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Materials and methods15

Materials. E. coli K-12 MG1655 (ATCC 700926) was used as the wild type strain. P1 phage transduction method was used16

to generate the knockout strains(1) and strains from Keio collection were used as donor for the gene knockout cassettes(2).17

Knockouts confirmation was done by gene specific PCR and genome re-sequencing (PCR confirmation primers are given in18

Table S4). Bioscreen C Reader system was used for the growth profiling with 200 µL culture volume per well using a minimum19

of three biological replicates. Media components and Paraquat dichloride were purchased from Sigma-Aldrich (St. Louis, MO).20

Hydrogen peroxide was purchased from Fisher scientific (H325).21

Methods.22

Adaptive laboratory evolution (ALE) and DNA resequencing. ALE was performed using 3 independent replicates of ∆ubiC23

strain. Cultures were serially propagated on M9 minimal medium with 4 g/L glucose at 37°C and well-mixed for proper24

aeration using an automated system that passed the cultures to fresh flasks once they had reached an A600 of 0.3 (Tecan25

Sunrise plate reader, equivalent to an A600 of 1 on a traditional spectrophotometer with a 1 cm path length). Cultures were26

always maintained in excess nutrient condition assessed by non-tapering exponential growth. The laboratory evolution was27

performed for a sufficient time interval to allow the cells to reach its fitness plateau. The fitness jump was observed in about28

200 generations; however, the experiment was continued for approximately 900 generations to explore the possibility of any29

secondary fitness jump. Further passaging was stopped due to the absence of any appreciable growth rate increase in about30

700 generations. The slope of ln(A600) vs. time of four A600 measurements from each flask was used to determine the growth31

rate. A cubic interpolating spline constrained to be monotonically increasing was fit to these growth rates to obtain the fitness32

trajectory curves. DNA resequencing was performed on a clone from the end points of evolved strains as described earlier(3).33

Transcriptomics. Total RNA was sampled from two biological replicates. The strains were grown in a condition same as34

that used during ALE. Total RNA isolation, rRNA removal and sequencing library preparation was performed as previously35

described(3). Libraries were ran on a HiSeq and/or NextSeq (illumina). Expression profiling was performed as previously36

described(4). Raw sequencing reads were mapped to the reference genome (NC_000913.3) using bowtie v1.1.2(5) with a37

maximum insert size of 1000 and two maximum mismatches after trimming 3 bp at 3’ ends. Transcript abundance was38

quantified using summarizeOverlaps from the R GenomicAlignments package, with strand inversion for the dUTP protocol and39

strict intersection mode(6). We then estimated the dispersion and differential expression level of each gene using DESeq2(7).40

Transcripts per Million (TPM) were calculated by DESeq2.41

I-modulon decomposition. For independent component analysis (ICA), we combined the expression profiles generated in this42

study with a collection of 278 expression profiles previously generated in our research group. ICA was performed as described43

previously(8). Briefly, the expression compendium was centered using the WT E. coli MG1655 expression profile reported in44

this manuscript as the baseline condition. We executed FastICA 100 times with random seeds and a convergence tolerance of45

10−7. We constrained the number of components in each iteration to the number of components that reconstruct 99% of the46

variance as calculated by principal component analysis. The resulting components were clustered using DBSCAN to identify47

robust independent components. I-modulons were extracted from independent components by iteratively removing genes with48

the largest absolute value and computing the D’agostino K2 test statistic(9) of the resulting distribution. Once the test statistic49

fell below a cutoff of 500 (identified through a sensitivity analysis(8), we designated the removed genes an i-modulon.50

Differential i-modulon activity analysis was applied to identify statistically significant differences between i-modulon activities.51

We first computed the distribution of differences in i-modulon activities between biological replicates, and then fit a log-normal52

distribution to each distribution. To test for differential activity of an i-modulon between two different conditions, we first53

computed the average activity of the i-modulon between biological replicates. We then computed the absolute value of the54

difference in i-modulon activities between the two conditions. This difference was compared against the log-normal distribution55

for the i-modulon to calculate a p-value. I-modulons were designated as significant if the p-value was below 0.001.56

RNA-seq data for paraquat treatment (250 µM) was obtained from GSE65711(10). RNA-seq data for iron starvation (0.257

mM 2,2′-dipyridyl) and iron supplementation (0.1 mM FeCl2) were obtained from GSE54900(4).58

Phenotype characterization. Culture density were measured at 600 nm absorbance with a spectrophotometer and correlated to59

cell biomass. Samples for the substrate uptake and secretion rate were filtered through a 0.22 µm filter (PVDF, Millipore) and60

measured using refractive index detection by HPLC (Agilent 12600 Infinity) with a Bio-Rad Aminex HPX87-H ion exclusion61

column. The HPLC method was the following: injection volume of 10 µL and 5 mM H2SO4 mobile phase set to a flow rate62

and temperature of 0.5 mL/min and 45°C, respectively.63

The oxygen uptake rate of each aerobic culture was determined by measuring the rate of dissolved oxygen depletion in an64

enclosed respirometer chamber using YSI 5300A Biological Oxygen Monitor System that utilizes Clark type polarographic65

oxygen probes (Cole-Parmer Instruments, Vernon Hills, IL).66

Quinone extraction and estimation. The respiratory quinones were extracted following a protocol standardized earlier in the67

lab (11, 12). 4 ml of cultures were quenched with 6 ml of ice-cold methanol. Then, 6 ml of petroleum ether was added rapidly68

and vortexed for 1 minute. Next, the mixture was centrifuged for 2 minutes at 900g. 3 ml of upper phase was transferred to a69

fresh 15 ml tube. A second round of extraction was performed from the lower phase using 3 ml of petroleum ether. The upper70
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phases were combined and dried under nitrogen gas. Dried extract was re-dissolved in 100 µl methanol and analyzed using an71

HPLC system fitted with a XBridge BEH C18 (2.5 µm) 2.1 x 50 mm column XP (Waters). Methanol with 0.1% formic acid72

was used as mobile phase at a flow rate of 0.3 ml/min. Detection of quinones was performed using a UV detector at 290 nm for73

UQ and 248 nm for NQ. Ubiquinone-8 (Avanti Polar Lipids: 900151P) and menaquinone-7 (Sigma-Aldrich: 1381119) were used74

as standards. Peaks were identified by UV/Vis spectral analysis and mass spectral analysis. The relevant peak area was used75

to estimate the amount of each quinone species. LC-MS grade methanol, petroleum ether, and formic acid was purchased from76

Sigma-Aldrich.77

Proteome-constrained simulation. We used the genome-scale model of metabolism and protein expression enhanced by protein-78

folding network (FoldME) as it is shown to offer fine-grained descriptions of the proteome composition, and predict multi-scale79

cellular adaptation to the genetic changes(13). We incorporated the detailed experimental characterization of the E. coli strains80

into the model to infer the underlying metabolic changes between the WT, the NQ dependent strains.81

First, we constrained the model with all the experimentally quantified exchange rates and, second, we simulated the82

constrained model at the measured growth rate. Finally, to further capture the metabolic shift in respiration system before and83

after evolution, we quantified the mass fraction of transcripts involved in related pathways using the RNASeq data (Table S3).84

Imposing these mass fractions directly into the model may generate infeasible solutions due to inconsistency with the measured85

growth rate and exchange rates. Hence, we considered the fact that mass fraction of the ribosomal protein (φr) correlated86

linearly with growth rate(14, 15), and formulated the constraints on the mass fraction of selected pathway relative to φr as the87

reference:88

φr.V pathway ≥ φpathway.V r (1)

φpathway denotes the total mass fraction of proteins involved in the corresponding pathway as calculated from the89

transcriptomic profile.

V pathway =
∑
i

mwi.V
translation
i (2)

V r =
∑
i

mwr−proteini .V
translation
r−proteini

(3)

90

where mwi and Vitranslation denote the molecular weight and translation flux of the ith protein in the corresponding91

pathway.92

Lag time estimation. For each replicate, we fit the absorbance measurements obtained from the Bioscreen C reader using93

non-linear least squares by running the nls command on R to estimate the growth parameters of the Baranyi growth model in94

each condition(16). The default starting values for lag phase duration, µmax , log10(N0) and log10(Nmax) were initially set to95

4, 0.8, 0.1, 0.6. In addition, because some strains exhibited biphasic growth patterns, we excluded data points past a selected96

time threshold. To select time thresholds and better starting values for the growth curve parameters in an unbiased fashion, we97

ran a sensitivity analysis in which we computed the sum of squared errors from fitting the non-linear growth model to the98

absorbance measurements from time t = 0 to time t = T (with T varying from 2 hours to the total duration of the experiment).99

We subsequently used Findpeaks from the Pracma package(17) to find the times at which the sum of squared errors minima100

occur. We then selected the latest time point at which a minimum occurs and used the estimated growth parameters as the101

starting values for a subsequent nonlinear squares regression run. We reported the estimated parameters from the second run.102

We subsequently ran ANOVA to test for the significance of the differences observed in relative lag phase between treated and103

untreated samples in R. Calculated relative lag phase durations were subjected to a two-way analysis of variance having two104

levels of treatment type (paraquat and hydrogen peroxide), and two levels of evolution treatment (evolved and pre-evolved),105

excluding the measurements from the wild-type cells. The main effect of treatment type yielded an F ratio F(1,67) = 157.6,106

p-val < 0.001 and that of the evolution treatment yielded an F ratio of F(1,67) = 238.995, p-val < 0.001. The interaction was107

significant (p-val < 0.001). We subsequently subdivided the data set into paraquat treated conditions and hydrogen peroxide108

treated conditions and subjected the measurements for relative lag phase to a one-way analysis of variance having two levels of109

evolution treatment (evolved and pre-evolved). The main effect of evolution treatment was significant in the paraquat treated110

cells (F(1,40) = 414.04, p-val < 0.001 but not in the hydrogen peroxide treated cells (F(1,27) = 2.39, p-val = 0.13).111

Computing the cause of growth rate limitation. We investigated why ∆ubiC strains did not reach the wild type growth rate112

even after adaptive evolution. The consequence of ubiC deletion is increased use of naphthoquinone (NQ). As outlined in the113
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main text, NQ is susceptible to losing electrons to oxygen, thus generating superoxide. From this phenomenon, we hypothesized114

that two separate mechanisms are responsible for lower evolved growth rate: (i) the increased cost (metabolic and protein115

expression) of detoxifying reactive oxygen species (ROS), and (ii) the lowered efficiency of the electron transport chain due to116

diversion of electrons away from cytochromes and toward superoxide. (Note that a third hypothesis is that the superoxide117

generated causes downstream damage to cellular components. However, we assume that the detoxification capacity is high118

enough that the additional ROS is fully detoxified to oxygen and water.)119

To quantitatively compute growth rate subject to these two mechanisms, we used a genome-scale model of metabolism120

and macromolecule expression (ME)(18). The model accounts for expression (including transcription, translation, and metal121

cofactor incorporation), and metabolism (including ATP usage and redox balancing requirements), all in the context of the ME122

network reconstruction of E. coli.123

To test hypothesis (i). we performed the following steps:124

1) Create an artificial superoxide source in the periplasm by adding the reaction: e− + O2 → O2
.−

125

2) Constrain (force) the reaction flux between 0 and a max value (30 mmol/gDW/h)126

3) Simulate maximum growth rate127

At step 1), we do not actually take electrons away from another metabolite, since we are testing only the fitness cost of128

detoxifying superoxide.129

To test hypothesis (ii). we performed the following steps:130

1) Add the reaction: NQH2 + 2 O2 → NQ + 2 O2
.− + 2 H+

131

(where NQH2 is menaquinol 8, and NQ is menaquinone 8 in the model)132

2) Constrain (force) the reaction flux between 0 and a max value (30 mmol/gDW/h)133

3) Simulate maximum growth rate134

In both simulations, we compute growth rate versus the “leak percent” defined as135

Leak percent = vleak / (vleak + vcytochrome) x 100%136

where vleak is the flux of electrons leaked to superoxide due to the added reaction in mechanism (i) or (ii), and vcytochrome is137

the sum of total flux of electrons directed to the three cytochrome oxidases.138

Computation of the cost of naphthoquinone and ubiquinone biosynthesis . We computed the cost of synthesizing NQ and UQ139

using the genome-scale model of E. coli metabolism, iML1515(19). We defined cost as the moles of ATP, carbon, or oxygen140

required to synthesize one mole of NQ/UQ.141

We performed the following steps:142

1) Add an artificial sink reaction for NQ (menaquinone-8) or UQ (ubiquinone-8)143

2) Set the max glucose uptake rate to 10 mmol/gDW/h144

3) Compute maximum flux of the sink reaction, vQ using parsimonious flux balance analysis (pFBA) (pFBA is used to145

compute the most efficient ATP, carbon, and oxygen usage to make NQ or UQ)146

4) Compute costs (where vQ is the maximum sink flux):147

(a) ATP (turnover) cost =
∑

jεATPUsed

vj/vQ,148

where ATPUsed is the set of reactions consuming ATP. (Note that due to mass balance, this sum of fluxes is equivalent to the149

sum of reactions of producing ATP, or half the sum of absolute fluxes that consume or produce ATP.)150

(b) Carbon cost = 6 carbon x glucose uptake rate / vQ151

(c) Oxygen cost = 2 oxygen x oxygen uptake rate / vQ152

For all computations, we removed the non-growth associated ATP maintenance requirement by setting its lower bound to 0.153

Data availability. Resequencing and expression profiling data that support the findings of this study have been deposited to154

NCBI Sequence Read Archive (SRA accession: PRJNA560068) and Gene Expression Omnibus (GSE135867) respectively.155
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Fig. S1. (A) Part of respiratory quinone biosynthetic pathway highlighting the chorismate node. (B) Estimate of respiratory quinones. Bar height represents the average to
replicates shown individually as dots. ‘n. d.’ stands for not detected. (C) The extended axis plot of the growth rate evolution trajectories of ∆ubiC replicates corresponding to
figure 1B.
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Table S1. List of mutations observed in evolved strains

Strain Mutations
ALE-1 pdhR (G→T E37*) ubiE (T→G)
ALE-2 aroP, pdhR (T→C) yoel, yeeY [(G)7→8] yfaY (G→A)
ALE-3 pdhR (G→T G62C) mhpE [(GCG)3→2]

In the ∆ubiC strain, an 82-bp deletion between pyrE and rph occurred during the strain construction and thus appeared in all ALE endpoint
strains. This deletion is commonly found in ALE of E. coli(20). This metabolic mutation has been shown to relieve a defect in pyrimidine
biosynthesis present in the WT strain that improves the growth rate(21, 22). This explains the difference between the reported(23) and observed
growth rate of the pre-evolved ∆ubiC strain.
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Table S2. Estimate of the biosynthetic cost of respiratory quinone

Cost parameter Q = UQ Q = NQ
mole ATP/mole Q 53.4996 42.5
mole Glucose/mole Q 13.0421 12.7549
mole O2/mole Q 12.7524 8.52967
mole Carbon/mole Q 78.2524 76.5296
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Table S3. Mass fraction of major metabolic pathways

Strain r-protein Glycolysis oxPPP TCA oxPhos Pyruvate
WT 0.1600 0.0489 0.0103 0.0282 0.0431 0.0082
∆ubiC 0.1321 0.0596 0.0114 0.0232 0.0367 0.0072
ALE-1 0.1318 0.0524 0.0115 0.0272 0.0415 0.0081
ALE-2 0.1292 0.0553 0.0126 0.0253 0.0420 0.0096
ALE-3 0.1214 0.0611 0.0127 0.0232 0.0394 0.0097
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Table S4. List of primers used in this study

Kanamycin cassette specific primers
k1 CAGTCATAGCCGAATAGCCT
k2 CGGTGCCCTGAATGAACTGC
Gene specific primers
ubiC (U) CTGGCATCCTGGACGGTGAT
ubiC (D) CCGGCAGCGCGCATCAGCCA
pdhR (U) GTGAATCGGTTCAATTCGGA
pdhR (D) AACACCTTCTTCACGGATGA

(U: upstream primer; D: downstream primer)
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Additional data table S1 (Supplementary_table.pdf)156

i-modulon genes157
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