Supplementary materials for the article

The first global deep-sea stable isotope assessment reveals the unique trophic ecology of Vampire Squid Vampyroteuthis infernalis

(Cephalopoda)

Alexey V. Golikov*, Filipe R. Ceia, Rushan M. Sabirov, Jonathan D. Ablett, Ian G. Gleadall, Gudmundur Gudmundsson, Hendrik J. Hoving, Heather

Judkins, Jónbjörn Pálsson, Amanda L. Reid, Rigoberto Rosas-Luis, Elizabeth K. Shea, Richard Schwarz & José C. Xavier

*Corresponding author: golikov_ksu@mail.ru

Supplementary Table 1. Biometric measurements (ML, mantle length; LHL and UHL, lower and upper hood length), ontogenetic stage, stable isotope values of lower beaks (δ^{13} C and δ^{15} N) and estimated trophic level (TL) and collection area information for all specimens of *Vampyroteuthis infernalis* used in this study

Number	Ocean	Depth, m ¹	Oxygenation conditions ²	Specimen condition	ML, mm (accepted) ³	Stage	LHL, mm	UHL, mm	δ^{13} C, ‰ ⁴	δ^{15} N, ‰ ⁴	TL
PS0722-1	Atlantic	1400.0	Normal	Fixed ⁵	19	Paralarva	_	6.53	-18.9	7.3	3.7
PS0722-2	Atlantic	1400.0	Normal	Fixed ⁵	24	Paralarva	—	6.09	-17.8	7.7	3.9
PS0722-3	Atlantic	1400.0	Normal	Fixed ⁵	23	Paralarva	—	7.16	-18.4	7.1	3.7
PS0765-3	Atlantic	700.0	Normal	Fixed ⁵	20	Paralarva	—	5.72	-20.3	8.1	4.0
PS1466-2	Atlantic	1355.0	Normal	Fixed ⁵	17	Paralarva	—	4.02	-18.8	7.4	3.8
PS1466-3	Atlantic	1355.0	Normal	Fixed ⁵	15	Paralarva	—	3.68	-18.4	8.5	4.1
PS2132-3	Atlantic	1439.0	Normal	Fixed ⁵	14	Paralarva	—	4.23	-18.2	8.5	4.1
PS2132-4	Atlantic	1439.0	Normal	Fixed ⁵	21	Paralarva	—	6.68	-19.4	7.1	3.7
PS2598-3	Atlantic	1395.0	Normal	Fixed ⁵	22	Paralarva	—	4.83	-18.5	7.7	3.9
PS2598-4	Atlantic	1395.0	Normal	Fixed ⁵	23	Paralarva	3.54	5.18	-18.4	7.4	3.8
PS2425-2	Atlantic	1327.0	Normal	Fixed ⁵	11	Paralarva	2.63	3.95	-18.4	8.7	4.2
PS0765-2	Atlantic	700.0	Normal	Fixed ⁵	40	Small	—	6.87	-18.8	7.2	3.7
PS1448-1	Atlantic	1437.0	Normal	Fixed ⁵	49	Small	—	6.17	-19.3	5.9	3.3
PS1448-2	Atlantic	1437.0	Normal	Fixed ⁵	27	Small	—	5.01	-18.5	8.7	4.2
PS1466-1	Atlantic	1355.0	Normal	Fixed ⁵	42	Small	_	6.1	-18.1	8.4	4.1
PS2132-1	Atlantic	1439.0	Normal	Fixed ⁵	42	Small	_	6.85	-18.5	7.5	3.8

PS2132-2	Atlantic	1439.0	Normal	Fixed ⁵	33	Small	_	7.13	-18.7	7.5	3.8
PS1600-1	Atlantic	1418.0	Normal	Fixed ⁵	36	Small	—	6.82	-18.6	6.4	3.5
PS1600-2	Atlantic	1418.0	Normal	Fixed ⁵	40	Small	—	9.82	-19.6	6.5	3.5
PS1600-3	Atlantic	1418.0	Normal	Fixed ⁵	39	Small	—	10.82	-18.2	6.6	3.5
PS1334-1	Atlantic	1271.0	Normal	Fixed ⁵	31	Small	—	7.4	-18.5	7.5	3.8
PS1291-1	Atlantic	1448.0	Normal	Fixed ⁵	31	Small	—	4.87	-18.4	9.2	4.3
PS1358-1	Atlantic	1143.0	Normal	Fixed ⁵	51	Small	—	8.26	-19.2	6.8	3.6
PS0765-1	Atlantic	700.0	Normal	Fixed ⁵	77	Medium	—	9.35	-18.9	7.2	3.7
PS1902-1	Atlantic	724.0	Normal	Fixed ⁵	93	Medium	—	12.53	-18.9	6.2	3.4
PS1334-2	Atlantic	1271.0	Normal	Fixed ⁵	66	Medium	—	6.82	-18.8	8.0	4.0
PS1291-2	Atlantic	1448.0	Normal	Fixed ⁵	77	Medium	—	8.62	-18.7	7.3	3.8
PS2383-1	Atlantic	1319.0	Normal	Fixed ⁵	66	Medium	—	13.31	-19.1	5.9	3.3
PS2406-1	Atlantic	1417.0	Normal	Fixed ⁵	69	Medium	—	11.92	-18.3	5.9	3.4
PS2598-1	Atlantic	1395.0	Normal	Fixed ⁵	82	Medium	—	13.31	-18.8	6.8	3.6
PS2598-2	Atlantic	1395.0	Normal	Fixed ⁵	79	Medium	—	9.85	-19.1	6.6	3.6
PS2425-1	Atlantic	1327.0	Normal	Fixed ⁵	84	Medium	—	13.85	-17.9	6.5	3.5
TEM2007-768-21	Atlantic	792.0	Normal	Fixed ⁶	18	Paralarva	3.45	—	-17.5	9.4	3.9
TEM2007-768-58	Atlantic	250.0	Normal	Fixed ⁶	17	Paralarva	3.48	—	-16.7	9.7	4.0
TEM2007-768-64	Atlantic	1000.0	Normal	Fixed ⁶	22	Paralarva	2.61	3.87	-17.0	10.0	4.1
TEL2010-900-40	Atlantic	750.0	Normal	Fixed ⁶	25	Paralarva	2.9	4.03	-17.4	9.3	3.9
TEM2007-768-8	Atlantic	1195.0	Normal	Fixed ⁶	53	Small	5.3	—	-17.9	9.4	3.9
NED2009-035-32	Atlantic	1750.0	Normal	Fixed ⁶	40	Small	4.72	—	-17.0	9.4	3.9
NED2009-035-46	Atlantic	1250.0	Normal	Fixed ⁶	38	Small	4.66	—	-17.8	9.2	3.9
TEM2007-768-13	Atlantic	1694.0	Normal	Fixed ⁶	88	Medium	7.28	—	-17.9	7.8	3.5
TEL2010-900-17	Atlantic	250.0	Normal	Fixed ⁶	84	Medium	5.85	—	-17.6	8.2	3.6
TEL2010-900-55	Atlantic	1337.0	Normal	Fixed ⁶	105	Large	7.44	—	-17.3	9.0	3.8
A11-2016-355(1)	Atlantic	775.0	Normal	Fixed ⁷	63	Small	5.9	7.2	-17.5	9.2	3.9
675	Atlantic	800.0	OMZ	Frozen ⁸	9	Paralarva	1.31	2.87	-18.0	9.8	3.9
D10379-19	Atlantic		Normal	Fixed ⁹	6	Paralarva	0.92	1.36	-20.3	10.1	4.0
20150263	Atlantic		OMZ	Fixed ⁹	24	Paralarva	2.9	4.4	-16.5	11.1	4.3
12183-10	Atlantic	_	OMZ	Fixed ⁹	25	Paralarva	2.98	3.95	-17.3	10.7	4.2
D6622-16	Atlantic	_	OMZ	Fixed ⁹	13	Paralarva	1.18	2.88	-20.7	9.4	3.8
D7089-08	Atlantic	_	OMZ	Fixed ⁹	15	Paralarva	1.98	3.81	-18.3	7.7	3.3
D9541-30	Atlantic		OMZ	Fixed ⁹	7	Paralarva	1.1	2.02	-17.8	11.6	4.3

20150264	Atlantic	—	OMZ	Fixed ⁹	9	Paralarva	1.29	1.92	-17.5	10.5	4.1
20150261	Atlantic	—	OMZ	Fixed ⁹	16	Paralarva	2.1	3.1	-17.8	11.8	4.3
D7803-2	Atlantic	—	OMZ	Fixed ⁹	12	Paralarva	1.68	3	-17.1	10.1	4.0
D7824-34	Atlantic	—	OMZ	Fixed ⁹	26	Paralarva	—	4.81	-18.5	8.6	3.8
D8553-2	Atlantic	—	OLZ	Fixed ⁹	26	Paralarva	3.06	4.17	-18.1	10.2	3.9
12	Atlantic	490.0	OLZ	Frozen ⁸	33	Small	3.71	6.11	-17.9	7.4	3.0
676	Atlantic	800.0	OLZ	Frozen ⁸	37	Small	4	7.68	-17.5	9.7	3.9
D8558-1B	Atlantic	—	OLZ	Fixed ⁹	27	Small	3.13	3.31	-18.1	9.6	3.7
677	Atlantic	800.0	OLZ	Frozen ⁸	104	Medium	9.01	12.9	-17.8	8.6	3.8
D10378-24	Atlantic	_	Normal	Fixed ⁹	87	Medium	7.81	10.04	-18.3	8.1	3.6
D7803-11	Atlantic	—	OMZ	Fixed ⁹	89	Medium	7.97	10.79	-17.4	8.4	3.5
D7824-19	Atlantic	—	OMZ	Fixed ⁹	70	Medium	6.59	8.39	-18.4	8.0	3.7
D7824-2	Atlantic	—	OMZ	Fixed ⁹	74	Medium	6.86	8.92	-18.0	6.6	3.3
D7089-5	Atlantic	—	OMZ	Fixed ⁹	133	Large	10.87	14.93	-16.6	8.6	3.5
D7803-31	Atlantic	—	OMZ	Fixed ⁹	128	Large	10.56	13.89	-16.3	9.3	4.2
D85262-6	Atlantic	—	OLZ	Fixed ⁹	120	Large	10.04	14.32	-17.5	7.8	3.2
D1739	Indian	—	Normal	Fixed ⁹	62	Small	5.97	8.22	-16.5	11.2	3.4
D5332	Indian	—	Normal	Fixed ⁹	59	Small	5.79	6.76	-18.2	10.0	3.8
SA-1	Indian	—	Normal	Whale ¹⁰	134	Large	10.93	_	-17.4	9.2	4.0
SA-2	Indian	—	Normal	Whale ¹⁰	145	Large	11.62	_	-17.9	8.8	3.9
AM C.451587	Pacific	660.0	Normal	Fixed ¹¹	61	Small	5.96	_	-18.5	9.1	3.2
AM C.154223	Pacific	640.0	Normal	Fixed ¹¹	73	Medium	6.83	_	-18.6	9.1	3.3
AM C.450195	Pacific	800.0	Normal	Fixed ¹¹	69	Medium	6.5	-	-18.7	9.7	3.4
AM C.451584	Pacific	640.0	Normal	Fixed ¹¹	126	Large	10.43	_	-18.0	8.6	3.1
AM C.451586	Pacific	485.0	Normal	Fixed ¹¹	152	Large	12.04	-	-18.6	8.8	3.2
J-1	Pacific	—	Normal	Bird ¹²	124	Large	10.3	_	-19.6	8.1	3.2
P-8	Pacific	—	OMZ	Whale ¹⁰	101	Medium	8.77	—	-17.3	13.2	3.3
P-1	Pacific	—	OMZ	Whale ¹⁰	138	Large	11.14	_	-17.0	14.9	3.8
P-2	Pacific	—	OMZ	Whale ¹⁰	134	Large	10.9	—	-16.4	13.1	3.3
P-3	Pacific	—	OMZ	Whale ¹⁰	134	Large	10.93	—	-16.5	16.1	4.1
P-4	Pacific	—	OMZ	Whale ¹⁰	132	Large	10.78	—	-16.4	15.2	3.9
P-5	Pacific	_	OMZ	Whale ¹⁰	138	Large	11.15		-16.9	15.8	4.0
P-6	Pacific	_	OMZ	Whale ¹⁰	124	Large	10.29	_	-16.6	12.9	3.2
P-7	Pacific	_	OMZ	Whale ¹⁰	139	Large	11.25		-16.4	12.8	3.2

P-9	Pacific	_	OMZ	Whale ¹⁰	155	Large	12.21	_	-16.6	8.2	3.0
P-10	Pacific	_	OMZ	Whale ¹⁰	198	Large	14.79	_	-15.8	10.6	3.7
R-1	Pacific	—	OMZ	Shark ¹³	96	Medium	8.4	—	-16.1	8.4	3.4
R-6	Pacific	—	OMZ	Shark ¹³	80	Medium	—	12.03	-15.9	8.8	3.4
R-7	Pacific		OMZ	Shark ¹³	85	Medium	—	12.73	-16.3	7.4	3.0
R-2	Pacific		OMZ	Shark ¹³	110	Large	9.37	—	-16.8	8.6	3.4
R-3	Pacific		OMZ	Shark ¹³	170	Large	13.12	—	-17.5	11.0	4.1
R-4	Pacific		OMZ	Shark ¹³	130	Large	10.67	—	-16.9	7.5	3.1
R-5	Pacific	-	OMZ	Shark ¹³	113	Large	9.56	—	-16.1	7.1	3.0
549	Pacific	652.8	OMZ	Frozen ⁸	27	Small	3.16	5.2	-17.9	14.6	4.1
563	Pacific	_	OMZ	Frozen ⁸	49	Small	5.02	8.43	-18.2	12.9	4.2
576	Pacific	_	OMZ	Frozen ⁸	73	Medium	6.82	8.84	-17.3	13.5	4.3
531	Pacific	_	OMZ	Frozen ⁸	66	Medium	6.27	13.21	-17.6	13.0	4.2
572	Pacific	_	OMZ	Frozen ⁸	92	Medium	8.18	12.75	-16.6	13.1	4.1
553	Pacific	581.3	OMZ	Frozen ⁸	79	Medium	7.23	12.55	-16.4	13.5	4.2
569	Pacific		OMZ	Frozen ⁸	110	Large	9.39	13.73	-17.9	12.5	4.1
561	Pacific		OMZ	Frozen ⁸	111	Large	9.43	15.95	-16.5	13.0	4.2
540	Pacific	_	OMZ	Frozen ⁸	112	Large	9.51	15.6	-16.9	13.2	4.3
533	Pacific	_	OMZ	Frozen ⁸	116	Large	9.75	16.6	-16.1	13.6	4.3
550	Pacific	745.7	OMZ	Fixed ⁸	124	Large	10.29	15.65	-16.6	13.5	4.2

¹ depth of capture was estimated as mean value between net opening and net closing, if both were available (see Methods);

² oxygen conditions were classified as oxygen minimum zone (OMZ), oxygen limited zone (OLZ) and 'normal' (Normal) (see Methods);

³ accepted ML: the accepted ML was estimated from LHL or UHL for beaks with no measured ML or no reliably measured ML (see Methods);

⁴ δ^{13} C and δ^{15} N: for samples where only upper beaks were available, stable isotope values of lower beaks were estimated by highly significant equations relating upper and lower beaks derived from specimens where both beaks were analyzed (see Methods);

⁵ fixed specimens vouchered in Department of Biological Sciences, University of South Florida St. Petersburg;

⁶ fixed specimens vouchered in Delaware Museum of Natural History (Wilmington);

⁷ fixed specimen vouchered in Collections and Systematics Department, Icelandic Institute of Natural History (Gardabaer). Northernmost record of species distribution;

⁸ fixed or frozen specimens vouchered in GEOMAR, Helmholtz Centre for Ocean Research Kiel;

⁹ fixed specimens vouchered in Department of Life Sciences, Natural History Museum (London);

¹⁰ beaks from predator stomach contents: stomach of sperm whales, *Physeter macrocephalus* (Clarke 1980);

¹¹ fixed specimens vouchered in the Australian Museum (Sydney);

¹² beak from predator stomach contents: stomach of Antipodean wandering albatrosses, *Diomedea antipodensis antipodensis* (Xavier et al. 2014);

¹³ beaks from predator stomach contents: stomach of blue sharks, *Prionace glauca* (Loor-Andrade et al. 2017).

Cited literature:

Clarke, M. R. Cephalopoda in the diet of sperm whales of the southern hemisphere and their bearing on sperm whale biology. *Discovery Rep.* **37**, 1–324 (1980).

Loor-Andrade, P., Pincay-Espinoza, J. & Rosas-Luis, R. Diet of the blue shark *Prionace glauca* in the Ecuadorian Pacific Ocean during the years 2013 to 2015. *J. Appl. Ichthyol.* **33**, 558–562 (2017).

Xavier, J. C., Walker, K., Elliott, G., Cherel, Y. & Thompson, T. Cephalopod fauna of South Pacific waters: new information from breeding New Zealand wandering albatrosses. *Mar. Ecol. Prog. Ser.* **513**, 131–142 (2014).

Supplementary Table 2. Known stomach contents and observations of feeding of Vampyroteuthis infernalis.

Phylum	Class	Species	Organism composition	Observation mode	Area	Reference
			Detritus	Stomach contents analysis	Monterey Bay	Hoving & Robison 2012
	_	_	Deuttus	ROV observations	Monterey Bay	Hoving & Robison 2012
Ochronhuto	Desillarianhyasas	Various	Whole and from onto	Stomach contents	San Pedro Basin off southern California	Young 1977
Ochrophyta	Бастапорпусеае	various	whole and fragments	analysis	Monterey Bay	Hoving & Robison 2012
Potorio	Padiolaria	Various	Whole and fragments	Stomach contents	San Pedro Basin off southern California	Young 1977
Ketalla	Kaulolalla	v arious	whole and magments	analysis	Monterey Bay	Hoving & Robison 2012
Ciliophora	Not stated	Various	Whole and fragments	Stomach contents analysis	Monterey Bay	Hoving & Robison 2012
Cnidaria	Not stated	Hydrozoan or/and scyphozoan medusae	Fragments	Stomach contents analysis	Monterey Bay	Hoving & Robison 2012
Ctenophora	Not stated	Various	Fragments	Stomach contents analysis	Monterey Bay	Hoving & Robison 2012
		Crustacean larvae	Whole and fragments	Stomach contents analysis	San Pedro Basin off southern California	Young 1977
	Not stated	Small non-larval		Stomach contents	San Pedro Basin off southern California	Young 1977
Artrhropoda	Not stated	crustaceans	Fragments	analysis	Monterey Bay	Hoving & Robison 2012
		Large non-larval crustaceans	Fragments	Stomach contents analysis	Monterey Bay	Hoving & Robison 2012
	Ostracoda	Various	Whole and fragments	Stomach contents analysis	Monterey Bay	Hoving & Robison 2012

	Mavillonada	Concenda	Whole, fragments	Stomach contents	San Pedro Basin off southern California	Young 1977
	Maxiliopoda	Copepous	and fecal pellets	analysis	Monterey Bay	Hoving & Robison 2012
	Malacostraca	Amphopods	Whole and fragments	Stomach contents analysis	Monterey Bay	Hoving & Robison 2012
Mollusca	Cephalopoda	Histioteuthis heteropsis	Whole squid, attacked and ingested ¹	Direct observation of feeding in aquaria	San Clemente Basin off southern California	Siebel, pers. comm.
		Gonatopsis borealis	Fragments	Stomach contents analysis	Monterey Bay	Hoving & Robison 2012
	Larvacea	Different species	Faecal pellets, fragments and discarded mucus filtration houses	Stomach contents analysis	Monterey Bay	Hoving & Robison 2012
Chordata		Bathocordaeus sp.	Discarded mucus filtration houses	Stomach contents analysis	tomach contents analysis Monterey Bay	
	Thaliacea	Doliolum sp.	Fragments and discarded mucus filtration houses	Stomach contents analysis	Monterey Bay	Hoving & Robison 2012
	Osteichthyes	Unidentified	Scales and bones	Stomach contents analysis	Monterey Bay	Hoving & Robison 2012

¹ clearly not a typical feeding behavior, as stated by author of the observation.

Cited literature:

Young, J. Z. Brain, behaviour and evolution of cephalopods. Symp. Zool. Soc. Lond. 38, 377–434 (1977).

Hoving, H. J. T. & Robison, B. H. Vampire squid: detritivores in the oxygen minimum zone. Proc. R. Soc. Ser. B – Bio. 279, 4559–4567 (2012).

Supplementary Table 3. Mantle length (ML), values of δ^{13} C and δ^{15} N and estimated trophic level (TL) in *Vampyroteuthis infernalis* from different oxygenation conditions: oxygen minimum zones (OMZ), oxygen limited zones (OLZ) and 'normal' (Normal) (see Methods for O₂ concentrations). Values are minimum – maximum (mean ± standard error)

C 40 mg			All specimens	, OMZ				All specimens, C	DLZ^1		
Stage	n	ML, mm	δ^{13} C, ‰	δ^{15} N, ‰	TL	n	ML, mm	δ^{13} C, ‰	δ^{15} N, ‰	TL	
A 11	13	7–198	-20.715.8	6.6–16.1	3.0-4.3	6	26-120	-18.117.5	7.4–10.2	3.0–3.9	
All	43	(88.1 ± 7.8)	(-17.1 ± 0.1)	(11.2 ± 0.4)	(3.8 ± 0.1)	0	(57.9 ± 17.4)	(-17.8 ± 0.1)	(8.9 ± 0.5)	(3.6 ± 0.2)	
Daralarvae	10	7–26	-20.716.5	7.7–11.8	3.3–4.3	1	26	18.1	10.2	3.0	
	10	(15.5 ± 2.3)	(-17.9 ± 0.4)	(10.1 ± 0.4)	(4.0 ± 0.1)	1	20	-10.1	10.2	5.7	
Small	2	27–49	-18.217.9	12.9–14.6	4.1-4.2	3	27–37	-18.1 - 17.5	7.4–9.7	3.0–3.9	
Sman	4	(38.1 ± 16.1)	(-18.1 ± 0.1)	(13.8 ± 0.8)	(4.18 ± 0.05)	5	(32.2 ± 2.9)	(-17.8 ± 0.2)	(8.9 ± 0.7)	(3.5 ± 0.2)	
Medium	11	66–124	-18.415.9	6.6–11.1	3.0–4.3	1	104	-17.8	86	3.8	
meanam	11	(55.3 ± 10.4)	(-17.9 ± 0.4)	(9.0 ± 0.3)	(3.7 ± 0.1)	1	101	17.0	0.0	5.0	
Large	20	110–198	-17.915.8	7.1–16.1	3.0-4.3	1	120	_17.5	78	3.2	
Large	20	(132.6 ± 4.9)	(-16.6 ± 0.1)	(11.9 ± 0.6)	(3.7 ± 0.1)	1	120	-17.5	7.0	5.2	
Stage			All specimens,	Normal		Atlantic specimens, OMZ					
Stage	n	ML, mm	δ^{13} C, ‰	δ^{15} N, ‰	TL	n	ML, mm	δ^{13} C, ‰	δ^{15} N, ‰	TL	
A 11	55	6–152	-20.316.5	5.9–11.2	3.1–4.3	15	7–133	-20.716.3	6.6–11.8	3.3–4.3	
All	55	(54.8 ± 14.9)	(-18.4 ± 0.1)	(8.1 ± 0.2)	(3.7 ± 0.04)	15	(43.3 ± 11.4)	(-17.7 ± 0.3)	(9.5 ± 0.4)	(3.9 ± 0.1)	
		6 25	20.3 16.7	7 1 10 1	37 1 2		7 26	20.7 16.5	7.7–11.8	3313	
Paralarvae	16	(185 ± 13)	(-18.4 ± 0.3)	(8.4 ± 0.3)	(3.9 ± 0.04)	10	(155+23)	(-17.9 ± 0.4)	$(10.1 \pm$	(4.0 ± 0.1)	
		(10.5 ± 1.5)	(=10.4 ± 0.3)	(0.4 ± 0.3)	(3.7 ± 0.04)		(15.5 ± 2.5)	(-17.7 ± 0.4)	0.4)	(4.0 ± 0.1)	
Small	10	27-63	-19.616.5	5.9–11.2	3.2–4.3	0					
Sinan	1)	(44.0 ± 2.6)	(-18.3 ± 0.2)	(8.2 ± 0.3)	(3.7 ± 0.1)	0	_	_	_		
Medium	1/	66–93	-19.117.6	5.9–9.7	3.3-4.0	3	70–89	-18.4 - 17.4	6.6–8.4	3.3–3.7	
Wiedium	14	(78.1 ± 2.3)	(-18.5 ± 0.1)	(7.4 ± 0.3)	(3.5 ± 0.05)	5	(77.6 ± 6.0)	(-17.9 ± 0.3)	(7.7 ± 0.5)	(3.5 ± 0.1)	
Large	6	105–152	-19.617.3	8.1–9.2	3.1–4.0	2	128–133	-16.616.3	8.6–9.3	3.5–4.2	
Laige	0	(131.2 ± 6.9)	(-18.1 ± 0.4)	(8.8 ± 0.2)	(3.5 ± 0.2)	2	(130.9 ± 2.4)	(-16.5 ± 0.2)	(8.9 ± 0.4)	(3.9 ± 0.3)	
Stago		1	Atlantic specime	ns, OLZ ¹		Atlantic specimens, Normal					
Stage	n	ML, mm	δ^{13} C, ‰	δ^{15} N, ‰	TL	n	ML, mm	δ^{13} C, ‰	δ^{15} N, ‰	TL	

A 11	6	26-120	-18.117.5	7.4–10.2	3.0–3.9	45	6–105	-20.316.7	5.9–10.1	3.3–4.3	
All	0	(57.9 ± 17.4)	(-17.8 ± 0.1)	(8.9 ± 0.5)	(3.6 ± 0.2)	43	(44.6 ± 4.0)	(-18.4 ± 0.1)	(7.8 ± 0.2)	(3.8 ± 0.04)	
Donalomyoo	1	26	10.1	10.2	2.0	16	6–25	-20.316.7	7.1–10.1	3.7–4.2	
Paralarvae	1	20	-10.1	10.2	5.9	10	(18.5 ± 1.3)	(-18.4 ± 0.3)	(8.4 ± 0.3)	(3.9 ± 0.04)	
Small	3	27–37	-18.1 - 17.5	7.4–9.7	3.0–3.9	16	27-63	-19.617.0	5.9–9.4	3.3–4.3	
Siliali	5	(32.2 ± 2.9)	(-17.8 ± 0.2)	(8.9 ± 0.7)	(3.5 ± 0.2)	10	(40.9 ± 2.3)	(-18.4 ± 0.2)	(7.8 ± 0.3)	(3.8 ± 0.1)	
Modium	1	104	17.8	86	2.8	12	66–93	-19.117.6	5.9-8.2	3.3–4.0	
Medium	1	104	-17.8	0.0	5.0	12	(79.3 ± 2.5)	(-18.5 ± 0.1)	(7.1 ± 0.2)	(3.6 ± 0.1)	
Large	1	120	-17.5	7.8	3.2	1	105	-17.3	9.0	3.8	
Staga			Pacific specimer	ns, OMZ		Pacific specimens, Normal					
NAVE								_			
Stage	n	ML, mm	δ^{13} C, ‰	δ^{15} N, ‰	TL	n	ML, mm	δ^{13} C, ‰	δ^{15} N, ‰	TL	
	n 28	ML, mm 27–198	δ^{13} C, ‰ -18.215.8	$\frac{\delta^{15}}{N, \infty}$ 7.1–16.1	TL 3.0–4.3	n	ML, mm 61–152	δ^{13} C, ‰ -19.6–-18.0	δ^{15} N, ‰ 8.1–9.7	TL 3.1–3.4	
All	n 28	$\frac{\text{ML, mm}}{27-198}$ (112.0 ± 6.8)	$\frac{\delta^{13}\text{C}, \%}{-18.215.8}$ (-16.8 ± 0.1)	$\frac{\delta^{15}\text{N}, \%}{7.116.1}$ (12.1 ± 0.5)	$\begin{array}{c} \text{TL} \\ 3.04.3 \\ (3.8\pm0.1) \end{array}$	n 6	ML, mm 61–152 (101.0 ± 15.2)	$\frac{\delta^{13}\text{C}, \%}{-19.6 - 18.0}$ (-18.7 ± 0.2)	$\frac{\delta^{15}\text{N}, \%}{8.1-9.7} \\ (8.9 \pm 0.2)$	$\frac{\text{TL}}{3.1-3.4} \\ (3.2 \pm 0.05)$	
All Paralarvae	n 28 0	ML, mm 27–198 (112.0 ± 6.8) –	$\frac{\delta^{13}\text{C}, \%}{(-18.2 - 15.8)}$ $\frac{(-16.8 \pm 0.1)}{-}$	$\frac{\delta^{15}\text{N}, \%}{7.1-16.1}$ (12.1 ± 0.5) -	$TL3.0-4.3(3.8 \pm 0.1)-$	n 6 0	ML, mm 61–152 (101.0 ± 15.2) –	$\frac{\delta^{13}C, \%}{-19.618.0}$ (-18.7 ± 0.2)	δ^{15} N, ‰ 8.1–9.7 (8.9 ± 0.2) –	$ TL 3.1-3.4 (3.2 \pm 0.05) - - - - $	
All Paralarvae	n 28 0	ML, mm 27–198 (112.0 ± 6.8) - 27–49	$\frac{\delta^{13}C, \%}{-18.2 - 15.8}$ (-16.8 ± 0.1) - - 18.217.9	$\frac{\delta^{15}\text{N}, \%}{7.1-16.1}$ (12.1 ± 0.5) - 12.9-14.6	$TL3.0-4.3(3.8 \pm 0.1)-4.1-4.2$	n 6 0	ML, mm 61–152 (101.0 ± 15.2) -	δ^{13} C, ‰ -19.618.0 (-18.7 ± 0.2) -	δ^{15} N, ‰ 8.1–9.7 (8.9 ± 0.2) –	$ TL 3.1-3.4 (3.2 \pm 0.05) - 2.2 $	
All Paralarvae Small	n 28 0 2	$\begin{array}{r} \text{ML, mm} \\ 27-198 \\ (112.0 \pm 6.8) \\ \hline \\ - \\ 27-49 \\ (38.1 \pm 11.1) \end{array}$	$\frac{\delta^{13}C, \%}{(-18.2 - 15.8)}$ $\frac{-18.2 - 15.8}{(-16.8 \pm 0.1)}$ $\frac{-18.2 - 17.9}{(-18.1 \pm 0.1)}$	$\frac{\delta^{15}\text{N}, \text{\%}}{7.1-16.1}$ (12.1 ± 0.5) $-$ $12.9-14.6$ (13.8 ± 0.8)	$TL3.0-4.3(3.8 \pm 0.1)-4.1-4.2(4.18 \pm 0.05)$	n 6 0 1	ML, mm 61–152 (101.0 ± 15.2) - 61	$\frac{\delta^{13}C, \ \%}{(-19.618.0)}$ $\frac{-18.7 \pm 0.2)}{-18.5}$	$\frac{\delta^{15}N, \%}{8.1-9.7}$ (8.9 ± 0.2) - 9.1	$ TL 3.1-3.4 (3.2 \pm 0.05) - 3.2 3.2 $	
All Paralarvae Small Madium	n 28 0 2	$\begin{array}{r} \text{ML, mm} \\ 27-198 \\ (112.0 \pm 6.8) \\ \hline \\ - \\ 27-49 \\ (38.1 \pm 11.1) \\ 66-101 \end{array}$	$\begin{array}{r} \delta^{13}\text{C}, \ \text{\%}\\ -18.215.8\\ (-16.8 \pm 0.1)\\ \hline \\ -\\ -18.217.9\\ (-18.1 \pm 0.1)\\ \hline \\ -17.615.9\end{array}$	$\frac{\delta^{15}\text{N}, \text{ \%}}{7.1-16.1}$ (12.1 ± 0.5) $-$ $12.9-14.6$ (13.8 ± 0.8) $7.4-13.5$	$TL3.0-4.3(3.8 \pm 0.1)-4.1-4.2(4.18 \pm 0.05)3.0-4.3$	n 6 0 1	ML, mm 61–152 (101.0 ± 15.2) - 61 69–73	$\frac{\delta^{13}C, \%}{(-19.618.0)}$ $\frac{-19.618.0}{(-18.7 \pm 0.2)}$ -18.5 $-18.718.6$	$\frac{\delta^{15}\text{N}, \%}{8.1-9.7}$ $\frac{8.9 \pm 0.2}{-}$ 9.1 9.1-9.7	$ TL 3.1-3.4 (3.2 \pm 0.05) - 3.2 3.3-3.4 $	
All Paralarvae Small Medium	n 28 0 2 8	$\begin{array}{r} \text{ML, mm} \\ 27-198 \\ (112.0 \pm 6.8) \\ \hline \\ - \\ 27-49 \\ (38.1 \pm 11.1) \\ 66-101 \\ (83.8 \pm 4.2) \end{array}$	$\begin{array}{r} \delta^{13}\text{C}, \ \text{\%} \\ \hline -18.215.8 \\ (-16.8 \pm 0.1) \\ \hline \\ - \\ -18.217.9 \\ (-18.1 \pm 0.1) \\ -17.615.9 \\ (-16.7 \pm 0.2) \end{array}$	$\frac{\delta^{15}\text{N}, \%}{7.1-16.1}$ (12.1 ± 0.5) - 12.9-14.6 (13.8 ± 0.8) 7.4-13.5 (11.3 ± 0.9)	TL 3.0-4.3 (3.8 ± 0.1) - 4.1-4.2 (4.18 ± 0.05) 3.0-4.3 (3.7 ± 0.2)	n 6 0 1 2	$\begin{array}{r} \text{ML, mm} \\ 61-152 \\ (101.0 \pm 15.2) \\ \hline \\ \hline \\ 61 \\ \hline \\ 69-73 \\ (70.9 \pm 2.3) \end{array}$	$ \begin{array}{c} \delta^{13}\mathrm{C}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} \delta^{15}\mathrm{N}, \\ \$.1-9.7\\ (8.9\pm0.2)\\ \hline \\ -\\ 9.1\\ 9.1-9.7\\ (9.4\pm0.3)\\ \end{array}$	$TL3.1-3.4(3.2 \pm 0.05)-3.23.3-3.4(3.35 \pm 0.09)$	
All Paralarvae Small Medium	n 28 0 2 8	$\begin{array}{r} \text{ML, mm} \\ 27-198 \\ (112.0 \pm 6.8) \\ \hline \\ - \\ 27-49 \\ (38.1 \pm 11.1) \\ 66-101 \\ (83.8 \pm 4.2) \\ 110-198 \end{array}$	$\begin{array}{c} \delta^{13}\text{C}, \ \text{\%}\\ -18.215.8\\ (-16.8\pm0.1)\\ \hline \\ -\\ -18.217.9\\ (-18.1\pm0.1)\\ \hline \\ -17.615.9\\ (-16.7\pm0.2)\\ \hline \\ -17.915.8\end{array}$	$\frac{\delta^{15}N, \%}{7.1-16.1}$ (12.1 ± 0.5) $-$ $12.9-14.6$ (13.8 ± 0.8) $7.4-13.5$ (11.3 ± 0.9) $7.1-16.1$	$\begin{array}{r} TL\\ 3.0-4.3\\ (3.8\pm0.1)\\ \hline -\\ 4.1-4.2\\ (4.18\pm0.05)\\ \hline 3.0-4.3\\ (3.7\pm0.2)\\ \hline 3.0-4.3\end{array}$	n 6 0 1 2	$\begin{array}{r} \text{ML, mm} \\ 61-152 \\ (101.0 \pm 15.2) \\ \hline \\ \hline \\ 61 \\ \hline \\ 69-73 \\ (70.9 \pm 2.3) \\ \hline \\ 124-152 \end{array}$	$\frac{\delta^{13}C, \%}{(-19.618.0)}$ (-18.7 ± 0.2) $-$ -18.5 $-18.718.6$ (-18.62 ± 0.05) $-19.618.0$	$\frac{\delta^{15}N, \%}{8.1-9.7}$ (8.9 ± 0.2) $-$ 9.1 $9.1-9.7$ (9.4 ± 0.3) $8.1-8.8$	$\begin{array}{r} TL\\ 3.1-3.4\\ (3.2\pm0.05)\\ \hline \\ -\\ 3.2\\ \hline \\ 3.3-3.4\\ (3.35\pm0.09)\\ \hline \\ 3.1-3.2 \end{array}$	

 1 all specimens from OLZ were sampled in the Atlantic.

Supplementary Fig. 1. Images of lower and upper beaks of *Vampyroteuthis infernalis* obtained from all ontogenetic stages. Lower beaks (side, oblique and facing views): A, paralarva (northeast Atlantic Ocean, Guinea, ML 13 mm); B, small (equatorial area of the Atlantic Ocean, ML 27 mm); C, medium (southwest Pacific Ocean, southeast Australia, ML 73 mm); D, large (central east Pacific Ocean, Peru, ML 139 mm). Upper beaks (side, oblique and top views): E, small (northeast Atlantic Ocean, Guinea, ML 27 mm); F, medium (central east Pacific Ocean, Ecuador), ML 85 mm); G, large (northeast Atlantic Ocean, Cape-Verde, ML 133 mm). Scale bars: 1 mm. All photos are original. Beak views terminology follows Lu & Ickeringill 2002.

Upper beaks:

Cited literature:

Lu, C. C. & Ickeringill, R. Cephalopod beak identification and biomass estimation techniques: tools for dietary studies of southern Australian finfishes. *Mus. Vic. Sci. Rep.* **6**, 1–65 (2002)