(36.25)	(20.45)	(35.92)	(59.06)	(22.45)	(68.79)	(3.84)
Equally weighted states	-23.69	21.74	-1.949	-1.13	37.75	36.61	8.867*
Equally weighted states	(39.04)	(22.44)	(43.39)	(61.43)	(28.30)	(74.85)	(4.889)
Evoludo El	-1.998	1.860	-0.138	30.50	33.61	64.12	6.717
Exclude FL	(36.01)	(16.25)	(37.69)	(60.51)	(21.81)	(74.65)	(4.436)
Evoludo C A	-1.312	31.00	29.69	28.71	61.12**	89.83	9.475**
Exclude GA	(35.36)	(21.12)	(30.90)	(58.69)	(23.69)	(66.87)	(3.985)
Fyaluda II	-16.89	21.44	4.543	11.36	49.54*	60.89	7.138*
Exclude IL	(41.33)	(24.38)	(40.99)	(66.31)	(25.28)	(75.25)	(4.116)
Evoludo MS	-18.32	25.43	7.107	13.09	57.06**	70.15	(7) Part B 8.735** (3.84) 8.867* (4.889) 6.717 (4.436) 9.475** (3.985) 7.138* (4.116) 9.029** (3.862) 8.247** (3.868) 10.32** (3.941) 9.197** (3.846) 9.044** (3.954) 6.684* (3.588)
Exclude MS	(37.22)	(20.73)	(36.81)	(59.58)	(22.58)	(69.38)	(3.862)
Evoludo NV	-21.98	24.46	2.478	12.83	54.34**	67.17	8.247**
Exclude INV	(35.94)	(21.01)	(35.89)	(59.62)	(22.87)	(69.32)	(3.868)
E-value de OU	-45.44	34.95	-10.49	-17.40	54.98**	37.58	10.32**
Exclude OH	(31.81)	(20.76)	(35.09)	(53.96)	(25.46)	(64.89)	(3.941)
Evaluda OV	-15.76	30.36	14.61	17.58	61.74***	79.33	9.197**
Exclude OK	(36.87)	(20.24)	(36.51)	(59.69)	(20.42)	(67.95)	(3.846)
Evaluda SC	-13.87	20.29	6.416	15.13	58.78**	73.91	9.044**
Exclude SC	(38.17)	(21.51)	(38.16)	(61.73)	(23.16)	(71.57)	(3.954)
Frielada TV	-16.07	32.18	16.12	-4.608	54.37**	49.76	6.684*
Exclude 1A	(39.78)	(21.70)	(40.28)	(59.45)	(25.86)	(72.44)	(3.588)

Notes: All panels: Standard errors, clustered on state, in parentheses. *,**, *** indicates statistical significance at the 10%, 5%, and 1% level. Significant results, at 5% level or better, in **boldface**.

Panel A: Regression specification is same as simple DiD regressions in text Table 2, Panel A, except that (i) in row 1, we give equal weight to each reform state; (ii) in each of rows 2-10, we leave one treated state out of the regression. **Panel B:** Regression specification is same as simple DiD regressions in text Table 3, Panel A, except that, similar to Panel A, we either (i) give equal weight to each reform state; or (ii) leave one treated state out of the regression specification is same as simple DiD regressions in text Table 4, Panel A, except that, similar to Panel A, we either (i) leave one treated state out of the regression. **Panel C:** Regression specification is same as simple DiD regressions in text Table 4, Panel A, except that, similar to Panel A, we either (i) give equal weight to each reform state; or (ii) leave one treated state out of the regression. **Panel D:** Regression specification is same as simple DiD regressions in text Table 5, Panel A, except that, similar to Panel A, we either (i) give equal weight to each reform state; or (ii) leave one treated state out of the regression. **Panel D:** Regression specification is same as simple DiD regressions in text Table 5, Panel A, except that, similar to Panel A, we either (i) give equal weight to each reform state; or (ii) leave one treated state out of the regression.

Table App-7. Donor State Weights for Synthetic Controls

Part A-Any Stress Test

	New–cap states								
No-cap control states	FL	GA	IL	MS	NV	OH	OK	SC	TX
Alabama	0	0	0.492	0	0	0.162	0.002	0	0
Arizona	0	0.628	0.311	0	0	0.006	0.003	0.252	0
Arkansas	0	0	0	0	0	0.282	0.001	0	0
Connecticut	0	0	0	0	0	0.006	0.001	0	0.526
Delaware	0.957	0	0	0.008	1	0.367	0.098	0	0.372
Dist. of Columbia	0	0.065	0	0	0	0.002	0.02	0	0.079
Iowa	0	0	0	0	0	0.004	0.005	0	0
Kentucky	0	0	0	0	0	0.006	0.002	0	0
Maine	0	0	0	0	0	0.004	0.003	0	0
Minnesota	0	0	0	0	0	0.002	0.001	0	0
New Hampshire	0	0	0	0	0	0.002	0.001	0	0
New Jersey	0	0	0	0	0	0.007	0.002	0	0
New York	0	0.159	0	0	0	0.003	0.004	0	0
North Carolina	0	0	0	0	0	0.006	0.002	0.548	0
Pennsylvania	0	0.148	0.168	0	0	0.005	0.707	0.196	0
Rhode Island	0	0	0	0	0	0.001	0.005	0	0.023
Tennessee	0.043	0	0.029	0	0	0.024	0.002	0.004	0
Vermont	0	0	0	0.8	0	0.003	0.139	0	0
Washington	0	0	0	0	0	0.003	0.001	0	0
Wyoming	0	0	0	0.192	0	0.105	0.001	0	0

Panel B-MRI

	New–cap states								
No-cap control states	FL	GA	IL	MS	NV	OH	OK	SC	TX
Alabama	0.743	0	0.097	0	0	0	0.015	0.14	0
Arizona	0	0	0.044	0	0	0	0.011	0.21	0
Arkansas	0.257	0	0.02	0.207	1	0	0.014	0.009	0.642
Connecticut	0	0	0.014	0	0	0	0.015	0.015	0
Delaware	0	0	0.101	0	0	0.181	0.099	0.013	0.17
Dist. of Columbia	0	0	0.008	0	0	0	0.019	0.197	0
Iowa	0	0.096	0.013	0	0	0	0.014	0.014	0
Kentucky	0	0	0.11	0	0	0.676	0.018	0.012	0
Maine	0	0.216	0.037	0	0	0	0.012	0.014	0
Minnesota	0	0	0.022	0	0	0	0.016	0.028	0
New Hampshire	0	0	0.025	0.582	0	0.012	0.009	0.01	0
New Jersey	0	0	0.019	0	0	0	0.017	0.021	0
New York	0	0	0.324	0	0	0	0.062	0.011	0
North Carolina	0	0	0.029	0	0	0	0.025	0.015	0
Pennsylvania	0	0.259	0.025	0	0	0	0.034	0.014	0
Rhode Island	0	0	0.048	0	0	0.131	0.013	0.04	0
Tennessee	0	0.344	0.018	0	0	0	0.193	0.125	0.188
Vermont	0	0	0.014	0.212	0	0	0.006	0.081	0
Washington	0	0.086	0.018	0	0	0	0.014	0.017	0
Wyoming	0	0	0.014	0	0	0	0.392	0.015	0

Panel C- CT-Scans

	New-cap states								
No-cap control states	FL	GA	IL	MS	NV	OH	OK	SC	TX
Alabama	0	0	0	0	0.056	0.035	0	0	0.03
Arizona	0	0	0	0	0.035	0.011	0.423	0	0.016
Arkansas	0	0	0	0	0.045	0.013	0	0	0.019
Connecticut	0	0.176	0	0.663	0.051	0.011	0	0	0.332
Delaware	0	0	0	0	0.048	0.034	0	0	0.023
Dist. of Columbia	0	0	0	0	0.044	0.023	0	0	0.032
Iowa	0	0	0.317	0	0.035	0.013	0.214	0	0.02
Kentucky	1	0	0	0.337	0.065	0.172	0	0.393	0.025
Maine	0	0	0.08	0	0.03	0.025	0.221	0	0.013
Minnesota	0	0.164	0	0	0.035	0.009	0	0	0.018
New Hampshire	0	0	0	0	0.029	0.005	0	0	0.014
New Jersey	0	0	0	0	0.052	0.021	0	0.171	0.029
New York	0	0	0	0	0.039	0.015	0	0	0.022
North Carolina	0	0.33	0	0	0.051	0.021	0	0	0.04
Pennsylvania	0	0.049	0.379	0	0.073	0.236	0	0	0.25
Rhode Island	0	0.086	0	0	0.149	0.02	0	0	0.033
Tennessee	0	0	0.225	0	0.065	0.307	0.142	0	0.037
Vermont	0	0	0	0	0.035	0.016	0	0.064	0.017
Washington	0	0	0	0	0.032	0.008	0	0.311	0.015
Wyoming	0	0.196	0	0	0.029	0.005	0	0.061	0.013

Panel D. Radiology Spending

	New-cap states								
No-cap control states	FL	GA	IL	MS	NV	OH	OK	SC	TX
Alabama	0	0.118	0.315	0	0	0	0	0.004	0.01
Arizona	0	0.021	0	0	0	0	0	0.004	0.472
Arkansas	0	0.078	0.166	0.711	0	0	0	0.445	0.009
Connecticut	0	0.023	0	0	0	0	0	0.076	0.081
Delaware	1	0.027	0	0	1	0	0	0.002	0.1
Dist. of Columbia	0	0.023	0	0	0	0	0	0.007	0.011
Iowa	0	0.144	0.271	0	0	0.294	0	0.005	0.004
Kentucky	0	0.241	0	0	0	0	0	0	0.007
Maine	0	0.014	0	0	0	0	0	0.006	0.008
Minnesota	0	0.05	0	0	0	0	0	0.28	0.005
New Hampshire	0	0.012	0	0.273	0	0	0	0.005	0.007
New Jersey	0	0.025	0	0	0	0	0	0.004	0.031
New York	0	0.059	0	0	0	0.299	0.043	0.03	0.024
North Carolina	0	0.013	0	0	0	0	0	0.004	0.014
Pennsylvania	0	0.022	0	0	0	0	0	0.003	0.009
Rhode Island	0	0.012	0	0	0	0	0.464	0.003	0.018
Tennessee	0	0.034	0	0	0	0	0	0.005	0.01
Vermont	0	0.011	0	0	0	0	0	0.094	0.006
Washington	0	0.014	0	0	0	0	0	0.005	0.171
Wyoming	0	0.058	0.247	0.017	0	0.406	0.494	0.02	0.003

Notes: We construct a synthetic control for each new-cap state from the donor pool of 20 no-cap states, using statelevel data over the pre-treatment period for each new-cap state, using data from 1999 (except for radiology spending which is from 2000) through the year before the reform year (2001-2004, depending on state). We obtain weights for the donor states by (i) minimizing the distance between covariates for a new-cap state and those for its synthetic control; subject to (ii) all weights must be non-negative, and (iii) weights sum to 1.