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Supplementary Information Text 
 
Materials and Methods 
 
Description of valley oak provenance trial 
Valley oak (Quercus lobata Neé), along with other oak species, are culturally, economically, and 
ecologically important trees in California—both to the native peoples of California for more than 
10,000 years (1) and to present-day human populations (2, 3). After acorns were collected from 
valley oak maternal trees in 2012, they were germinated in a greenhouse at the USDA Forest 
Service, Pacific Southwest Research Station, Institute of Forest Genetics (IFG) in Placerville, CA 
(Figure S1). Following germination, seedlings were placed into lathe houses at IFG and the 
USDA Forest Service, Chico Seed Orchard (CSO), in Chico, CA (Figure S1). When planted into 
the field in late 2014 / early 2015, seedlings were spaced evenly at 2.25 m intervals, and blocks 
were irrigated, and weeds were controlled to maximize the probability of seedling establishment 
as is commonly done in provenance trials. Seedlings were planted into a randomized block design 
within each site such that each family (i.e., seedlings collected as acorns from a single adult) had 
at least one representative in each block at each site. Full details on the establishment and 
planting design of the provenance trial are available in Delfino-Mix, Wright, Gugger, Liang and 
Sork (4). 
 
Climate data 
We used climate data from the Basin Characterization Model dataset developed for California (5), 
which integrates climate data with landscape attributes like topography to generate monthly 
climate data at a 270 x 270 m resolution. For evaluating the potential effects of climate change on 
valley oak growth, we focused on Tmax, the average maximum temperature of the hottest months 
from June-August, which is a climate variable shown to be important in shaping genetic variation 
and geographic distribution in valley oak (6-10). Tmax in our dataset is strongly correlated with 
other temperature-related variables, such as mean annual temperature, mean annual maximum 
temperature, temperature seasonality, and growing degree days > 5° C (Pearson’s R > 0.60 for 
all). We did not focus on associating precipitation variables with progeny growth in the 
provenance trials because the common garden sites were irrigated during establishment, which 
would obscure differences in precipitation between the climate of origin and common garden 
sites. We did, however, use precipitation variables when considering how climate of origin was 
associated with growth in the common gardens and how climate of origin was associated with 
patterns of genetic variation (see below).  
 

To characterize climate of origin, we performed a principal component analysis (PCA) 
based on a set of 10 climate variables, where the first two axes explained 41.1% and 23.3% of the 
variance respectively (Fig. S6). The climate variables we used to characterize climate of origin 
were maximum summer temperature (Tmax), average maximum temperature across all months 
(Tmax_annual), minimum winter temperature (Tmin),  average minimum temperature across all months 
(Tmin_annual), average temperature across all months (Tave), temperature seasonality (Bioclim 4), 
precipitation seasonality (Bioclim 15), summer precipitation (Bioclim 18), precipitation of the 
coldest quarter (Bioclim 19), and climatic water deficit (CWD), which have all been shown to be 
important in predicting genetic variation in valley oak (10, 11). We calculated bioclimatic 
variables from monthly Basin Characterization Model climate data in the ‘climates’ R package 
(12). For estimating how temperature has changed since the Last Glacial Maximum 21,000 years 
ago, we used paleoclimate data from the ClimateWNA v5.00 dataset (13). 
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To model the effect of future climate on valley oak growth, we focused on the 
representative concentration pathway RCP 8.5 from the IPCC 5th assessment report for 2070-
2099, which represents a business-as-usual scenario where emissions continue to rise throughout 
the 21st century reaching > 1,370 ppm CO2 equivalent by 2100 (14). We used a total of 5 RCP 
8.5 projections (MIROC-RCP85, CCSM4-RCP85, IPSL-RCP85, CNRM-RCP85, FGOALS-
RCP85) from the Basin Characterization Model climate dataset and made predictions separately 
for each climate projection and then averaged across the results.  

Modeling growth based on Tmax difference 
We used height of the tallest stem as our metric of growth because it likely plays an important 
role in the fitness and survival of valley oak seedlings, where taller seedlings are more likely to 
escape grazing by native and domestic herbivores, which is a prominent limitation on recruitment 
for valley oak (15). Additionally, height of the tallest stem is an easily collectible, non-destructive 
metric of growth that was available for all census years. Height of the tallest stem in valley oak is 
strongly correlated with other metrics of growth, such as stem diameter (16). We excluded 
seedlings that had died, that had obvious signs of mechanical or gopher damage (e.g., effects on 
growth obviously not related to climate), that were missing height data in either the 2014 or 2017 
census, or that had negative growth rates (possibly due to measurement error). These exclusions 
resulted in a final dataset of 5,051 seedlings.  
 

In our growth model, we included the height of the tallest stem in the 2014 census to 
control for differences in growth prior to planting and because relative growth rate usually 
declines with plant size (17). To control for the effects of differences in climate of origin (e.g., 
plants originating in warm, wet areas growing faster than plants from cool, dry areas) and 
potential interactions of climate of origin with Tmax difference on progeny growth, we included in 
the model the first two principal components of the climate of origin (see above) and the 
interaction effect of the principal components of climate with Tmax difference. To control for 
unmeasured genetic and environmental correlations among progeny from the same family or the 
same population, we included Family ID and locality where the individuals were collected as 
random effects. The overall model associating relative growth rates to Tmax difference and other 
covariates took the following form: 
 
RGR	=	α	+	𝑓((𝑇+,-	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)	+	𝑓56𝑃𝐶1:;<+,=>_@A_@B<C<DE+	𝑓F6𝑃𝐶2:;<+,=>_@A_@B<C<DE 	

+	𝑓H6𝑇+,-	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 	𝑃𝐶1:;<+,=>_@A_@B<C<DE
+	𝑓J6𝑇+,-	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 	𝑃𝐶2:;<+,=>_@A_@B<C<DE 	
+	𝑓K(𝐻𝑒𝑖𝑔ℎ𝑡5P(H)	+	𝑓Q(𝐹𝑎𝑚𝑖𝑙𝑦)	+	𝑓W(𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦)	+	Block	+	ε 

 
	where	𝑅𝐺𝑅	is the relative growth rate, 𝛼 is the estimated intercept, 𝑓(, . . . , 	𝑓W are smooth 
functions estimated by the model with restricted maximum likelihood, and 𝜀	is the model error 
term. Variable descriptions are given in main text. We used a Tweedie error distribution (18, 19), 
which allows a flexible mean-variance relationship and improved model fit compared to a 
Gaussian error distribution (Fig. S7). Continuous covariates were mean centered and scaled to SD 
= 1 prior to analysis to aid in model convergence and prediction (20). We fit the model to the data 
using the ‘mgcv’ package (21) in R 3.4.1 (22). 

 
Genotyping by sequencing 
Leaf samples from valley oak adults were collected throughout the species range (Fig. S1), and 
were stored on ice until arriving at UCLA, where they were transferred to a -80° C freezer for 
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storage. We extracted total genomic DNA from 50 mg of frozen tissue using the Qiagen DNeasy 
Plant Mini Kit, adding an additional prewash step to remove secondary compounds from the 
finished product. The prewash step consisted of adding 1 mL of prewash buffer after grinding 
samples, shaking the resulting mixture for 10-20 s at 30 Hz, and then spinning 10 min at 10,000 
rpm in a microcentrifuge. Following this step, we discarded the supernatant and processed the 
pellet following the standard DNeasy protocol starting at the Buffer AP1/RNase A addition step. 
The prewash buffer was made of 0.01 g/mL polyvinylpyrrolidone (PVP) (k-30, SABC), 50 mM 
EDTA, 100 mM Tris-HCl (from pH 8.0 stock), 1 M NaCl, and 4.5 μL/mL 2-mercaptoethanol 
(added immediately prior to use). 
 
 Next, we digested the total genomic DNA with a restriction enzyme, following the 
genotyping by sequencing protocol of Elshire, et al. (23), with a few modifications. In contrast to 
the original protocol, we pooled 48 samples per library prep and sequencing lane rather than 96. 
Additionally, we added adapters during the ligation step rather than prior to restriction digestion, 
and we added AMPure XP bead-based size selection/purification steps after the ligation step and 
repeated after the PCR step. Finally, we altered the number PCR cycles to 16 from 18. We sent 
the final libraries for sequencing to the UCLA Broad Stem Cell Research Center on an Illumina 
HiSeq2000 v3 using single-end, 100-bp sequencing.  
 

We used STACKS 1.28 to 1.41 (24) to demultiplex and filter reads, removing adapter 
sequences with up to two mismatches (adapter_mm), recovering barcodes with up to one 
mismatch to the expected barcodes (r), removing reads with an uncalled base (c), and discarding 
low quality reads with default settings (q). Additionally, we trimmed reads to 92 bp (t). We 
aligned reads to v3.0 of the Quercus lobata reference genome available at 
http://valleyoak.ucla.edu using BWA 0.7.12 (25). We called SNPs with a minimum Phred-scaled 
confidence threshold of 30 using GATK 3.7 (26).We also filtered low quality variations that 
were: QD < 10.0 (quality by depth), DP < 4 (genotype read depth), and ExcessHet > 100. We 
then applied an iterative filtering process (27) to filter out individuals with ≥ 25% missing data, 
and filter to biallelic SNPs with ≤ 5% missing data, minor allele frequency ≥ 5%, a mean depth of 
coverage ≥ 5, and a quality score > 20 using VCFtools v0.1.15 (28). We filtered SNPs in linkage 
disequilibrium using plink v1.90 (29), pruning pairs of SNPs within a 500 bp sliding window that 
had an R2 > 0.70 with another variant until no such pair remains, advancing the window 50 bp at 
a time. 
 

Genome-wide association analysis with Tmax difference 
For stage one of our two-stage residual-outcome GWAS (30), we included the main effects of 
Tmax difference, along with Family ID, Block, Locality, Height in 2014, the first two principal 
components of the climate of origin as described above, and the interaction effect of the principal 
components of climate with Tmax difference. Additionally, to control for population structure that 
may produce spurious associations in GWAS (31, 32), we estimated the kinship matrix among 
individuals using all SNPs that passed filtering using the ‘A.mat’ function in the R package 
‘rrBLUP’ (33). We then ran a principal components analysis using the ‘prcomp’ function in R 
and used the first two PC axes in the model, which explained 3.4% and 2.1% of the variation, 
respectively (Fig. S8). We included these first two PC axes and their interactions with Tmax 
difference in the model, which took the following form:  
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RGR	=	α	+	𝑓((𝑇+,-	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) +	𝑓56𝑃𝐶1:;<+,=>_@A_@B<C<DE+	𝑓F6𝑃𝐶2:;<+,=>_@A_@B<C<DE
+ 𝑓H6𝑇+,-	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 	𝑃𝐶1:;<+,=>_@A_@B<C<DE
+	𝑓J6𝑇+,-	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 	𝑃𝐶2:;<+,=>_@A_@B<C<DE 	
+	𝑓K(𝐻𝑒𝑖𝑔ℎ𝑡5P(H)	+	𝑓Q(𝐹𝑎𝑚𝑖𝑙𝑦)	+	Block	+	𝑓W(𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦)	+	𝑓f6𝑃𝐶1g<Dhi<jE	+	
𝑓(P6𝑃𝐶2g<Dhi<jE 	+	𝑓((6𝑇+,-	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 	𝑃𝐶1g<Dhi<jE
+	𝑓(56𝑇+,-	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 	𝑃𝐶2g<Dhi<jE	+	ε 
 
where	𝑅𝐺𝑅 is the relative growth rate, 𝛼	is the estimated intercept, 𝑓(, . . . , 𝑓(5 are smooth 
functions estimated by the model with restricted maximum likelihood and a Tweedie error 
distribution (18, 19). Variables were mean centered and scaled to SD = 1 prior to analysis. We fit 
the model to the data using the ‘mgcv’ package (21) in R 3.4.1 (22). 
 
 In stage two, we used the residuals of the above model (representing adjusted relative 
growth rates) as the dependent variable and estimated the main effect of each genotype and 
interaction of Tmax difference and genotype (e.g., 0, 1, 2 copies of non-reference alleles in the 
maternal genotype) for each SNP. The main effects of Tmax difference, in addition to Family ID, 
Block, Locality, Height in 2014, the first two principal components of the climate of origin were 
not included in the stage two model because they were previously included in the stage one 
model. Here, it useful to consider the interaction between adjusted relative growth rates and Tmax 
differences for each genotype as a ‘function-valued’ trait (34, 35) (i.e., a trait that varies as a 
function of another continuous variable). We centered and scaled genotypes (i.e., mean = 0, SD = 
1) prior to analysis and imputed missing data with the average genotype value. We again used a 
GAM framework to estimate genotype interactions separately for each SNP (n = 12,357 models), 
estimating effects with restricted maximum likelihood and a Gaussian error distribution because 
values for adjusted relative growth rates were approximately normally distributed. The models 
took the following form: 
 

Adjusted	RGR	=	α	+	Genotype	+	𝑓((𝑇+,-	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒)	+	ε 
 

It is important to note that we associated maternal genotypes with the relative growth 
rates of their progeny in the provenance trial, which comes with some limitations that likely 
reduce the power to detect such associations. In the case of homozygous maternal genotypes, the 
progeny will contain at least one allele from the maternal genotype, with the identity of the other 
allele contributed by the pollen donor remaining unknown. In the case of heterozygous maternal 
genotypes, the alleles will segregate amongst their progeny at an approximate ratio of 50:50. We 
included heterozygous maternal genotypes in the analysis to not limit the sample sizes in our 
GWAS.  

 

Genomic-estimated breeding values (GEBVs) 
Genomic-estimated breeding values are commonly used in plant and animal breeding programs to 
facilitate genomic improvement across generations (36-39). GEBVs use genomic sequencing data 
to estimate the summed effects of alleles across many loci for a desired trait. This approach has 
increasingly been used for forest trees (40) and human genetics (also referred to as polygenic 
scores) to model the genomic basis of complex, polygenic traits. Generally, the breeding value 
approach focuses on the combined effects of many loci across the genome on phenotypic 
variation, rather than isolating the effects of individual loci, which complements our sequencing 
approach (GBS) that sequences only a random fraction of the genome, which would likely limit 
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our ability to isolate and identify any one SNP casually linked with phenotypic variation, but 
provides us power to assess how genome-wide genetic variation is associated with phenotypic 
variation. 
 

We calculated GEBVs based on the maternal genotype of each seedling, and as a result, 
we interpret the GEBVs to indicate the genetic value of each maternal tree in relation to their 
average progeny performance when progeny are planted into warmer temperatures that their site 
of origin. To estimate GEBVs, we summed the predicted adjusted progeny relative growth rates 
in warmer temperatures (Tmax difference > 0° C) for each maternal genotype: 
  
 

𝐺𝐸𝐵𝑉<	=	y 𝐺𝑟𝑜𝑤𝑡ℎ	𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒<|
|

 

 
where GEBV is the genomic-estimated breeding value for maternal tree i, and Growth response is 
the predicted relative growth rate of progeny averaged across values of Tmax difference > 0° C  & 
<  9.3 °C after adjusting for covariates (e.g., block effects, initial height, locality, family ID, 
genetic kinship, and climate of origin) for the genotype of maternal tree i at SNP j. We used 
9.3°C Tmax difference as the upper limit for predictions because that was the maximum observed 
difference across the two planting sites in the common garden experiment. We mean centered and 
scaled GEBVs to SD = 1 after estimation to aid in interpretation. We varied the number of SNPs 
used in GEBV estimation from 25, 50, 100, 200, 300, …, 1000, 2000, 3000, …, to 12357 SNPs 
and chose the final number of SNPs to use in estimated GEBVs based on the SNP set that 
maximized the variance explained in the adjusted relative growth rates in either the full data set or 
an independent testing set (see below for cross-validation approach). SNPs were ordered before 
selection based on the strength of their genotype-by-temperature interaction, such that the top 
SNPs were the SNPs with the lowest P values of the interaction term of genotype and Tmax 
difference in the testing set from the GAM output following Lasky et al. (41). 
 

Figure S9 shows a Manhattan plot, a histogram, and a QQ plot of the resulting 
uncorrected P values used when ordering SNPs for the GEBV estimation. Given that the goal of 
the study was not to identify any particular SNP or gene associated with growth rates, which 
would necessitate strict statistical significance thresholds to avoid false positives, we present 
results using P-values uncorrected for multiple testing. Additionally, using P-values adjusted for 
multiple testing produced very similar results as using uncorrected P-values, and P-values from 
our data simulation results (see below) show a similar distribution as our empirical results. Given 
that the magnitude of P-value estimates and whether they pass significance thresholds were not an 
important factor in improving breeding value estimates, we do not consider using either 
uncorrected or corrected P-values to have a major effect on the results or interpretation.  

 
We assessed the explanatory and predictive power of the GEBVs with respect to adjusted 

relative growth rates. To assess the explanatory power (i.e., the ability of GEBVs to explain 
variation in adjusted relative growth rates in the same dataset the GEBVs were estimated from), 
we calculated the R2

adj of a GAM with adjusted relative growth rates as the response variable, and 
GEBVs and the interaction between GEBVs and Tmax difference as explanatory variables using 
the full dataset of n = 2,295 seedlings with maternal genotypes. Importantly, here, the same data 
is being used to both fit the model and assess its explanatory power, which does not provide 
information on the ability of GEBVs to predict adjusted relative growth rates in an independent 
dataset, but does provide us information on how well the GEBVs explain variation in adjusted 
relative growth rates for our sampled population.  
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We assessed the predictive power (i.e., the ability of GEBVs to explain variation in 
adjusted relative growth rates in observations not used to fit the model) of the GEBVs using 10-
fold cross-validation (37, 42), which is a common approach to evaluate GEBVs by training a 
model on one portion of the dataset and validating the resulting model on a withheld ‘testing’ 
dataset. We employed a 10-fold cross-validation approach where the training sets consisted of 
approximately 90% of the full dataset and the testing sets consisted of the remaining 10%. 
Because having individuals from the same family in both the training and testing set could 
influence the predictive power of GEBVs (42), we used two approaches and present results from 
both. In the first approach, the training and the testing sets were chosen such that no individuals 
from the same family group (i.e., collected from the same maternal tree) were in both the training 
and testing set. In the second approach, individuals from the same family group were allowed to 
occur in both training and testing sets. For both approaches, we calculated GEBVs in the training 
set and calculated the R2

adj in the testing set, as described above. The number of SNPs used to 
estimate GEBVs varied across each validation fold depending on the number of SNPs that 
maximized R2

adj in the testing set in each validation fold. The predictive power of GEBVs was 
not strongly different between approaches that either included or excluded individuals from the 
same family in the testing and training sets (Table S2). We assessed whether the predictive power 
estimated by cross-validation was higher than what would be expected under a null model of no 
association between GEBVs and growth rates using a permutation-based approach, where for 
each cross-validation fold, we permuted the response variable (adjusted relative growth rates) 100 
times and calculated the average R2

adj across these permutations.  
 

Based on the full dataset of 5,051 individuals and the estimated variance across family 
lines, we calculated narrow-sense heritability of relative growth rates to be h2 = 0.19 after 
controlling for block effects and initial height following Falconer and Mackay (43) and assuming 
half-sib relationships within families, which is very common for valley oak (44). This estimate of 
h2 represents the upper limit on the explanatory power of GEBVs for relative growth rates for this 
study population.  

 
Estimating GEBVs with BLUPs 

An alternative approach to estimating GEBVs is the gBLUP (genomic Best Linear 
Unbiased Predictor) method, which predicts breeding values based on the genomic relatedness 
matrix among individuals (36, 37). First, to estimate our trait of interest – the growth response of 
progeny when planted into warmer temperatures than where they originated – we fit a linear 
mixed effect model where growth responses of progeny across Tmax differences was fit as a 
quadratic function, such that progeny relative growth rates were a function of Tmax difference and 
its squared term. The 1st order polynomial term was treated as a random effect that varied across 
maternal trees, which allows the overall position of the progeny growth response curve to vary for 
each maternal tree. We did not treat the 2nd order polynomial term as a random term due to issues 
with model convergence and fit. We also included as fixed effects: initial height, initial height 
squared, block effects, the first two PCs of the kinship matrix, and the first 2 PCs of the climate of 
origin. We fit the model using the lme4’ (45) package in R v3.5.1 (22). From this model, we 
calculated the relative growth rate of progeny when planted into warmer temperatures for each 
maternal-tree from the predicted growth response functions and used this maternal tree-level 
metric as the phenotype for the gBLUP analysis. We used the ‘BGLR’ (46) package to conduct 
the gBLUP analysis. This analysis used the average predicted growth response of progeny planted 
into warmer temperatures for each maternal tree as the response variable and the genomic 
relatedness matrix among maternal trees as the response variable, fit using a Reproducing Kernel 
Hilbert Spaces (RKHS) model as described in the BGLR manual (https://cran.r-
project.org/web/packages/BGLR/vignettes/BGLR-extdoc.pdf). The gBLUP analysis produced 
very similar breeding value estimates (Pearson’s R = 0.82, P < 0.001, Fig. S10a) and growth 
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response estimates (Fig. S10b) as the GAM approach described above. Through data simulations 
(see section directly below), we found that the GAM approach was more effective as estimating 
breeding values than the gBLUP approach for the goals of our study, and therefore only present 
the GAM results in the main text. 

 

Validating analysis approach with data simulations 

Overview 
To validate our approach to estimating GEBVs based on estimating generalized additive models 
(GAMs) on a SNP-by-SNP basis, we performed a series of data simulations with a sampling 
design similar to the one presented in this study. For a simulated set of maternal trees, we 
simulated known breeding values for the growth response of progeny when planted into warmer 
temperatures than their climate of origin. We then tested how the estimated GEBVs generated 
from our analysis approach were correlated with the simulated ‘true’ breeding values. We also 
assessed how varying the genetic architecture of progeny growth response to warmer 
temperatures and varying sampling designs would influence the efficacy of alternative analysis 
approaches (e.g., approach used in this study based on modeling SNPs independent with GAMs 
vs. a gBLUP [genomic best linear unbiased predictor] approach). 
 
Data generation 
Our general approach was to simulate datasets with similar designs as the empirical data collected 
in this study. For initial simulations, we simulated 300 maternal trees with progeny planted into 2 
planting sites (though we vary this in later simulations), with 5 blocks per planting site and one 
progeny per maternal tree planted in each block at each site, for a total sample size of 3,000 
seedlings. Then, we simulated the relative growth rates of progeny across Tmax differences, with 
variation in this growth response mediated by genetic variation of the maternal tree (described 
below). The effect sizes of block effects, site effects, and overall family effects on the progeny’s 
relative growth rates were randomly drawn from a normal distribution with a mean of 0 and 
standard deviation of 0.25, which produced similar effect sizes as those observed in our empirical 
data. The Tmax of simulated planting sites ranged from 25°C to 35°C and the Tmax of origin for 
each maternal tree (and its progeny) was generated from a normal distribution with a mean of 30° 
and a standard deviation of four. These values were chosen to generate an adequate distribution of 
Tmax differences for progeny in the simulated planting sites: 
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We simulated variation across maternal trees in terms of the growth response of their 
progeny to Tmax differences, where some maternal trees would have progeny that grow relatively 
well when planted into warmer sites (values of Tmax difference > 0°), while other maternal trees 
would have progeny that would grow better when planted into cooler sites (Tmax difference < 0°). 
We modeled variation in progeny growth response to Tmax differences at the maternal tree level as 
a quantitative trait, with the underlying genetic architecture generating this trait varying across 
simulations. We used 12,000 simulated unlinked SNPs with a minor allele frequency > 0.05 to 
generate the quantitative trait. We simulated scenarios where progeny growth response to Tmax 
differences was modeled as: (1) a polygenic trait where most SNPs contributed small effects to 
explain 99% of the variance in progeny growth response across maternal trees, and (2) a trait 
determined by major QTLs, where 100 out of the 12,000 simulated SNPs explained 99% of the 
variance in differences in progeny growth response across maternal trees and the remaining 
11,900 SNPs had no direct effect on the trait. We conservatively scaled the effect size of Tmax 
differences on progeny growth response such that it was comparable or lower than the effect sizes 
of block, site, family, and residual error.  
 

We generated the form of the progeny growth responses to Tmax differences for each 
maternal tree from a normal distribution with a standard deviation of four. The mean of the 
progeny growth response functions represented the value of Tmax difference that progeny growth 
was maximized, with values of Tmax difference closer to 0° indicating maternal trees that display 
patterns expected under local adaptation. The figure below shows an illustrative distribution of 
progeny growth response to Tmax differences across 300 simulated maternal trees represented by 
different colors, with the species-level average growth response in black, slight offset from an 
optimum of Tmax difference = 0° to mimic the species-level pattern observed in the empirical data. 
 

 
Our trait of interest for both the empirical and simulated data analyses was the growth 

response of progeny planted in warmer temperatures (values of Tmax difference > 0°), which acts 
as a function-valued trait (34, 35) (e.g., a trait that varies as a function of another continuous 
variable). We summarized this trait by averaging the predicted effects on relative growth rates for 
values of Tmax difference > 0°. The figure below illustrates how this value was calculated across 
two representative simulated maternal trees. Each color represents a different maternal tree, with 
the red line showing a maternal tree with relatively higher progeny growth rates in warmer 
temperatures compared to the blue maternal tree. The bold sections of each line indicate the 
values that are being averaged over (progeny growth response at Tmax difference > 0°) to 
summarize progeny growth response. Because this variation in the position of the growth 
response curve is a quantitative trait explained by the underlying genomic variation, we use this 
summary value of progeny growth response when planted into warmer sites as our ‘true’ breeding 
value (BV). The main goal of the statistical analysis is to estimate this breeding value given only 
genomic marker and phenotypic information. 
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Altogether, we modeled the data-generating process for our simulated progeny growth 

rates as: 
 

Simulated	RGR	=	α	+	Block	_effect	+	Site_effect	+	Family_effect	+	Tmax_difference_effect	+	ε 
 
where α is the global intercept set to 1, and residual errors ε are drawn from a normal distribution 
with mean of 0 and a standard deviation of 0.25. We did not include initial height, locality, or the 
principal components of the climate of origin in the simulated data generating process to simplify 
the simulation and modeling process, even though they are included as covariates in the analyses 
presented in the main text. We do not anticipate the exclusion of these covariates would have an 
impact on the validity of our simulation results because these components did not have significant 
interactions with progeny growth rates across Tmax differences in our empirical dataset. 

Statistical Analysis 
Using the simulated datasets, we ran the analysis approach presented in the main and 
supplementary text of this study, which we refer to here as ‘SNP-by-SNP GAM analysis’, and 
calculated the Pearson’s correlation coefficient between estimated GEBVs from this statistical 
approach and the ‘true’ BVs calculated directly from the simulated data. We also wanted to assess 
alternative statistical approaches, such as a gBLUP (genomic Best Linear Unbiased Predictor) 
analysis that predicts breeding values based on the genomic relatedness matrix among individuals 
(36). We ran two separate gBLUP analyses, which differed in how they were estimating and 
summarizing progeny growth responses when planted into warmer temperatures. First, we used a 
generalized additive model (GAM) and estimated separate progeny growth response functions 
across Tmax differences for each maternal tree by treating the interaction between Tmax difference 
and family as a random effect. From these predicted progeny growth responses, we calculated the 
relative growth rate when planted into warmer temperatures (Tmax difference > 0°) for each 
maternal tree and used this maternal tree-level metric as the phenotype for the gBLUP analysis. 
The benefit of this ‘gBLUP-GAM’ approach is that the shape of the progeny growth response is 
flexible and not assumed to take a linear form, though it can be slow to fit models when the 
sample size is large.  
 

The second gBLUP analysis estimated growth responses across Tmax differences as a 
quadratic function in a linear mixed model, such that progeny relative growth rates were a 
function of Tmax difference and its squared term, and the 1st order polynomial term was treated as 
a random effect that varied across maternal trees. This ‘gBLUP-Quadratic’ approach allows the 
overall position of the progeny growth response curve to vary for each maternal tree and therefore 
have different Tmax difference optimums, though it assumes that the overall curvature of the 
progeny growth response curve is equivalent across families, which happens to be the case in our 
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simulated data. We initially tried to have both the 1st and 2nd order polynomial terms vary as 
random effects across maternal trees, but these models did not converge or produce reliable 
estimates using this approach with our simulated data sets. As in the gBLUP-GAM, we similarly 
calculated the relative growth rate of progeny when planted into warmer temperatures for each 
maternal-tree based on the predicted growth response functions and used this maternal tree-level 
metric as the phenotype for the gBLUP analysis. The benefit of this gBLUP-Quadratic approach 
is that it is relatively fast to fit the model, but it assumes a quadratic shape of the progeny growth 
response function, which may not be accurate in all cases. We fit the growth response models in 
R v3.5.1 (22) using the ‘mgcv’ (21) and ‘lme4’ (45) packages. To conduct the gBLUP analyses, 
we used two R packages ‘BGLR’ (46) and ‘GAPIT’ (47) to estimate the gBLUPs and found the 
breeding value estimates to be perfectly correlated (R = 1.0) across packages, so we only present 
results output by BGLR.  

Data simulation results 
First, we will present an overview of the results from data simulated using 2 planting sites, 
mirroring the planting design of our empirical dataset and using the approach outlines in the main 
text (SNP-by-SNP GAMs). Then, we will present results summarizing simulations that varied the 
number of planting sites, different genetic, architectures, and analysis type (e.g., SNP-by-SNP 
GAM vs. gBLUP approaches). We found that the overall approach of using GAMs to estimate 
growth response to Tmax differences was able to accurately estimate an adaptational lag in 
temperature at the species level with 2 planting sites, as shown in the figure below with the 
simulated ‘true’ species-level growth response shown on the left and the estimated growth 
response from the GAM analysis on the right. Note that the y-axes are not expected to be 
equivalent, as the simulated effect is on the left is only the marginal effect on progeny relative 
growth rates, while the figure on the right incorporates block, site, and accession effects into the 
overall prediction of progeny relative growth rates. 
 

 
Overall, with simulated data from 2 planting sites, our statistical analysis using GAMs to 

estimate separate growth responses across Tmax differences on a SNP-by-SNP basis was able to 
accurately predict breeding values for progeny growth in warmer temperatures. The figure below 
shows the correlation between the known true breeding value and the estimated GEBV from the 
GAM analysis for each simulated genetic architecture. Overall the correlation coefficient was 
highest when growth response was a polygenic trait (R = 0.63, shown left) and slightly lower 
when growth response was driven by a few major loci (R = 0.48, shown right).  
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The distribution of estimated uncorrected P-values of the Tmax difference and SNP 

interaction from the SNP-by-SNP GAM analysis was somewhat uniformly distributed for the 
polygenic architecture, and less so for the major QTL architecture. We see similar distributions of 
P-values with our empirical data with 2 planting sites (Figure S9).  
 

 
 

The gBLUP analysis (either using GAMs or quadratic mixed-model regressions) were 
less effective than the SNP-by-SNP GAM approach at estimating the ‘true’ breeding values and 
produced lower correlation coefficients between the true and estimated breeding values. 
Pearson’s R for the gBLUP analyses ranged from 0.13 – 0.24 depending on the method and 
genetic architecture, shown below. 
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With only 2 planting sites, it is likely that the gBLUP analysis has difficulty estimating 

the growth response function at the maternal-tree level. Each family in this scenario only has data 
at 2 values of Tmax differences, thus making it difficult to estimate the underlying progeny growth 
response function from just two points along the Tmax difference axis. To illustrate this, the figure 
below shows the underlying simulated growth response function for 3 maternal trees, with the 
corresponding circles showing where the sampling data is coming from at the 2 planting sites on 
the left (i.e., 2 Tmax difference values per family). We would expect the efficacy of the gBLUP 
approach to improve as more planting sites are added to the sampling design, which would allow 
more complete sampling coverage of the progeny growth response function, as shown on the 
right panel with 15 simulated planting sites. 
 

 
 

We then simulated datasets ranging with 2, 5, 10, and 20 planting sites and again 
compared the efficacy of each statistical approach in recovering the true breeding value. We 
found that, overall, the SNP-by-SNP GAM approach produced higher correlations between the 
true and estimated breeding values across all simulated number of planting sites. The figure 
below shows this pattern, with the correlation between the ‘true’ and estimated breeding values 
averaged across 10 replicates shown across the range of planting sites, and separated out by 
modeling approach and genetic architecture:   
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Overall, the data simulation analysis suggests that the SNP-by-SNP GAM approach 
presented in the main text of this study is more closely aligned with the ‘true’ underlying 
breeding values, while being more flexible and robust to smaller sample sizes.  
 

Estimating benefits of genome-informed assisted gene flow 
We mapped how GEBVs varied across the valley oak range based on climate and spatial 
associations. For the 304 genotyped maternal trees with progeny in the provenance trial, we 
associated their GEBV with their latitude, longitude, latitude x longitude interaction, and 
elevation of their original location, and a set of climate variables representing their climate of 
origin that were not strongly correlated: Tmax, Tmin, Tave, precipitation seasonality (Bioclim 15), 
summer precipitation (Bioclim 18), precipitation of the coldest quarter (Bioclim 19), and climatic 
water deficit (CWD). We used the corresponding climate data from the BCM dataset (5) to 
generate our map of GEBV predictions. This map (Figure S5) allowed us to then generate 
predictions of how relative growth rates across the valley oak range would change under a 
business-as-usual emissions scenario by 2070-2099 (RCP-8.5) based on current GEBV 
distributions. We then simulated a scenario of genome-informed assisted gene flow where for 
each potential planting site across the valley oak range (i.e., each cell in the raster encompassing 
the sample area), we calculated the highest GEBV within a 50 km radius and used this maximized 
GEBV at each point to estimate how progeny relative growth rates would change if individuals 
with the highest GEBVs within 50 km of each planting site were used as seed sources. 
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Fig. S1. Map of valley oak samples and Tmax (°C) 1951-1980 across California. Green circles 
indicate location of the adults who have progeny in the common garden (n = 659), orange circles 
indication location of adults who have progeny in the common garden and have genotyping by 
sequencing (GBS) data (n = 304) which may overlap green circles, and purple circles indicate 
location of adults who have GBS data but do not have progeny in the common gardens (n = 133). 
Blue squares show the locations of the common gardens in Chico, CA and Placerville, CA. 
Dashed black outline shows historical range of valley oak prior to contemporary habitat loss and 
fragmentation, while lighter grey lines show contemporary populations. 
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Fig. S2. Predicted relative growth rates and approximate 95% confidence interval for valley oaks 
across Tmax difference estimated separately for (a) Placerville, CA and (b) Chico, CA common 
gardens. Dashed vertical line shows where planting site matches climate of origin (Tmax difference 
= 0) and solid lines show Tmax difference between Last Glacial Maximum 21,000 years ago and 
current climate (5.2° cooler) and predicted increase in temperature of 4.8° C for rising emissions 
scenarios by 2100 (RCP 8.5).    
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Fig. S3. Predicted relative growth rates and approximate 95% confidence intervals showing: (a) 
that relative growth rates decline with initial height, (b) that relative growth rates vary across 
blocks, with higher relative growth rates occurring in Chico, CA common garden compared to 
Placerville, CA garden, and (c) that relative growth rates vary by locality. 
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Fig. S4. Variance explained (R2

adj) of adjusted relative growth rates by GEBVs estimated with 
varying numbers of SNPs in a model of all individuals with maternal genotypes (n = 2,295). 
Using 600 SNPs with the strongest genotype-by-temperature interactions explained the most 
amount of variance. Note that the same data is being used to both fit the model and assess its 
explanatory power. We estimate the predictive power of GEBVs with 10-fold cross-validation in 
Table S2. 
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Fig. S5. Landscape distribution of genomic estimated breeding values (GEBVs) for higher 
growth rates under warmer temperatures based on modeled climate and spatial associations 
(Table S3). Black circles indicate sampled localities. Light black outlines indicate contemporary 
valley oak range. 
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Fig. S6. Biplot of the contributions of climatic variables to the first 2 dimensions of a principal 
component analysis of the climate of origin for progeny in the valley oak provenance trial. The 
climate variables we used to characterize climate of origin were maximum summer temperature 
(Tmax), average maximum temperature across all months (Tmax_annual), minimum winter temperature 
(Tmin),  average minimum temperature across all months (Tmin_annual), average temperature across 
all months (Tave), temperature seasonality (Bioclim 4), precipitation seasonality (Bioclim 15), 
summer precipitation (Bioclim 18), precipitation of the coldest quarter (Bioclim 19), and climatic 
water deficit (CWD). 
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Fig. S7. Linear predictor plotted against residuals from the full model (N = 5,051) individuals) 
with (a) Tweedie error distribution and (b) Gaussian error distribution. The Tweedie error 
distribution appears to improve the fit of the model by removing structure in the residuals. 
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Fig. S8. Biplot of principal components analysis (PCA) on 12,357 SNPs from 421 valley oak 
adults. Labels indicate the sample ID. The first two PC axes explained 3.4% and 2.1% of the 
variance, respectively. SNPs were scaled and mean-imputed before calculating the PCA. 
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Fig. S9. (a) Manhattan plot showing the strength of genotype by Tmax difference interactions 
(uncorrected p value) of 12,357 SNPs across 12 chromosomes of valley oak. (b) Histogram and 
(c) QQ-plot of uncorrected p-values from the genome-wide association (GWAS) of the 
interaction term of genotype with Tmax difference across 12,357 SNPs based on generalized 
additive models. Figure 2a in the main text shows the predicted effect size on relative growth 
rates for each genotype at each SNP represented in the Manhattan plot.  
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Fig. S10. (a) Correlation between genomic estimated breeding values (GEBVs) estimated by the 
‘SNP-by-SNP’ GAM analysis presented in the main text vs. GEBVs estimated through a gBLUP 
(genomic Best Linear Unbiased Predictors) analysis. The legend in the bottom right shows the 
estimated Pearson’s correlation coefficient between the two sets of GEBVs (R = 0.816, P < 
0.001). (b) Contrasting progeny growth responses for Tmax difference and approximate 95% 
confidence intervals for maternal trees with genomic-estimated breeding values (GEBV) 
estimated by the gBLUP analysis for optimal growth rate under warmer temperatures at the 
average value, +1 SD above average, and -1 SD below average. Dashed vertical line shows where 
planting site matches climate of origin (Tmax difference = 0) and solid shows predicted increase in 
temperature of 4.8° C for rising emissions scenarios by 2100 (RCP 8.5). 
  



Valley oak adaptational lag Supplementary Information Browne et al. Page 25 
 

Table S1. Parameter estimates from a generalized additive model on relative growth rates (cm 
cm-1 yr-1) of 5,051 valley oaks planted in two common gardens in California. Estim. df is the 
estimated degrees of freedom, df is the degrees of freedom, F is the F statistic, and the estimated 
P value for the smooth terms and parametric coefficients, along with the total variation explained 
by the full model. Values in bold are parameters where P < 0.05. 
 

Parameter Estim. df F P value 

Smooth terms    

Tmax difference 2.43 5.60 0.00076 

Height2014 6.32 587.65 < 2e-16 

Family ID <0.01 0.00 0.9420 

Locality 44.87 0.99 1.56e-8 

Climate PC1 1.00 0.44 0.510 

Climate PC2 <0.01 0.39 0.991 

Climate PC1 * Tmax difference 1.00 0.001 0.982 

Climate PC2 * Tmax difference 5.05 1.23 0.206 

Parametric coefficients df   

Block 9 249.6 < 2e-16 

R2 adjusted = 0.721     
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Table S2. Mean and standard deviation (SD) of the amount of variance explained (R2
adj) in 

adjusted relative growth rates in independent training sets with 10-fold cross-validation in the 
observed dataset or in datasets where adjusted relative growth rates were permuted among 
individuals 100 times. Relative growth rates were adjusted prior to analysis to control for the 
effects of climate of origin, initial height, locality, family ID, genetic kinship, and the main effect 
of Tmax difference (see Methods). The cross-validation approaches either included or did not 
include individuals from the same family across testing and training sets.  
 

 Observed Permuted 

10-fold cross-validation approach R2
adj 

mean 
R2

adj 
SD 

R2
adj 

mean  
R2

adj 
SD 

No individuals from same family across testing and 
training sets 

0.040 0.033 0.007 0.002 

Individuals from same family across testing and 
training sets 

0.035  0.028 0.007 0.001 
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Table S3. Parameter estimates from a generalized additive model on genomic-estimated 
breeding values (GEBVs) for 304 genotyped adult valley oaks and spatial and climatic 
variables. Estim. df is the estimated degrees of freedom, df is the degrees of freedom, F is 
the F statistic, and the estimated P value for the smooth terms, along with the total 
variation explained by the model. Statistically significant terms (P value ≤ 0.05) are 
shown in bold 
 

Parameter Estim. df F P value 

Smooth terms    

Tmax  2.34 2.067 0.1161 

Tmin 1.00 1.379 0.2413 

Climatic water deficit (CWD) 1.00 1.248 0.2649 

Precipitation seasonality 
(Bioclim_15) 

1.00 0.323 0.5702 

Summer precipitation 
(Bioclim_18) 

1.00 0.060 0.8071 

Elevation 1.00 7.475 0.0066 

Latitude 3.28 1.855 0.1078 

Longitude 1.00 0.470 0.4934 

Latitude x Longitude 1.409 3.345 0.0441 

R2
adjusted

 = 0.074    
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