Supporting Information

Icephobic Surfaces Induced by Interfacial Non-Frozen Water

Dayong Chen^{1,2}, Martin D. Gelenter³, Mei Hong³, Robert E. Cohen^{1*}, Gareth H. McKinley^{2*}

¹Department of Chemical Engineering ²Department of Mechanical Engineering ³Department of Chemistry Massachusetts Institute of Technology

Corresponding authors: Robert E. Cohen, Fax: 01 617 258 8224. Email: recohen@mit.edu Gareth H. McKinley, Fax: 01 617 258 8559. Email: gareth@mit.edu

Figure S1 Three modes of fracture. Using our current ice adhesion test apparatus as illustrated in Figure 1, the ice cubes detach from the surface mostly by Mode II (inplane shear) fracture.

Figure S2 Surface topography of a PDMS (Sylgard 184 10:1 base:crosslinker by weight) elastomer film containing 1 wt% PDMS-PEG copolymer (DBE-224) by atomic force microscopy(AFM). (a) The surface root-mean-square roughness is ~ 40 nm in the dry state. (b) The wet state surface root-mean-square roughness remains about 40 nm measured by tapping mode AFM in water. Scale bars represent 10 μ m.

T (K)	Peak A			Peak B			Peak C		
	¹ H CS	${}^{1}\text{H} T_{2}$	β	¹ H CS	${}^{1}\mathrm{H}~T_{2}$	β	¹ H CS	${}^{1}\text{H} T_{2}$	β
	(ppm)	(ms)		(ppm)	(ms)		(ppm)	(ms)	
276 K	5.03	566±13	1.15±0.04	5.03	354±8	1.06 ± 0.03	N/A	N/A	N/A
268 K	5.04	389±61	0.85±0.12	5.10	216±15	0.68 ± 0.04	5.01	150±1	0.55±0.04
								5	
263 K	5.08	337±40	0.99±0.13	5.15	207±11	0.70 ± 0.03	5.12	73±4	0.66±0.03
258 K	5.14	225±20	0.87 ± 0.08	5.22	65±12	0.65 ± 0.09	5.07	13±2	0.53±0.07
253 K	5.25	122±5	1.02 ± 0.05	5.27	50±5	0.79 ± 0.07	N/A	N/A	N/A

Table S1. Chemical Shift and Relaxation Data for Peaks A, B, and C.

Table S2. Calculated Rotational Correlation Times and Viscosities for Peaks A, B, and C.

T (K)	Peak	А	Peak	В	Peak C	
	$\tau_c (10^{-11} \text{ s})$	η (Pa·s)	$\tau_c (10^{-11} \text{ s})$	η (Pa·s)	$\tau_c (10^{-11} \text{ s})$	η (Pa·s)
276 K	3.47	0.0094	5.54	0.015	N/A	N/A
268 K	5.04	0.013	9.09	0.024	13.1	0.034
263 K	5.82	0.015	9.49	0.024	27.3	0.070
258 K	8.73	0.022	30.8	0.077	254	0.64
253 K	16.2	0.040	40.3	0.10	N/A	N/A

Movie 1

Incorporating 1 wt% DBE-224 PDMS-PEG copolymer into a 20 μ m thick PDMS elastomer film delays the heterogeneous nucleation of ice in a water drop of 300 μ L placed on the top surface by 2-3 min. The PDMS elastomer film coated on a silicon wafer is maintained at -15 °C by a Peltier cooling plate placed underneath. A PDMS elastomer film containing no PDMS-PEG copolymer was used as a control. The movie is sped up by a factor of 20.