Supplementary material

Tables S1 to S7

Table S1. Clinical and pathological characteristics of samples used to extract RNA for qPCR experiments

Characteristic:						
Age of patients	39 – 81 (mean 59)					
TNM/Stage	Histological type of NSC (no. of patients)					
	SCC	ADC				
$T_1N_0M_0, T_2N_0M_0/Stage (IA+IB)$	10	5				
T ₃ N ₀ M ₀ , T ₂ N ₁ M ₀ /Stage IIB	10	1				
$T_1N_2M_0, T_2N_2M_0, T_3N_1M_0, T_3N_2M_0$ /Stage IIIA	13	5				
T ₄ N ₀ M ₀ /Stage IIIB	_	2				
N ₀ Stage (no metastases)	13	7				
N ₁ Stage +N ₂ Stage (with metastases)	20	6				
Total:	33	13				

Note: SCC – Squamous Cell Carcinoma; ADC – adenocarcinoma.

Table S2. Primers and TaqMan probes for qPCR.

			Amplicon					
Gene		length						
	F	CCACCATTCTCCTCCACCAGT						
CTDSPL (cDNA)	R	CCACCATTCTCCTCCACCAGT	154					
	Ζ	FAM-CCACATTGTAATCACGGAAGCAGCAGA- BHQ1	134					
	F	F CAGAGTGCGTGTGCCGACT						
CTDSPL (DNA)	R	ACAACTTCTCTGCGGGCGT	126					
	Ζ	FAM-CTGGCGGAGAGAGACTGGGAGCGA-BHQ1						
	F	GTGCTCAGGGCTTCTTGTCCTTT						
ACTR (DNA)	R	TTTCTCCATGTCGTCCCAGTTGGT	160					
ACTB (DNA)	Z	FAM-AAGGATTCCTATGTGGGCGACGAGGCCCA- BHQ1	100					
	F	CACCCTCAACAGTGGCAAGAAG						
RPN1 (cDNA)	R	TGCATTTCGCTCACTCTGTCG	125					
	Ζ	FAM-CCCTCTGTCTTCAGCCTGGACTGC-BHQ1						

Note: F – forward primer; R – reverse primer; Z – probe.

Table S3. Differential expression of *CTDSP1/2/L/L2* and *RB1* in non-small cell lung cancer according to TCGA data.

			Ро	oled samp	les						Paired sa	amples	
Gene Name	Log2FC	FDR	P-value	Rel. StDev(T), %	Rel. StDev(N) , %	Tumor CPM	Norm CPM	Log2FC (mean)	FDR	P-value	Tumor CPM	Norm CPM	
CTDSPL	-1,2	5,03E-52	1,01E-52	45,0	27,9	43,5	101,2	-1,0	1,39E-11	2,78E-12	50,9	101,2	وطرحا يعتلما يقداله والعربية
CTDSP1	-0,6	1,25E-18	5,01E-19	33,0	16,7	118,0	176,1	-0,6	2,38E-09	9,51E-10	122,1	176,1	وريديد بالمراهد وإمقار يتقو
CTDSPL2	0,6	1,38E-07	8,27E-08	45,2	20,8	44,6	29,3	0,6	1,61E-07	9,64E-08	46,8	29,3	والتحرية مرياني والإستاني
CTDSP2	-0,4	3,28E-05	2,62E-05	49,3	22,0	272,4	368,0	-0,3	0,000368	0,000295	306,5	368,0	an para tata ana sa sa s
RB1	0,0	0,85922	0,85922	48,0	21,4	61,4	60,8	-0,3	0,951593	0,951593	62,1	60,8	

(A) Relative expression level of CTDSP1/2/L/L2 and RB1 genes in lung squamous cell carcinomas (TCGA LUSC dataset). Log2FC – binary logarithm of expression level fold change (tumor versus normal); FDR – false discovery rate; Rel. StDev. - relative standard deviation (also named CV, coefficient of variation) of the expression levels; CMP – read counts per million.

			Po	oled sam	oles						Paired sa	amples	
Gene Name	Log2FC	FDR	P-value	Rel. StDev(T), %	Rel. StDev(N) , %	Tumor CPM	Norm CPM	Log2FC (mean)	FDR	P-value	Tumor CPM	Norm CPM	
CTDSPL	-1,1	4,81E-40	9,62E-41	52,2	2 21,6	54,0	118,9	-1,2	1,55E-19	3,11E-20	50,8	118,1	ومستقط وفرهال ومط
CTDSP1	-0,3	1,33E-08	5,3E-09	29,1	15,2	148,4	186,2	-0,5	2,16E-10	8,66E-11	136,9	186,1	مرقص بطلقه بريدين ورايتها أحطوه
RB1	-0,4	1,71E-08	1,02E-08	41,2	2 19,7	46,8	63,5	-0,4	1,3E-05	7,82E-06	52,0	63,3	يد مينا مليار.
CTDSP2	-0,4	0,000183	0,000147	51,5	5 17,0	284,1	383,0	-0,3	0,126101	0,100881	291,9	382,2	lata tana mala tang dalam
CTDSPI 2	-0 1	0 779243	0 779243	38.6	19.0	29.4	30.6	0.0	0 424956	0 424956	31 9	30 7	and the state of t

(**B**) Relative expression level of CTDSP1/2/L/L2 and RB1 genes in lung adenocarcinoma (TCGA LUAD dataset). Log2FC – binary logarithm of expression level fold change (tumor versus normal); FDR – false discovery rate; Rel. StDev. - relative standard deviation (also named CV, coefficient of variation) of the expression levels; CMP – read counts per million.

Table S4. Differential expression of mir-26a/b in non-small cell lung cancer according to TCGA data.

			Po	oled samp	les			Paired samples							
miRNA	Log2FC	FDR	P-value	Rel. StDev(T) %	Rel. StDev(N) %	Tumor CPM	Norm CPM	Log2FC (mean)	FDR	P-value	Tumor CPM	Norm CPM	Log2FC profile		
hsa-mir-26a-2	-1,3	5,96E-30	1,2E-31	53,9	55,5	2762,9	6624,1	-1,1	4,89E-10	1,03E-11	3740,0	7612,0	and an easily for a		
hsa-mir-26b	-0,3	0,822456	0,172983	51,4	41,9	626,8	761,3	-0,8	3,71E-08	1,06E-09	497,9	849,5	, Miller i Miller M		
hsa-mir-26a-1						1,0	0,6				0,8	0,6	discarded. too few reads		

(A) Relative expression level of mir-26a/b in lung squamous cell carcinomas (TCGA LUSC dataset). Log2FC – binary logarithm of expression level fold change (tumor versus normal); FDR – false discovery rate; Rel. StDev. - relative standard deviation (also named CV, coefficient of variation) of the expression levels; CMP – read counts per million.

				Pooled sa	mples			Paired samples							
miRNA	Log2FC	FDR	P-value	Rel. StDev(T) %	Rel. StDev(N) %	Tumor CPM	Norm CPM	Log2FC (mean)	FDR	P-value	Tumor CPM	Norm CPM	Log2FC profile		
hsa-mir-26a-2	-1,4	4,11E-66	3,54E-68	38,9	31,9	1908,0	5136,9	-1,6	1,35E-12	1,29E-14	1757,8	5136,9	lan padaan kang		
hsa-mir-26b	-0,5	5,93E-05	6,46E-06	47,3	31,1	610,9	851,4	-0,8	0,000164	1,92E-05	506,8	851,4	للمنقفين تطقيرهم		
hsa-mir-26a-1						1,4	1,3				1,2	1,3	discarded. too few reads		

(**B**) Relative expression level of mir-26a/b in lung adenocarcinoma (TCGA LUAD dataset). Log2FC – binary logarithm of expression level fold change (tumor versus normal); FDR – false discovery rate; Rel. StDev. - relative standard deviation (also named CV, coefficient of variation) of the expression levels; CMP – read counts per million.

Quantitative abara staristics	ADC	SCC	ADC	SCC
Quantitative characteristics	CTD	SPL	RI	B1
Average mRNA level fold change	$6.7\downarrow^a$	6.8↓ ^a	$4.6\downarrow^{a}$	$3.0\downarrow^a$
FD, %	77	72	69	59
<i>LD</i> _{av} , n-fold	8.3↓	8.9↓	6↓	4.3↓
<i>FI</i> , %	no	3	7	3
<i>LI_{av}</i> , n-fold	no	2	2.5	2.5
Average mRNA level	2.6↓ (no met)	3.9↓ (no met)	1.7↓ (no met)	2.6↓ (no met)
for groups without and with	11.6↓	8.7↓	7.9↓	3.3↓
metastasis	(met)	(met)	(met)	(met)
	P < 0.01	P = 0.62	P < 0.01	P - 0.66
	1 < 0.01	I = 0.02	I < 0.01	I = 0.00
	T < 0.01	<i>I</i> = 0.02 <i>SP1</i>	T < 0.01	<i>SP2</i>
Average mRNA level for all samples, n-fold	$\frac{CTL}{3.6\downarrow^{a}}$	$0SP1$ $3.5\downarrow^{a}$	$\frac{CTD}{5.2\downarrow^{a}}$	$\frac{1}{4.0\downarrow^{a}}$
Average mRNA level for all samples, n-fold <i>FD</i> , %	$\frac{CTL}{3.6\downarrow^{a}}$	0.02 = 0.02	$\frac{CTD}{5.2\downarrow^{a}}$ 90	$\frac{1}{2} = 0.00$ $\frac{0.00}{0.00}$ $\frac{1}{2} = 0.00$ $\frac{1}{2} = 0.00$
Average mRNA level for all samples, n-fold <i>FD</i> , % <i>LD</i> _{av} , n-fold	CTL $3.6\downarrow^{a}$ 64 $4.6\downarrow$	0.02 = 0.02 $0.02 = 0.02$ $0.02 = 0.02$ $0.02 = 0.02$ $0.02 = 0.02$ $0.02 = 0.02$ $0.02 = 0.02$ $0.02 = 0.02$	$ \begin{array}{r} \hline CTD \\ \hline 5.2\downarrow^{a} \\ \hline 90 \\ \hline 5.7\downarrow \end{array} $	$PSP2$ $4.0\downarrow^{a}$ 70 $5.2\downarrow$
Average mRNA level for all samples, n-fold <i>FD</i> , % <i>LD_{av}</i> , n-fold <i>FI</i> , %	CTL $3.6\downarrow^{a}$ 64 $4.6\downarrow$ no	0.02 = 0.02 $0.02 = 0.02$	$\begin{array}{c} \hline CTD \\ \hline 5.2\downarrow^{a} \\ 90 \\ \hline 5.7\downarrow \\ no \end{array}$	$PSP2$ $4.0\downarrow^{a}$ 70 $5.2\downarrow$ no
Average mRNA level for all samples, n-fold <i>FD</i> , % <i>LD_{av}</i> , n-fold <i>FI</i> , % <i>LI_{av}</i> , n-fold	CTL $3.6\downarrow^{a}$ 64 $4.6\downarrow$ no no	0.02 = 0.02 $0.02 = 0.02$	$\begin{array}{r} \hline \hline$	$PSP2$ $4.0\downarrow^{a}$ 70 $5.2\downarrow$ no no
Average mRNA level for all samples, n-fold FD , % LD_{av} , n-fold FI , % LI_{av} , n-fold	CTL $3.6\downarrow^{a}$ 64 $4.6\downarrow$ no no $2.0\downarrow$	0.02 = 0.02 $0.02 = 0.02$	$\begin{array}{r} \hline r < 0.01 \\ \hline c TD \\ 5.2 \downarrow^{a} \\ \hline 90 \\ 5.7 \downarrow \\ \hline n0 \\ \hline n0 \\ 4.6 \downarrow \end{array}$	$PSP2$ $4.0\downarrow^{a}$ 70 $5.2\downarrow$ no no $2.5\downarrow$
Average mRNA level for all samples, n-fold FD , % LD_{av} , n-fold FI , % LI_{av} , n-foldAverage mRNA level	CTL $3.6\downarrow^{a}$ 64 $4.6\downarrow$ no no $2.0\downarrow$ (no met)	0.02 = 0.02 $0.02 = 0.02$	CTD $5.2\downarrow^{a}$ 90 $5.7\downarrow$ no 100 $4.6\downarrow$ (no met)	$PSP2$ $4.0\downarrow^{a}$ 70 $5.2\downarrow$ no no $2.5\downarrow$ (no met)
Average mRNA level for all samples, n-foldFD, %LDav, n-foldFI, %LIav, n-foldAverage mRNA level for groups without and with	CTL $3.6\downarrow^{a}$ 64 $4.6\downarrow$ no no $2.0\downarrow$ $(no met)$ $5.3\downarrow$	0.02 = 0.02 $0.02 = 0.02$	CTD $5.2\downarrow^{a}$ 90 $5.7\downarrow$ no 100 $4.6\downarrow$ (no met) $5.8\downarrow$	$PSP2$ $4.0\downarrow^{a}$ 70 $5.2\downarrow$ no no $2.5\downarrow$ (no met) $5.0\downarrow$
Average mRNA level for all samples, n-fold FD , % LD_{av} , n-fold FI , % LI_{av} , n-foldAverage mRNA level for groups without and with metastasis	CTL $3.6\downarrow^{a}$ 64 $4.6\downarrow$ no no $2.0\downarrow$ $(no met)$ $5.3\downarrow$ (met)	0.02 = 0.02 $0.02 = 0.02$	$\begin{array}{r} r < 0.01 \\ \hline r < 0.01 \\ \hline r < 0.01 \\ \hline r \\ r \\ 0 \\ \hline r \\ 0 \\ \hline r \\ 0 \\ 0 \\ \hline r $	$PSP2 = 4.0\downarrow^{a} = 70$ $9SP2 = 0.00$ $9SP2 $

Table S5. Summary of qPCR data for *CTDSPL*, *CTDSP1*, *CTDSP2* and *RB1* genes in non-small cell lung cancer (NSCLC: ADC and SCC).

Note: LD_{av}, average mRNA level decrease; LI_{av}, average mRNA level increase; FD, frequency of decrease; FI, frequency of increase; \uparrow , increase; \downarrow , decrease; met, metastases; ADC (N=13) and SCC (N=33); ^aP < 0.02 for each value.

Table S6. Top scored common regulatory microRNAs for SCP subfamily genes (lung SCC). Orange background highlights the members of oncogenic mir-96/182/183 family, which are overexpressed in NSCLC.

	CTDSPL2	RB1	CTDSP2	CTDSP1	CTDSPL					
LogFC [pooled]	-0,1	-0,4	-0,4	-0,3	-1,1					
FDR	0,779243	1,71E-08	0,000183	1,33E-08	4,81E-40					
avg. CPM	30,0	55,2	333,6	167,3	86,4					
LogFCs	مدا <mark>ر</mark> ، هدر در می ^{رد} در دارور م	رهار بمربال رماليان	les en	برفيطسيين بيهارطه	ومصغاريها يعق		LogFC	FDR	avg. CPM	LogFCs
hsa-mir-183	0,11	-0,20	-0,14	-0,24	<u>-0,27</u>		2,2	2,5E-07	6288,7	
hsa-mir-20a	0,20	_ -0,31	-0,26	0,03	-0,26		0,9	8,7E-05	173,3	
hsa-mir-93	0,12	0,43	-0,27	-0,14	-0,35		1,2	6,33E-07	2744,3	······································
hsa-mir-182	0,05	-0,19	- 0,14	<mark>_</mark> -0,10	-0 <mark>,16</mark>		1,9	4,41E-10	13736,6	das_J_MMbasIstat_ts
hsa-mir-9-2	0,01	-0,24	0,20	-0,31	-0,42		4,7	0,311093	380,6	
hsa-mir-9-1	0,01	-0,24	0,20	-0,31	-0,41		4,7	0,311093	380,7	
hsa-mir-96	-0,18	-0,38	-0,28	-0, 10	-0,34		2,6	5,43E-09	13,9	Maria
hsa-mir-17	_ 0,04	L -0,13	-0,17	0,03	-0,15	_	0,4	0,00715	597,3	
hsa-mir-29b-1	-0,46	-0,19	-0,22	0,14	-0,12		1,1	1,7E-06	317,9	······
hsa-mir-30b	0,36	-0,25	-0,03	0,2 <mark>2</mark>	0,2 <mark>0</mark>		-0,6	0,012228	666,3	
hsa-mir-34a	-0,48	-0,32	-0,08	0,15	_ 0,01		0,7	2,26E-05	173,8	
hsa-mir-424	0,00	-0,09	0,10	-0,19	0,30		1,2	0,003977	54,4	والمستعد المراجع والمرجو والمرجو
hsa-mir-142	0,19	-0,14	-0,19	-0,23	-0,34		1,7	6,98E-08	1446,6	والمراجع والمراجع والمراجع والمراجع والمراجع
hsa-mir-106a	0,11	L -0,23	-0,26	-0,09	-0,30		0,7	0,058244	8,7	~~~ <u>~</u> ~~~~
hsa-mir-130b	-0,01	-0,28	-0,16	-0,32	-0,42		1,6	0,000611	20,3	and the state proceeded and a sure
hsa-mir-590	-0,01	-0,26	-0,33	-0,23	-0,51		1,0	3,16E-06	12,0	·····
hsa-mir-128-1	_ 0,34	0,02	-0,11	-0,27	0,31		0,4	0,01125	70,2	
hsa-mir-26b	-0,15	-0,05	-0,11	0,31	0,02		-0,3	0,822456	694,0	
hsa-mir-429	0,12	-0,27	-0,15	0,09	-0,01		1,1	3,7E-05	84,7	
hsa-mir-106b	_ 0,23	L -0,04	-0,05	-0,16	-0,22		0,1	1	581,5	
hsa-mir-21	-0,19	-0,14	-0,07	-0,01	-0,20		1,8	1,83E-18	229334,6	district an end of the second second
hsa-mir-7-1	0,16	0,04	-0,18	-0,06	-0,21		1,4	5,23E-07	13,7	يترجب والمطع المرجع المرجع
hsa-mir-199a-1	-0,22	-0,12	-0,01	-0,07	-0,08		0,8	8,13E-07	788,9	ماليوم المسمور مروا مرمر
hsa-mir-128-2	0,36	0,06	-0,12	-0,26	-0,30		0,4	0,013333	54,9	
hsa-mir-186	-0,03	-0,22	-0,22	0,02	-0,17		0,3	0,002261	233,4	·····
hsa-mir-22	-0.17	0,08	-0,08	0,09	-0,04		0,2	0,013516	69864,3	
hsa-mir-135b	-0,22	-0,11	-0.08	0,28	0,12		2,5	1,22E-06	33,4	فرحله فرقيا المرجعا المحصر
hsa-mir-199a-2	-0.19	-0.10	-0.01	-0.10	-0.10		0.7	1.82E-06	1305.3	والمراجع والمراجع
hsa-mir-193b	-0.13	-0.18	-0.12	-0.01	-0.32		1.6	0.00665	41.1	ممارير البالير مدرية الرسانية مساراتها
hsa-mir-19a	-0.28	-0.37	-0.27	0.02	-0.31		1.1	0.001552	14.7	······································
hsa-mir-141	-0.05	-0.09	-0.18	0.19	-0.13		1.5	1.65E-10	1029.6	والطفيل وتوجه المتعاولة
hsa-mir-335	0.06	-0.04	-0.11	-0.16	-0.14		-0.1	1	119.9	
hsa-mir-33a	-0.09	-0.20	-0.25	-0.15	-0.25		13	2 13E-05	13.4	8.,
hsa-mir-155	-0.11	0.02	-0.01	-0.19	-0.10		0.2	0.626623	383.4	
hsa-mir-199h	-0.16	-0.08	-0.01	-0.12	-0.11		0.7	1,15E-05	1652 4	المربان مستقد مروان م
hsa-mir-210	-0 11	-0.27	-0.21	-0.12	-0.42		5,1	1,23E-08	<u>1052,</u> 4 479 ۹	
hsa-mir-30d	-0.10	-0.04	0.11	0.22	0.40			8 11F-11	18255 /	
hsa-mir-19/1-7	-0.06	-0.01	-0.16	0.15	0.02		1 2	0 5/6012	12/ 1	م میں میں ایس میں ایس میں ایک ایک کر ایک کر ایک کر ایک کر
hsa-mir-29h-2	-0.47	-0.21	-0.21	0.16	-0.10		1 1	2 01E-06	2/12 1	
hsa-mir-20h	-0.10	-0.28	-0.21	-0.15	-0.37		07	0 278212	10 R	
			0,21	0,10	0,01		0,1		10,0	

Comments: Top-40 potential regulating microRNA are listed. The values in each cell represent coefficient of Spearman correlation between the gene and the microRNA expression level. The bars inside cells (regardless of color) indicate prediction score of microRNA binding site according to several databases (from left to right): miRTarBase (strong experimental evidence), TargetScan (conservative binding sites, CS), PicTar (CS), DIANA microT, mirSVR (CS), TargetScan (non-CS), PicTar (non-CS), miRTarBase (weak experimental evidence), mirSVR (non-CS). Cell borders indicate miRNA-gene pairs with predicted binding site (dashed border – only non-CS sites; double border – several reliable algorithms). On the right side of the figure, expression profiles of microRNAs in paired tumor-normal samples are presented in logarithmic scale (from -2 to +2, e.g. from 4-fold decrease to 4-fold increase). MicroRNAs are sorted by overall prediction score (decreasing).

Table S7. Top scored common regulatory microRNA for SCP subfamily genes (lung ADC). Orange background highlights the members of oncogenic mir-96/182/183 family, which are overexpressed in NSCLC.

1	1									
	CTDSPL2	RB1	CTDSP2	CTDSP1	CTDSPL					
LogFC	0,6	0,0	-0,4	-0,6	-1,2					
FDR	1,38E-07	0,85922	3,28E-05	1,25E-18	5,03E-52					
avg. CPM	36,9	61,1	320,2	147,1	72,3					
LogFCs	dia anto a nata	-	endemelogine	ير ما معارف وأهور ه	وأرجا لحاصا ومطوراط		LogFC	FDR	avg. CPM	LogFCs
						1				I Balan I am a bala a a
hsa-mir-183	0,30	-0,06	-0,1/	-0,2/	-0,2/		2,5	3,77E-09	/902,0	
hsa-mir-182	0,20	-0,08	■ -0,18	-0,21	-0,22		1,8	7,43E-07	15679,5	Links, J. Abdabatis, J
hsa-mir-96	0,20	-0,12	0,29	-0, 22	-0,26	_	2,6	8,94E-08	18,4	
hsa-mir-30b	0,34	-0,15	-0,07	0,29	0,24		-2,0	1,28E-54	864,0	
hsa-let-/a-1	-0,16	0,04	0,19	0,17	0,28	_	-1,3	2,75E-47	10392,0	
hsa-let-/a-3	-0,16	0,04	0,19	0,17	0,28	_	-1,3	3,89E-47	10439,5	
hsa-mir-9-2	0,27	-0,11	0,21	-0,27	-0,31	-	5,3	0,001594	1239,4	
hsa-mir-9-1	0,27	-0,11	0,21	-0,27	-0,31	-	5,3	0,001594	1240,6	
hsa-mir-30a	0,32	0,00	0,19	0,21	0,28		-3,5	1,1E-107	82918,9	Manufacture and the P
hsa-mir-26b	-0,32	-0,13	0,06	0,49	0,10		-0,5	5,93E-05	731,1	
hsa-mir-26a-2	-0,35	-0,08	0,26	0,25	0,27		-1,4	4,11E-66	3522,5	
hsa-mir-22	0,33	0,12	0,17	0,11	0,31		-0,9	2,06E-35	135077,1	
hsa-mir-29a	-0,44	-0,07	0,13	0,25	0,23		-1,5	1,06E-45	11668,1	time, see a dealer de
hsa-mir-149	0,28	0,04	-0,17	0,0 <mark>8</mark>	-0,15	_	2,8	4,76E-08	116,4	
hsa-mir-30d	0,23	-0,09	0,14	0,19	0,27	_	-2,7	2,53E-93	21762,1	a de la presidente de la p
hsa-let-7g	-0, 19	0 <mark>,0</mark> 7	0,02	0,10	0,14		-0,4	4,49E-06	554,3	
hsa-mir-7-1	0 <mark>,31</mark>	0,10	-0,19	-0,24	-0,20		1,0	6,16E-06	22,1	Landson, a., and the particular of the second state of the second
hsa-mir-486	-0,17	-0,01	<u>0,1</u> 3	<u>0,19</u>	0,2 <mark>8</mark>		-3,9	9,56E-58	852,1	Contraction of the second s
hsa-mir-132	0,19	-0,02	0,17	-0,01	0,1 <mark>3</mark>		-0,3	0,039192	123,6	
hsa-mir-15b	0,08	-0,07	0,27	-0, 15	0,09		0,1	1	288,8	
hsa-let-7e	<u>-0,15</u>	-0,14	0,28	0,15	0,14	1	-0,7	1,99E-06	1169,6	
hsa-mir-34a	-0,32	-0,12	-0, 05	0,18	<u> </u>		-0,9	1,27E-21	239,4	
hsa-mir-93	_ 0 <mark>,</mark> 28	0,02	-0,30	-0,26	-0,23		0,8	5,08E-05	7120,1	L.,
hsa-mir-192	0,09	-0,01	-0,08	-0,19	-0,07		0,3	1	369,5	•.•
hsa-mir-143	0,22	0,10	0,27	0,14	0,29	_	-2,0	2,51E-47	124933,5	and a second second second
hsa-mir-139	0,36	-0,03	0,10	0,16	0,27		-2,9	1,65E-68	130,6	and a particular state of the
hsa-mir-374b	0,24	-0,23	0,02	0,18	0,14		-1,0	3,86E-27	87,3	
hsa-mir-29b-1	- 0,39	-0,15	-0,12	0,12	-0,03	_	-0,4	0,22746	375,7	
hsa-mir-424	-0,04	-0,02	0,09	-0,02	0,16		1,0	2,24E-05	52,7	
hsa-mir-10a	0,22	-0,01	0,26	0,2 <mark>0</mark>	_ 0,17		-1,2	1,09E-16	36539,0	alle programme a subserve programme de la construcción de la construcción de la construcción de la construcción
hsa-let-7b	-0 ,09	0,12	0,30	0,23	0,37		-1,3	2,7E-30	24275,7	
hsa-mir-224	0,15	0,06	-0,22	-0,28	-0,17		2,5	0,000139	93,0	ang kang kalang sebis pang kang sebis di
hsa-mir-155	0,22	-0,02	-0,06	-0,05	-0,11		0,1	1	469,1	and the second second second
hsa-mir-101-2	0,31	-0,05	0,03	0,11	0,2 <mark>3</mark>		-2,1	2,15E-58	100,2	Party of the second
hsa-mir-338	-0,31	-0,03	0,00	0,19	0,16		-2,9	7,8E-44	1863,0	In the subscription of the subscription of the
hsa-mir-130b	0,40	-0,04	-0,12	-0,22	-0,27		2,2	3,57E-12	30,8	and the second sec
hsa-mir-20a	_ 0,10	0,01	-0,23	-0,15	-0,08		0,4	0,105018	448,4	ь
hsa-mir-141	0,18	0,02	-0,22	-0,10	-0,20		1,4	6,64E-09	1420,0	1
hsa-mir-128-1	_ 0,39	-0,02	-0,1 <mark>0</mark>	-0,29	0,11		0,5	0,015337	113,8	1
hsa-mir-193a	-0,21	0,09	0,24	0,06	0,20		-0,5	0,005131	279,3	

Comments: Top-40 potential regulating microRNA are presented. The values in each cell represent coefficient of Spearman correlation between gene and microRNA expression level. The bars inside cells (regardless of color) indicate prediction score of microRNA binding site according to several databases (from left to right): miRTarBase (strong experimental evidence), TargetScan (conservative binding sites, CS), PicTar (CS), DIANA microT, mirSVR (CS), TargetScan (non-CS), PicTar (non-CS), miRTarBase (weak experimental evidence), mirSVR (non-CS). Cell borders indicate miRNA-gene pairs with predicted binding site (dashed border – only non-CS sites; double border – several reliable algorithms). On the right side of the figure, expression profiles of microRNAs in paired tumor-

normal samples are presented in logarithmic scale (from -2 to +2, e.g. from 4-fold decrease to 4-fold increase). MicroRNAs are sorted by overall prediction score (decreasing).

Figures S1 to S5

sp Q9GZU7 CTDSP1	MDSS		AVIT	QI		SK-E								
	MDCD													
	MDTD					DEAG				ZDOWN	ETCI	COTR	VETRO	
sp/Q05b52/CIDSFII2	*	INNASQQ	• *	*		KINI S		JOLIE .		AE SIN	19191	19911	KF ING	SIFKE
COIIS			• "			•								
													CDOV0	1100
sp Q9GZ0 / CTDSP1											EARG	PLRGN	GDQKS	AASQ-
sp 014595 CTDSP2											EDAL		GLVSK	SSPR-
sp 015194 CTDSPL										20 010	EDEGI	KLPGA	GERAS	QUNVS
splQ05D32[CTDSPL2	EREN	PSKRSRII	SKDIDN	NLLJ	ISTP.	RAGE	RPNR	QISP	KVRRI	V2ČAV	GEAG	SIEMI	NQHVK	QNGKL
cons													• •	
sp Q9GZU7 CTDSP1	ĸ-	<mark>PR</mark>	SRG	ILHS	SLFC	CVCR	DDGE	LALPA	AHSGI	API	LVEE			
sp 014595 CTDSP2	<mark>ĸ</mark> -	<mark>PRO</mark>	GRN	IFK	ALFC	CFRA	QHVG	Q <mark>SSS</mark>	SSTEI	LAA	YKEE			
sp 015194 CTDSPL	LKK-	QRS	SRS	ILSS	SFFC	CFRD	Y <mark>NV</mark> E	EAPPE	PSSP	SVLPE	LVEE			
sp Q05D32 CTDSPL2	EDNP	SSGS <mark>PPR</mark>	rtll <mark>g</mark> t	IFSI	PVFN	FFSP	A <mark>NK</mark> N	IGTSC	SSDSI	PGQAV	EAEE	IVKQL	DMEQV	DEITT
cons	:	*		* <mark>:</mark> .	*	•	•	•			**			
sp 09GZU7 CTDSP1					NG	AIPK			<mark>0</mark>	TP-	<mark>v</mark>)		
sp 014595 CTDSP2					AN	TIAK	SDLI	OCL	YOFY	OIP-	G	~ Г		
sp 015194 CTDSPL					NG	GLOK	GDOR	ROVIE	PIP	-SPP-	AI	x		
sp 005D32 CTDSPL2	STTT	STNGAAY	SNOAVO	VRPS	SLNN	GLEE	AEET	VNR		LTAPV	TPDS	TYSSA	HAEAT	YEEDW
cons			<u>-</u>			: :				*				
		NT T	DEAK				100				m T T 7777			
sp/Q9G207/CTDSP1			PEAR-				-AQL	1900D1				SSERE	TIMAD	
sp 014595 CTDSP2								VCFF				SSERE	TONAD	EIVEI
sp 015194 CTDSPL				FOIN				UGAL				SOLVE	TEDAA	
splQ05D52[CTD5PL2	EVED	PIIFIKH	* PPLIC	гÕгı	WRRP.	АГЪГ	LIKS	TPER	20101		.T.L.V.H(
cons		• •	^ •				•	•				••••		: .^:
												_		
sp Q9GZU7 CTDSP1	EIDG	VVHQVYVI	LKRPHV	DEFI	LQRM	GELF	ECVI	FTAS	SLAK	ADPV	ADLLI	OK-WG	AFRAR	LFRES
sp 014595 CTDSP2	EIEG	TTHQVYVI	LKRPYV	DEFI	LRRM	GELF	ECVI	FTAS	SLAK	ADPV	TDLLI	DR-CG	VFRAR	LFRES
sp 015194 CTDSPL	EIDG	TIHQVYVI	LKRPHV	DEFI	LQRM	GQLF	ECVI	FTAS	SLAK	ADPV	ADLLI	DR-WG	VFRAR	LFRES
sp Q05D32 CTDSPL2	LFQD	VIYQVYVI	RLRPFF	REFI	LERM	SQMY	EIII	FTAS	SKKV	YADKI	LNILI) PKKQ	LVRHR	LFREH
cons	::.	. :****	**	***	*.**	. : : :	* :*	****	* 7	*** :	::*	*	.* *	****
sp Q9GZU7 CTDSP1	CVFH	RGNYVKDI	LSRLGR	DLRF	RVLI	LDNS	PASY	VFHE	PDNA	VPVAS	WFDN	MSDTE	LHDLL	PFFEQ
sp 014595 CTDSP2	CVFH	QGCYVKDI	LSRLGR	DLRF	TLI	LDNS	PASY	IFHE	PENA	VPVQS	WFDDI	MADTE	LLNLI	PIFEE
sp 015194 CTDSPL	CVFH	RGNYVKDI	LSRLGR	ELSF	KVII.	VDNS	PASY	IFHE	PENA	VPVQS	WFDD	MTDTE	LLDLI	PFFEG
sp Q05D32 CTDSPL2	CVCV	QGNYIKDI	LNILGR	DLSF	KTII	IDNS	PQAF	TAYQI	LSNG	IPIES	WFMDI	KNDNE	LLKLI	PFLEK
cons	**	:* *:**	*. ***	:* :	: . : *	:***	* ::	::	.*.:	:*: *	** :	*.*	* .*:	*::*
Sp 09GZU7 CTDSP1														
-F. R. CIC. CIPOLI	LSRV	D-DVYSVI			RPC	s								
sp10145951CTDSP2	LSRV LSGA	D-DVYSVI	L	-RQI	PRPG	S P								
sp 014595 CTDSP2	LSRV LSGA LSRF	D-DVYSVI E-DVYTSI	G G	-RQI -GQI -HRT	PRPG LR <mark>A</mark> -	S P R								
sp 014595 CTDSP2 sp 015194 CTDSPL sp 005D32 CTDSPL2	LSRV LSGA LSRE	D-DVYSVI E-DVYTSI D-DVYSMI	L L	-RQI -GQI -HRI	PRPG LRA- LCN-	S P R								
sp 014595 CTDSP2 sp 015194 CTDSPL sp Q05D32 CTDSPL2 cons	LSRV LSGA LSRE LVEL	D-DVYSVI E-DVYTSI D-DVYSMI NEDVRPH: : **	L L LRDRFR	- RQI - GQI - HRI LHDI	PRPG LRA- LCN- LLPP	S P R D								

Alignment score: BAD AVG GOOD

Figure S1. Multiple sequence alignment of the active site regions of CTDSP1/2/L/L2 proteins (performed by T-COFFEE, version 11). Color indicates alignments score (from deep purple to light red). The following UniProt sequences have been used: Q9GZU7 (CTDSP1), O14595 (CTDSP2), O15194 (CTDSPL), Q05D32 (CTDSPL2).

Figure S2. Plasmid design. (a) Plasmids pT2/HB-CMV-CTDSP1, -CTDSP2, or -CTDSPL (5168bp, 5201bp, or 5261 bp). IR/DR-FW sequence: 117-347; CMV promoter: 464-1049; open reading frame: 1006-1807, 1006-1840, or 1006-1900 (CTDSP1, CTDSP2, or CTDSPL, accordingly); bGHpA polyadenylation signal: 1834-2037 (+33 or +93 for CTDSP2 or CTDSPL); IR/DR-RV sequence: 2115-2326 (+33, +93 for CTDSP2, CTDSPL); Ampicillin Resistance Gene: 3629-4489 (+33, +93 for CTDSP2, CTDSPL). (b) Scheme of genetic constructs pT2 / HB-CMV-EGFP-2A-CTDSP1 (5951 bp), pT2 / HB-CMV-EGFP-2A-CTDSP2 (5984 bp), and pT2 / HB-CMV-EGFP-2A-CTDSPL (6044 bp).

Figure S3. The values of correlation coefficients (r_s) between the mRNA levels of CTDSP1/2/L and RB1 genes in primary NSCLC samples: SCC (A-E) and ADC (F, G) and correlation between miR-183, miR-96 and miR-182 expression in NSCLC samples (H-J).

Figure S4. Alterations in the phosphorylation level of Rb at Ser-807/811 in A549 cells transfected with *CTDSP1*, *CTDSP2*, or *CTDSPL*. (A) Western blot showing phospho-Rb and total Rb content in selected clones of A549 cells transfected with pT2/HB-CMV-CTDSP1, 2, or L. (B) Quantification of Western blot experiment. The plot demonstrates the relative phosphorylation level of Rb at Ser-807/811 in the resulting clones compared with the non-transfected A549 cells. For each clone, the density of the phospho-Rb band was divided by the density of the total Rb band and normalized to the non-transfected A549 value. The measurement of target proteins was carried out twice. Band intensity was determined using ImageJ software.

Figure S5. Genomic localization of SCP phosphatases genes and miR26a/b.